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Excessive energy intake is linked with obesity and subsequent diet-related health problems, and it is therefore a major nutritional
challenge. Compared with the digestible carbohydrates starch and sugars, fiber has a low energy density and may have an
attenuating effect on appetite.,is narrative review attempts to clarify the net energy contributions of various fibers, and the effect
of fiber on satiety and thus appetite regulation. Fibers, broadly defined as nonstarch polysaccharides, are a varied class of
substances with vastly different physicochemical properties depending on their chemical arrangement. ,us, net energy content
can vary from more than 10 kJ/g for soluble, nonviscous, and easily fermentable fibers such as those in many fruits, to less than
zero for viscous fibers with anti-nutritive properties, such as certain types of fibers found in rye and other cereals. Likewise, some
fibers will increase satiety by being viscous or contribute to large and/or swollen particles, which may facilitate mastication and
increase retention time in the stomach, or potentially through fermentation and an ensuing satiety-inducing endocrine feedback
from the colon.,us, fibers may clearly contribute to energy balance.,e metabolizable energy content is very often considerably
lower than the commonly used level of 8 kJ per g fiber, and some fibers may reduce energy intake indirectly through satiety-
inducing effects. Amore precise characterization of fiber and its physicochemical effects are required before these beneficial effects
can be fully exploited in human nutrition.

1. Introduction

Obesity is on the rise in affluent societies across the world
[1]. Fundamentally, the nutritional cause of obesity is an
excessive intake of carbohydrates and fat, which together
contribute a majority of the dietary energy. Quantitatively,
carbohydrates are the most important source of energy, but
the different chemically defined classes of carbohydrates
vary considerably in their contribution to energy intake.
Starch is a polysaccharide composed of α-glucose linked
through 1–4 and 1–6 bonds and is the quantitatively most
important source of energy in the global diet [2]. ,e other
important class of energy-providing carbohydrates in the
diet is sugars, broadly defined as the monosaccharides
glucose and fructose, and the disaccharides sucrose, maltose,
and lactose [3]. Because of the complex contribution to sugar
intake through added sugar, fruits, vegetables, and milk,
accurate estimates are rare, but in the United States, sugars

have been estimated to contribute to 23% of the energy
intake in adults [4]. Similar data, based on calculations of
fructose intake, have been found in Norway [5].

,e remainder of the carbohydrates in the diet are the
nondigestible oligosaccharides and the nonstarch poly-
saccharides. ,ese carbohydrates are often considered
beneficial in the diet because they cannot be broken down to
monosaccharides which can be absorbed and used as an
energy source. ,e nondigestible oligosaccharides are a
varied group of lowmolecular weight saccharides containing
more than two monosaccharide units. ,e main sources of
these carbohydrates are fruits, vegetables, and legumes [6].
Generally, they are found in small quantities, although some
foods such as Jerusalem artichokes and chicory may contain
considerable quantities. Oligosaccharides are readily fer-
mented by the gut microflora, and although small quantities
may have beneficial gut health stimulating effects, con-
sumption of large quantities may cause diarrhea [6].
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,e nonstarch polysaccharides, on the other hand, can
be found in considerable quantities in many plant foods.
,ey are a very diverse group of carbohydrates that can
constitute a large part of the dry matter in many plant foods
such as wheat bran and many vegetables. ,ese carbohy-
drates are collectively included in the term fiber. Numerous
review papers have focused on their potential role in con-
tributing to better health, such as reducing the risk of obesity
[7, 8], cardiovascular disease [9, 10], and diabetes [11, 12]. In
terms of the number of persons affected, obesity is the most
important dietary challenge in human nutrition. Obesity is
also epidemiologically and causally strongly linked to car-
diovascular disease and diabetes type 2. Understanding the
mechanisms governing the influence of fiber on energy
intake and thus obesity is therefore imperative. However, the
exact physicochemical mechanisms governing the beneficial
effect of fiber remain obscure, as well as the effect of different
chemical constituents and sources of fiber. ,us, the current
narrative review was carried out to cast light on this im-
portant issue, specifically focusing on the fundamental
mechanisms governing the effect of fiber on energy balance
in humans.

