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Mutations that perturb normal pre-mRNA splicing are significant contributors to human disease. We used exome sequenc-
ing data from 7833 probands with developmental disorders (DDs) and their unaffected parents, as well as more than 60,000
aggregated exomes from the Exome Aggregation Consortium, to investigate selection around the splice sites and quantify
the contribution of splicing mutations to DDs. Patterns of purifying selection, a deficit of variants in highly constrained
genes in healthy subjects, and excess de novo mutations in patients highlighted particular positions within and around
the consensus splice site of greater functional relevance. By using mutational burden analyses in this large cohort of pro-
band-parent trios, we could estimate in an unbiased manner the relative contributions of mutations at canonical dinucle-
otides (73%) and flanking noncanonical positions (27%), and calculate the positive predictive value of pathogenicity for
different classes of mutations. We identified 18 patients with likely diagnostic de novo mutations in dominant DD-associated
genes at noncanonical positions in splice sites. We estimate 35%-40% of pathogenic variants in noncanonical splice site
positions are missing from public databases.

[Supplemental material is available for this article.]

Pre-mRNA splicing in humans is mediated by the major and minor
spliceosomes, highly dynamic, metalloenzyme complexes com-
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posed of five key small nuclear RNAs (snRNA), along with more
than 100 protein components and accessory molecules (Brody
and Abelson 1985; Hang et al. 2015; Scotti and Swanson 2016).
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Accurate recruitment and function of the spliceosome is reliant on
a plethora of cis-acting regulatory elements encoded within the
pre-mRNA itself. Although our understanding of the underlying
mechanistic processes regulating splicing has greatly increased in
recent years, our ability to predict whether or not a mutation
will affect splicing remains limited. However, with estimates that
up to 50% of monogenic disease-causing variants may affect splic-
ing (Teraoka et al. 1999; Ars et al. 2000), a better understanding
and more coherent approach to interpretation of variants affecting
splicing is needed (Cartegni et al. 2002; Baralle and Buratti 2017).
With a plethora of in silico splicing pathogenicity predictors avail-
able, there is little consensus on what a gold standard for splicing
pathogenicity prediction would be (Houdayer et al. 2012; Jian et al.
2014b; Tang et al. 2016). Although many of these methods per-
form well within the canonical splice site (CSS) dinucleotides
(the two highly conserved bases flanking the acceptor and donor
sites), their utility for other splice relevant regions is less clear
(Tang et al. 2016). In the clinical setting, often multiple algorithms
and expert judgment are used to predict pathogenicity, whereas
for large-scale research projects, the classification of variants is
often binary, with CSS mutations typically classified as likely splice
affecting, whereas mutations in other splicing regulatory com-
ponents are typically overlooked (lossifov et al. 2014; Wright
et al. 2015; Deciphering Developmental Disorders Study 2017).
Previous attempts to estimate the relative contribution of patho-
genic variants at non-CSSs were based on collating diverse pub-
lished data sets of pathogenic variants (Lewandowska 2013) or
on data submitted to databases of clinically interpreted variation
(Krawczak et al. 2007) and are therefore sensitive to the inherent
heterogeneity and biases of such data, especially given the inevita-
ble subjectivity involved in clinical interpretation of this class of
variation. Both clinical and research interpretation of potential
splice-disrupting variants lacks a robust quantitative foundation.
By using large-scale exome sequencing data from 13,750 unaf-
fected parents recruited as part of the Deciphering Developmental
Disorders (DDD) project (Wright et al. 2015) and more than 60,000
aggregated exomes from the Exome Aggregation Consortium
(ExAC) (Lek et al. 2016), we explore selective constraint around
splice regions across a set of 148,244 stringently defined exons
well covered (median coverage >15x at both CSSs) across the
DDD cohort (see Methods). Because selection is driven by a number
of factors, including monogenic developmental disorders (DDs), as
a complementary, disease-based approach, we analyze enrichment
of de novo mutations (DNMs) in DDD probands in the same re-
gions. We provide an unbiased, exome-wide view of the signatures
of selection and the relative contribution of pathogenic splice alter-
ing mutations between the CSS and other near-splice positions.