2. Materials and Methods

,is narrative review is based on scientific peer-reviewed
papers primarily obtained using a nonsystematic search of
the databasesWeb of Science and PubMed.,e initial step in
the selection of literature was to identify relevant keywords
to search for in these databases. Various combinations of the
following keywords were used: “fiber/fibre,” “dietary fiber/
fibre,” “fiber/fibre definition,” “physicochemical properties,”
“energy value,” “fermentation,” “anti-nutritive effects,”
“chemical analysis,” “satiety,” “satiation,” “appetite regula-
tion,” “mastication,” “chewing,” “gastric retention time,”
“gastric emptying rate,” “viscosity,” “particle size,” “transit
time,” and “short chain fatty acids.” ,e search was con-
ducted fromApril 2017 to April 2018.,e subsequent step in
the selection process was inclusion or exclusion of papers
based on the relevance to the aim of the review. Both original
and review papers were included. ,e reference lists of the
included papers were also thoroughly studied to identify any
possibly relevant papers. As far as possible, only original
papers and reviews based on controlled trials and mecha-
nistic studies were included. Unless otherwise specified, the
results presented and discussed in this study are statistically
significant. Animal studies have been included when found
relevant, for example, because of lack of human studies.

3. Fiber Definition

Because of the complex nature and effects of fibers, the
precise definition of fiber varies greatly. A chemically ori-
ented definition, because of its preciseness, is a useful
starting point. In its most simple definition, fibers are
nonstarch polysaccharides [13]. In other words, saccharides
composed of a large number of monosaccharides are linked
through covalent bonds, which the human endogenous
enzymes cannot break. However, this chemically sound and

simple definition is of academic interest only because there
are no viable analytical procedures which can be used to
quantify this constituent of the diet precisely.

In practice, the term “dietary fiber” is commonly used
and will be the basis for the definition of fiber here. In
addition to the nonstarch polysaccharides, the term “dietary
fiber” includes the lignin often associated with the fiber,
which is not removed during the analytical procedure used
to quantify dietary fiber [14]. Dietary fiber measured using
this method will not include any starch because boiling with
thermostable amylase removes all starch in the sample [15].
Starch has been defined as a fiber component if it is resistant
to digestion in the small intestine, for example, due to
chemical modification [16], and current dietary fiber ana-
lyses may include resistant starch in the analytical procedure
[17]. ,e extent of indigestibility, however, varies consid-
erably depending on the type of resistant starch and the
method used for assessing digestibility [18].,e suitability of
including this fraction among the fiber is therefore ques-
tionable. Resistant starch has also been discussed in several
excellent reviews [18–20]. ,us, this carbohydrate compo-
nent will not be considered a part of the fiber fraction in this
review.

4. Physicochemical Properties of Fiber

4.1. Molecular Composition. Despite the common feature of
not being digested by endogenous enzymes, fibers have
vastly different physicochemical properties depending on
their chemical arrangement. In addition to glucose, being
the quantitatively most important building block of fiber
because of its presence in cellulose and other nonstarch
glucans, fibers may consist of or contain a number of other
monosaccharides such as fructose, galactose, mannose, ri-
bose, rhamnose, xylose, and arabinose. Of particular interest
is the galacturonic acid found in pectins, which can produce
strong gels in association with calcium ions [21]. ,e mo-
lecular size, the monosaccharide composition, the bonds
involved (e.g., branching points) and the extent of lignifi-
cation will determine the physicochemical properties of the
fiber, and thus, the health effects.

4.2. Hydration and Viscosity. ,e exact nature of the in-
teractions between physicochemical properties and physi-
ological effects are not fully understood, but as pointed out
by Bach Knudsen [14], hydration properties and viscosity
effects are perhaps some of the most important. Hydration
properties are interchangeably described as water-holding
capacity and water-binding capacity, and this describes the
ability of fiber to incorporate and hold water in its structure,
which is measured as the amount of water a certain amount
of fiber is able to hold. Insoluble fibers which are able to hold
large quantities of water will often also swell. If the fibers are
able to be dispersed in water, they are defined as soluble
fibers. Soluble fibers are of nutritional importance because
they may result in increased viscosity of the water and
because soluble fibers are particularly easily fermented, as
will be discussed below. ,e extent to which soluble fibers
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affect viscosity depends on the ability to form noncovalent
bonds with surrounding water molecules and other fiber
molecules. As will be discussed, viscous fibers may have
specific nutritional effects through their potential satiating
properties and their ability to interact with macronutrient
digestion. As pointed out by Lovegrove et al. [22], both
solubility and viscosity of fibers are complex and dynamic
processes that are affected by numerous factors, and thus
they are very difficult to estimate accurately. Amongst
others, the viscosity of a fiber is determined by temperature,
pH, fiber structure, chemical composition, molecular
weight, and fiber concentration [13, 23–26]. Consequently, it
has been demonstrated that the viscosity of foods is not
necessarily transferable to the viscosity properties of the food
in the gastrointestinal tract [27].

4.3. Particle Size. Particle size may also have important
bearings on the physiological effects [28]. Encapsulation of
nutrients in large particles, e.g., because of intact cell walls
may be an impediment to digestion. In addition, as will be
discussed below, large particles may slow down gastric
emptying rate, thus increasing satiety. Encapsulation will
affect nutrient availability and thus energy intake by
physically impeding nutrients entrapped in the fibrous plant
cell walls. ,is potentially important mechanism, because of
its complexity and uncertain nature (e.g., particle size of
foods, the effect of mastication, and physicochemical
properties of the plant material), will not be dealt with here.
Recent reviews give excellent overview of this topic [28, 29].

5. Energy Value of Fiber

5.1. Fermentability. Despite the fact that they are in-
digestible by human digestive enzymes, fibers may have an
effect on energy value of foods in two opposing ways. Fibers
will to varying extents be fermented by microflora in the
colon, producing short-chain fatty acids (SCFA, mainly
acetic, propionic, and butyric acid in a molar ratio of ap-
proximately 2.0 : 0.5 : 0.5), which subsequently will be
absorbed and ultimately used as an energy source. A de-
scription of the microflora responsible for this effect is
outside the scope of this review, but overviews have been
published recently [30, 31]. Colonic enterocytes will oxidize
most of the butyrate, while the liver will metabolize pro-
pionate, and the muscles and the brain will oxidize acetate
[32]. It has been estimated that, in humans, 300mmol of
SCFA is produced per day, equivalent to 20 g of SCFA if a
normal molar ratio of acetic, propionic, and butyric acid is
assumed, and that a high capacity allows for a complete
absorption in colon [33].

Obviously, the extent to which these SCFA are produced
depends on the availability of substrates, chiefly carbohy-
drates, suitable for fermentation. However, the ferment-
ability of different undigested carbohydrate sources also
varies greatly. In vitro fermentation results reported by
Cummings and Macfarlane [32] showed a yield of SCFA
from as low as 10 g per 100 g for pea hulls, oat hulls, and
cellulose to 40 g for pectins. ,is variability reflects both

hydration and solubility properties of different fibers, both of
which facilitate accessibility of fibers to fermentative bac-
teria. Because of the fact that fermentation of fiber by gut
microflora results in energy loss, the net energy provided is
lower than that inferred from proportion of fiber fermented,
as will be discussed below.