Results

Signatures of purifying selection around the splice site

Because purifying selection acts to keep deleterious alleles rare,
population variation data can be used to identify and assess the rel-
ative strengths of signals of purifying selection. To assess selective
constraint acting on positions around the CSS, we used the muta-
bility adjusted proportion of singletons (MAPS) metric (a measure
for inferring the degree of selection robust to local variance in mu-
tation rate) (Lek et al. 2016) in 13,750 unaffected parents enrolled
in the DDD study as well as more than 60,000 aggregated exomes
from ExAC (Fig. 1A). The canonical splice acceptor and donor dinu-
cleotides show a clear signal of purifying selection in both data sets.

Outside of the CSS, other positions clearly show a signal of
purifying selection beyond the background level, including the
donor site (last base of the exon, which is particularly pronounced
when the reference allele is G) (Fig. 1A), and the intronic positions
proximal to the canonical donor site, peaking at the don+5 posi-
tion, which shows a signal of purifying selection intermediate
between missense and stop-gained variants. Although no sites
within the polypyrimidine tract (PolyPy) show a signal of purify-
ing selection individually, when these sites are grouped together
(Methods) and stratified by changes from a pyrimidine to a purine
(PyPu) versus all other changes, there is a clear difference between
the two types of variants, with PyPu changes showing an increased
signal of purifying selection compared with non-PyPu changes
(bootstrap P<0.001) (Fig. 1A; Supplemental Fig. S1).

Deficit of splicing variants in highly constrained genes
in healthy individuals

We also examined the distribution of variants of different classes
among genes that are known to be under different levels of selec-
tive constraint. Highly constrained genes should contain fewer
deleterious variants than less constrained genes. We investigated
the proportion of variants observed in the 13,750 unaffected par-
ents that fell within highly constrained genes (probability of loss-
of-function [LoF] intolerance (pLI>0.9) (Lek et al. 2016) in our
splicing regions of interest (Fig. 1B). In the near-splice positions
at which the highest MAPS values were seen (CSS, donor, donor
+5), we also observed a stronger depletion of variants in high-pLI
genes within the unaffected parents, again supporting the poten-
tial pathogenicity of variants at these positions. The proportion of
parental variants in high-pLI genes also recapitulates the signals of
purifying selection seen in the MAPS analyses with regard to the
donor position split by reference allele (Fig. 1B) and the PolyPy re-
gion (Fig. 1B; Supplemental Fig. S1), with the lowest proportions in
high-pLI genes observed for sites with the highest MAPS values.

Assessing the significance of mutational burden for different
classes of splicing mutations