5.2. Antinutritive Effects. Fibers may also reduce the energy
value of foods through inhibiting digestion and absorption
of other energy-providing macronutrients in the diet. ,us,
Baer et al. [34] andMiles [35] found that both fat and protein
digestibility was negatively affected when fiber content in
diets increased. However, these results may have been
confounded by other differences between the foods used in
the different diets. A more valid approach would be to study
the effect of fiber in isolation. Doing this, Castiglia-Delavaud
et al. [36] found sugar beet fiber to result in a slight reduction
(1%) in digestibility of fat but found no effect on nitrogen
digestibility (corrected for microbial N). Farrell et al. [37]
found a similar reduction in fat digestion and a significant
reduction in digestibility of nitrogen when fibers in the form
of bran were used as a fiber source. Wisker et al. [38] ob-
served similar effects as Farrell et al. [37]. Wisker et al. [39]
increased fiber content threefold by replacing refined wheat
products with whole-grain wheat and rye and observed that
nitrogen and fat digestibility was reduced from 87.4 to 79.6
and 96.4 to 93.6, respectively. Taneja et al. [40] observed
increased fat excretion when 25 g/day of a viscous muci-
laginous fiber was added to a standardized diet. However,
others have found no effect of fiber, for example, when citrus
fiber or barley fiber was used [41]. Nonetheless, taken to-
gether, fiber seems to be able to attenuate macronutrient
digestibility.

,e difference in response to fiber is probably at least
partly due to physicochemical properties of fiber related to
the ability of fiber to intervene in nutrient digestion and
substrate absorption. Viscous fibers may be particularly
effective, although the effects on nutrient digestibility have
been mixed even with these types of fiber [25]. In a study by
Ganji and Kies [42], subjects consumed standardized diets
containing either soy oil or coconut oil (30% of the energy as
fat) with and without 20 g of the highly viscous fiber psyl-
lium. Quantitative collection revealed a reduction in fat
digestibility of about 2 percentage units when psyllium fiber
was consumed with the meal, with a significant increase in
the amounts of palmitic and stearic acid excreted (transit
time also decreased). In animal studies, the negative effect of
viscous fibers on digestibility of nutrients is well docu-
mented, e.g., a reduction of ileal fat and protein digestibility
in broiler chickens due to viscous (1–3) (1–4)beta-glucans
from barley [43].

5.3. Quantifying Energy Value. In this section, an attempt
will be made to quantify the energetic contribution of fiber,
taking into consideration the effects mentioned above.
Obviously, the energetic value of fiber will vary considerably
as affected by fermentability and antinutritive effects. For
example, Livesey [44] concluded in his review of energy
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value of fibers that the digestible energy value varied from
−20 to +10 kJ/g. ,us, it is clear that the energetic value for
fiber of 8 kJ/g as recommended by a FAO working group
[45] is an average, at best.

,e energetic value of different types of fiber has been
assessed in a number of experiments. Wisker et al. [39], for
example, carried out an experiment with a low-fiber and a
high-fiber diet provided by cereal products. With the high-
fiber diet, the subjects excreted more energy than the energy
provided by the extra fiber, thus resulting in a negative
energy value of the fiber component. ,is despite the fact
that apparent digestibility of the fiber was 46.6 percent. ,e
negative energetic value of the fiber was explained by an
increased excretion of nitrogen and fat, thus indicating an
antinutritive effect as discussed above. Similar results were
found by Baer et al. [34]. In this experiment, subjects were
fed diets with three levels of fat, where for each of these diets,
the amount of fiber was varied to three levels by altering the
amount of fiber from cereals and vegetables. For all the fat
levels, a negative effect of increasing fiber on metabolizable
energy content was found, indicating a negative energy value
of the fiber. Apparent faecal digestibility of fiber was lower
with high fiber content than with low fiber content but was
rather high, varying between 67 and 82 percent. Fat and
protein digestibility was significantly lowered with in-
creasing fiber levels, particularly for diets with a high fat
level, which can explain a negative energetic value of the
fiber despite high digestibility.

,us, as these data demonstrate, antinutritive effects may
result in that fibers have a negative energetic value despite
being partly degraded by the gut microflora. However, not
all fibers have been shown to act like this. Wisker et al. [46],
for example, found that the net energetic value of citrus fiber
was 7.5 kJ/g when calculated based on energy lost in faeces,
although this study also demonstrated that fiber from coarse
rye bread had a negative net energy value of −2.1 kJ/g. In-
terestingly, all fiber sources had positive energetic value
when calculated based on fermentability. In this method,
which is based on an equation proposed by Livesey [44], net
energy is calculated based on fermentability only and does
not take into account antinutritive effects, which calculations
based on energy loss in faeces will. ,us, the difference in
net energy contribution of fiber from whole rye bread
was 4.9 kJ/g when fermentation only was considered and
−2.1 kJ/g when energy in faeces was taken into consider-
ation; this demonstrates the large antinutritive effects for
many fibers. Barley fiber also shifted from contributing
positively to energy in the diet to contributing negatively
when antinutritive effects were taken into consideration,
while a small effect only was observed for citrus fiber.

Castiglia-Delavaud et al. [36] measured net energy
content of isolated sugar beet fiber and inulin by the use of
total collection of faeces and urine and estimation of heat
loss through the use of respiration chambers. ,e latter is
important because the net energy content of fibers is not
only affected by fermentability and antinutritive effects but
also by the heat produced and lost during digestion and
metabolism. ,us, when energy is made available from a
carbohydrate via fermentation rather than via enzymatic

degradation to glucose, the heat loss will be larger. Net
energy content of fibers will therefore be further reduced
when heat loss is taken into consideration. Although the
metabolizable energy content was rather similar at 10.7 and
13.0 kJ/g for both sugar beet fiber and inulin, the net energy
value at 5 kJ/g for the former and 11.9 kJ/g for the latter
demonstrated the large and variable effect of heat loss due to
fermentation and metabolisation of energy from different
fiber sources.

As the discussion above demonstrates, the energetic
contribution of fiber varies considerably. ,e net energy
value will sometimes be negative, and it will anyway usually
not be higher than 8 kJ/g.

6. The Effects of Fiber on Satiety

6.1. Satiety Mechanisms. Intake of food will at some point
reduce hunger and inhibit further food intake for a longer or
shorter period. In this course of action, there are two
processes involved: satiation and satiety. Satiation develops
during an eating episode and causes meal termination, thus
controlling meal size, whereas satiety occurs as a conse-
quence of an eating episode and will temporarily inhibit
further meal initiations [47–49]. Satiation is also known as
intrameal satiety and satiety as intermeal satiety [49].
However, in studies of fiber and appetite this distinction is
rarely used and thus the term satiety (or satiating effect) will
be used in the following.

When discussing the effect of fiber on satiety, it is im-
portant to be aware of the complexity of the satiating process
and factors affecting it. Clark and Slavin [50] point out that
satiety and food intake may be influenced by many un-
controlled factors, such as stress level, environmental and
social factors, palatability of the food, and sensory-specific
satiety. Some consumers may, for example, find fiber-
containing test meals unpalatable, an effect that may have
impact on study results [51]. Blundell et al. [49] argue that
the effect food has on satiety cannot be considered based on
the effect of one component in isolation, as the effect may
change when the component is eaten together with other
foods. ,e effect of a particular fiber is thus depending on
what this fiber is ingested together with [52]. In addition to
the effect of different types of fibers as will be discussed
below, there may also be differences within the same type of
fiber, for example, due to differences in the way it is pro-
cessed [53].

,e effect of different types of fiber on satiety has been
extensively reviewed. Gums [54], oat β-glucan [55], guar
gum [56], pectin, alginate, and β-glucan [26] as well as fiber
supplements and fiber-rich foods [57] have been concluded
in reviews to have a satiating effect. On the contrary, others
have concluded that most fiber types do not affect satiety
[50] or that the effect of fiber on satiety is small [58]. Because
fibers may have vastly different properties as discussed
above, these diverging conclusions are not surprising.
However, it seems clear that some fibers will have a satiating
effect.