We identified 871 autosomal high-confidence DNMs (nonsynony-
mous consequences excluded) within canonical and near-splice
regions of interest well covered by exome data in the 7833 pro-
bands, allowing us to test for enrichment of DNMs relative to ex-
pectations based on a trinucleotide null model of mutation rate
(Samocha et al. 2014) across different sets of genes (DD-associated
with dominant or recessive mechanisms, and non-DD-associated;
see Methods). Across recessive DD and non-DD-associated genes,
no enrichment of DNMs beyond the null expectation was observed
(Fig. 2A). In dominant DD genes, a significant cumulative excess of
DNMs was noted across the full splicing region (Poisson P=1.33 x
107!, false-discovery rate [FDR]-adjusted; fold enrichment=
3.47), which remained significant upon exclusion of the canonical
dinucleotide positions (Poisson P [FDR-adjusted] =0.0035, fold en-
richment=1.86). Individually, the four CSS positions each showed
a significant (10- to 27-fold) excess of DNMs (Poisson P [FDR-
adjusted], fold enrichment: acc-2=4.22x 1072, 26.6; acc-1=3.43 x
1078, 16.6; don+1=1.33x107'¢, 20.1; don+2=0.004, 10.0), as
did the don+5 site (9.7 x 1075, 9.29). The similar level of enrich-
ment between don+5 and don+2 implies these positions harbor
comparable proportions of splice disrupting mutations. No indi-
vidual positions within the PolyPy region showed an individual
excess of DNMs; however when the positions were considered
cumulatively and split between PyPu and non-PyPu changes
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Figure 1. Signals of purifying selection around splice sites. (A) Selective constraint across splicing region in 13,750 unaffected parents of DDD probands
and more than 60,000 aggregated exomes from EXAC. Mutability-adjusted proportion of singletons (MAPS) with 95% confidence intervals (Cls) shown for
Ensembl’s Variant Effect Predictor (VEP) annotated exonic sites, extended splice acceptor and splice donor regions, the last base of the exon, split by ref-
erence nucleotide, and grouped sites in the polypyrimidine tract (PolyPy) region, split by changes from a pyrimidine to a purine (PyPu) versus all other
changes. (B) Proportion of variants with 95% Cl in 13,750 unaffected parents of DDD probands that fall within genes with high probability of loss-of-
function intolerance (pLI>0.9) across VEP annotated exonic sites, extended splice acceptor and splice donor regions, the last base of the exon, split by
reference nucleotide, and grouped sites in the PolyPy region, split by changes from a pyrimidine to a purine (PyPu) versus all other changes. Lower panel
shows splice acceptor and splice donor consensus sequences, based on our exons of interest.

(Fig. 2B), an excess of DNMs was observed in the PyPu group for
dominant DD genes (fold enrichment=3.46), although this was
not significant at an FDR of 5% (Poisson P [FDR corrected] =0.086).

When the same analysis was performed for dominant
genes in subsets of the DDD cohort with (n=1417) and without
(n=3364) robust diagnoses from the standard diagnostic protocol,
which only assesses splicing mutations at the CSS (Supplemental
Fig. S2), the enrichment within the diagnosed subset was confined
to the CSS (Poisson P [FDR-adjusted], fold enrichment: CSS=1.33 x
1074, 69.74; other positions = 0.658, 1.82), whereas in the undiag-
nosed subset, the opposite pattern was observed (Poisson P [FDR-
adjusted], fold enrichment: CSS=1, O; other positions=0.012,
2.21), with the don+5 site showing the greatest enrichment
(16.18, Poisson P [FDR-adjusted] =5.35 x 1075).

These results are highly concordant with the signatures of pu-
rifying selection identified using the MAPS metric and the deficit
of parental variants in high-pLI genes, providing multiple inde-
pendent lines of evidence that mutations in positions outside of
the CSS can disrupt normal splicing.

Estimating positive predictive values for different classes
of splice mutations
We used the fold enrichment of the numbers of observed DNMs in

dominant DD genes in the DDD cohort over the number expected
under the null mutation model to calculate positive predictive val-

ues (PPVs) for groupings of near-splice site positions. We compared
these with PPVs for other, more commonly disease-associated var-
iant classes within the same exons of the same genes (Fig. 2C). We
observe minor differences in PPV for the individual positions of the
canonical acceptor and donor sites, with don+2 showing the lowest
PPV at 0.90, which is approximately the same as that for the don+5
position (0.89). Variants within the PolyPy region that change a py-
rimidine for a purine have a PPV of 0.71, which is below the PPV
for missense mutations (0.79) but still predicts a substantive num-
ber of pathogenic mutations arising from disruption of the PolyPy.

Despite the modest number of observed DNMs used to make
these PPV estimates, we see concordance with the population-
based metrics described above (for concordance with MAPS and
deficit of splicing variants in high-pLI genes in unaffected parents
of DDD patients, see Supplemental Fig. S3), suggesting these esti-
mates are robust.