Fibers may affect satiety through several physiological
mechanisms throughout the digestive tract. Here, the focus
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will mainly be on the effects of fibers on satiety through some
physicochemical properties that seem to be especially linked
to the means by which fibers can influence appetite regu-
lation. ,ese include physical structure effect, water-holding
capacity, and viscosity. In addition, fermentable fibers will
produce SCFAs in colon, which may also affect satiety. ,e
satiating mechanisms will be explained, with a focus on how
fibers via these physicochemical properties interact with the
digestive mechanisms in the mouth, stomach, small in-
testine, and colon in ways that may impact satiety.

6.2. Oral Processing Time. Because fibers are part of the plant
skeleton, they may be important for binding foods into large
particles in what can be termed a physical structure effect. ,is
property of fibers may increase oral processing time and effort
needed for mastication [48, 59]. As indicated in a systematic
review and meta-analysis [60], mastication seems to be linked
to satiety. Wanders et al. [61] showed oral exposure time to be
longer and food intake to be reducedwhen subjects ate a cookie
containing alginate, but not guar gum or cellulose, compared
with cookies without added fiber. A longer oral processing time
seems to stimulate cephalic phase responses, i.e., responses to
sensory signals that are sent out to prepare the digestive tract
for the ingested material, and these are proposed to contribute
to satiety [60, 62].

6.3. Gastric Volume and Retention Time. Ingestion of food
will result in gastric distention, which via the vagus nerve
will send signals to the brain leading to a feeling of fullness
and satiety [62–64]. Gastric distention will also inhibit se-
cretion of the hunger-stimulating hormone ghrelin [65].,e
duration of gastric distention will be determined by gastric
emptying rate, which again will be affected by the nature of
food eaten [66]. Water together with food particles of small
size move relatively fast through the stomach, whereas food
particles of larger size with more mass will have longer
retention time [29]. Fiber properties affecting these pro-
cesses such as particle size, water-holding capacity, and
viscosity are thus properties central to the effects different
fibers may have on gastric retention time. In addition, effects
of fibers in the lower gastrointestinal tract may also influence
gastric-emptying rate via endocrine regulation [52].

In several human studies, fibers have been shown to
delay gastric emptying [67–78]. Delay in gastric emptying
may thus be one of the mechanisms explaining the satiating
effect of fibers, and some properties of fibers seem to be
especially important in this regard. When fiber enters the
stomach, it will absorb water and swell. ,e amount of water
absorbed and extent of swelling depends on the specific
hydration properties of fibers [28]. ,e resulting increase in
gastric volume will increase the gastric distension as men-
tioned above and hence lead to increased satiety. In studies
of rats [79] and sows [80], where fiber increased gastric
retention time, there are indications of this effect to be
caused by the water-holding capacity of the ingested fiber.
However, there seems to be a lack of human studies of the
effect of water holding capacity of fiber on gastric retention
time.

Increased viscosity of gastric load is another, and more
well-documented, mechanism that may slow down gastric
emptying and in this way facilitate satiety. Juvonen et al. [81]
reported that gastric-emptying rate, measured by para-
cetamol absorption, was slower after intake of a high vis-
cosity oat bran drink compared with a low-viscosity oat bran
drink. ,is indicates an important role of viscosity in re-
ducing gastric emptying rate. Also, Marciani et al. [73]
showed that fiber-rich high-viscosity meals reduced gastric-
emptying rate, gave greater gastric volumes and thus
resulted in a higher satiety than low-viscosity meals.

In several studies, a reduced gastric-emptying rate has
been reported after intake of viscous fibers such as guar gum
[67], guar gum and pectin [68], pectin [69, 71, 75], β-glucan
[72], and alginate (depending of dose) [76], although some
studies have not demonstrated such effects [51, 61, 82–84].
,e reduced gastric emptying rate discussed above may
explain why some viscous fibers have been demonstrated to
induce satiety [76, 85, 86], and that fiber-containing meals
and drinks with high viscosity have been reported in several
studies to increase satiety more than both low viscosity meals
and drinks without [87, 88] and with fiber [51, 73, 89–91].
However, an oat bran beverage with low viscosity was
demonstrated to increase satiety more than a high viscosity
oat bran drink [81], thus demonstrating the complexity of
these effects. Wanders et al. [58] concluded in their sys-
tematic review of randomized controlled trials that highly
viscous fibers reduced appetite and food intake more than
less viscous fibers. Even though scholars state that more
clinical evidence is necessary [24, 66], it seems that viscous
fibers have a potential to increase satiety.

,e physical structure effect may impact gastric
emptying rate [92]. In the stomach, it has been claimed
that solid particles must be smaller than 1 to 2 mm in size
in order to pass through pylorus and enter duodenum
[93, 94]. Food particles of larger size will thus potentially
need more time for size reduction than smaller particles
before they will be allowed to enter duodenum, as has
been demonstrated in animal studies [95, 96]. As men-
tioned above, fibers may contribute to larger particle size
in foods and this may thus be one cause for the satiating
effects of fibers. However, fiber-rich food sources vary
greatly in particle size [97]. ,us, Vincent et al. [78]
observed that intake of coarse bran, but not fine bran,
prolonged gastric retention time in humans.

6.4. Small Intestinal Transit Time. Several authors have pos-
tulated that fibers have satiating effects through a prolonged
small intestinal transit time [24, 26, 27, 55, 57]. Although bran
has been shown to decrease small intestine transit time in
humans [77, 98], there is a paucity of human studies where small
intestinal transit time after intake of fiber has been studied.,is
potential effect of fiber therefore remains unsubstantiated.

6.5. Production of SCFAs in Colon. When entering colon, fi-
bers will be fermented to various degrees. ,e fermentability of
soluble fibers is generally much greater than that of
insoluble fibers [99]. As discussed previously, the main
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products of fermentation of fiber in the colon are, together
with gases, the SCFAs propionate, butyrate, and acetate [100].
,e effect of these SCFAs in the gut is postulated to be of
importance for appetite regulation [55]. ,is is due to the
demonstration of SCFAs as ligands to receptors (free fatty
acid receptors 2 and 3) present on the L-cells of the intestine
[101–103].,ese L-cells are endocrine cells known to produce
peptide YY (PYY) and glucagon-like peptide-1(GLP-1),
hormones that may reduce appetite and food intake [104–
107]. In vitro studies have demonstrated that SCFAs stimulate
PYY gene expression in rat gut cells [108], as well as release of
PYY and GLP-1 in colonic cells from humans [109] and mice
[110]. In animal studies, SCFAs have also been reported to
stimulate secretion of GLP-1 and PYY [111], and it has been
reported to result in reduced food intake [112].

Other mechanisms of SCFAs influencing satiety have
also been suggested. SCFAs may affect motility in the upper
gastrointestinal tract, which amongst others may reduce
gastric emptying [113]. In mice, an appetite-reducing effect
of acetate through interactions with the central nervous
system has also been reported [114]. However, it is un-
certain whether all these effects are transferable to the
effects of SCFA in humans [99]. It has also been indicated
that high doses of fibers are necessary for such effects in
animals and humans [115, 116], and high fiber doses may
cause negative side effects like bloating and flatulence.
Because of the lack of well-controlled human interventions,
the role of colon fermentation in human energy balance
thus remains to be fully established [117, 118].

7. Conclusions

Two clear conclusions can be drawn from this overview. One
is that fibers may clearly contribute to energy balance in an
affluent society because of its very low and sometimes even

negative energy value and because of satiety-inducing effects
(Figure 1). ,e energetic value is related mainly to fer-
mentability and antinutritive effects, where viscous soluble
fibers may have a considerable net negative energy value due
to attenuating effects on macronutrient digestion and ab-
sorption, whereas soluble nonviscous fibers will contribute
moderately to energy through fermentation. Fibers may
have effects on satiety at different stages of the digestive
process and in varying parts of the digestive tract, depending
on their physicochemical properties. It seems that some
fibers may increase oral processing time, increase gastric
retention time and possibly have effects in the gut via SCFA
production that may contribute to satiety. Physical structure,
hydration properties, viscosity, and fermentability are
properties of fiber that may have impact on the capability of
fiber to satiate via these processes.

However, the magnitude of these effects is difficult to
assess, not the least because the nature of the fibers may
affect energy contribution and satiety in opposing ways.
,is leads to the second clear conclusion of this review,
namely that due to the extremely varied properties of
fibers, broad general conclusions on the effect of fiber are
difficult to make. Soluble and viscous fibers such as those
found in barley and rye may be particularly beneficial for
satiety through increased gastric retention and through
fermentation in the colon, while simultaneously will
often have a negative net energy value because of anti-
nutritive effects. Other fiber components such as soluble
but nonviscous fibers from, e.g., some fruits, may have a
much lower or insignificant satiating effect due to less
effect on gastric retention and will contribute to energy
intake through a positive energy value as a consequence
of lack of antinutritive effects and a rather complete
fermentation in the colon.

Indigestible carbohydrates in the form of fiber

Insoluble Soluble viscous Soluble non-viscous

Energy balance

Reduced energy intake through reduced 
macronutrient digestion Increased energy intake through SCFAsReduced energy intake through satiety

Antinutritive effectsFermentationIncreased gastric retention 
time

Increased oral processing
time

Figure 1: Potentially important mechanisms for fiber effect on energy balance. ,e size of boxes and arrows are arbitrary and are not
indications of magnitude.

6 Journal of Nutrition and Metabolism



,us, until more research has been carried out to map
the effects of different fiber types in regards to physiological
digestive responses, only broad and careful general con-
clusions such as those above can be made. As this review
demonstrates, fibers will contribute to energy through fer-
mentation, albeit often much less than the value of 8 kJ/g as
currently used in the calculation of energy content, especially
when soluble, viscous fibers are considered, as these may
have a negative net energy value. Fibers may also contribute
to energy balance by having a satiating effect through in-
creased oral processing time, gastric retention, and/or fer-
mentation, although the magnitude of this effect is
dependent on delicate and sometimes contradicting effects
related to the physicochemical structure of the fiber.

7.1. Challenges and Future Directions. For a more precise
description of the physiological effects of fiber, a more detailed
distinction of the different types of fibers is needed, as also
stated recently by others [119]. One possible optionwould be to
distinguish between soluble and insoluble fibers because the
solubility is an important prerequisite for rapid fermentation.
Furthermore, soluble fibers could be classified into viscous and
nonviscous types as an attempt to take potential antinutritive
effects and satiating effects into consideration. Likewise, the
insoluble fibers could potentially be classified according to their
structural properties. ,is will take account of their potential
diverging satiating properties depending on a number of still
too poorly understood factors, e.g., their contribution to in-
creased oral processing time and/or increased retention time
because of particle size in the stomach. Given the complications
in regard to the current fiber definition, such a detailed
characterization of fibers will be challenging. After all, the
current fiber definition where resistant starch is included have
made fibers even more complex and varied in regard to
physiological response, due to variable digestion of starch.

As this review demonstrates, more research is needed to
clarify the effects of different fibers on energy balance and
the effect on satiety in particular. Human studies using diets
only differing in content of carefully characterized specific
fibers would allow for a more precise use of fibers to obtain
energy balance.
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