We looked at the distribution of observed DNMs in genes
with respect to their probability of being LoF intolerant (using
the pLI metric) (Fig. 2D; Lek et al. 2016). For synonymous variants,
we observed no significant enrichment of DNMs in high-pLI genes.
For don+5 mutations, there is a clear excess of DNMs in genes most
likely to be intolerant to LoF mutations in the DDD cohort, further
supporting the likely pathogenicity of mutations in these posi-
tions. For the PolyPy PyPu mutations, although there is a nominal-
ly significant enrichment of DNMs in general, this does not show
a significant skew toward high-pLI genes in our cohort.
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Figure 2. De novo mutations (DNMs) around splice sites. Enrichment of DNMs across the splicing region in 7833 DDD probands. (A) Numbers of ob-
served and expected DNMs across the splicing region in known dominant and recessive DD genes, as well as in non-DD-associated genes, with FDR-cor-
rected Poisson P-values. Splice acceptor and splice donor consensus sequences are shown below, as in Figure 1. (B) Aggregation of observed and expected
numbers of DNMs in the PolyPy region, with changes from a pyrimidine to a purine (PyPu) and all other changes shown separately for known dominant and
recessive DD genes, as well as non-DD-associated genes. (C) Positive predictive values (PPVs) for DNMs in dominant DD-associated genes in positions
across the splicing region, as well as VEP annotated stop gained and missense changes, calculated from observed and expected numbers of DNMs.
(D) Enrichment (observed/expected) of DNMs by gene probability of pLI split into sextiles for donor+5, pyrimidine to purine PolyPy, and synonymous sites.

pLl scores encompassed by each sextile:

1=5.36x107'-0.000000605, 2 =0.000000609-0.000558185,

3=0.000559475-0.027905143, 4=

0.027908298-0.377456159, 5=0.377491926-0.919495985, 6=0.91955878-1.

Identifying diagnostic noncanonical splice mutations

After exclusion of probands with likely diagnostic protein-coding
or CSSvariants, 38 DNMs in our near-splice site positions of interest
in dominant DD genes were identified. The clinical phenotypes of
patients carrying these mutations were reviewed by a consultant
clinical geneticist, blinded to the precise mutation and PPVs esti-
mated above, and by the patient’s recruiting clinician to assess
the phenotypic similarity between the proband and the disorder
expected from a LoF mutation in that gene. The 38 variants were
classified as likely diagnostic (Table 1) or unlikely diagnostic/un-
known (Supplemental Table S1), depending on the strength of phe-
notypic similarity. Phenotypic information for probands with
likely diagnostic variants is given in Supplemental Table S2 and
pathogenicity prediction scores for the SNVs in Supplemental
Table S3. The clinical review resulted in 18 variants (47%) being
classified as likely diagnostic, highly concordant with the number
predicted from the overall PPV of noncanonical sites of 46%; more-
over, a higher proportion of likely diagnostic variants were classi-
fied at sites with higher PPVs (Pearson correlation coefficient=

0.91, P=0.033) (Fig. 3). With 48 CSS DNMs observed within the
same exons in our probands, we estimate that 73% (95% CI:
60%—-82%) of disease-causing splice-disrupting DNMs occur within
the CSS, whereas 27% (95% CI: 18%-39%) are in noncanonical,
near-splice positions.

Eight DNMs were selected for functional validation via a min-
igene vector system, including six likely diagnostic PolyPy vari-
ants, a PolyPy variant of uncertain clinical significance, and a
likely diagnostic don+5 variant, in which both the phenotype of
the patient and that associated with the gene (MBDS3) are nonspe-
cific along with two negative controls (untransmitted variants
identified in unaffected parents within the same PolyPys as test
variants). For six of the variants selected for validation, differences
in splicing between the reference and mutant constructs were ob-
served (Supplemental Fig. S4A,B). One of the likely diagnostic
PolyPy mutations, the PolyPy mutation of uncertain significance,
and both negative controls showed no difference in splicing be-
tween the reference and mutant constructs (Supplemental Fig.
S4C,D).

162 Genome Research
www.genome.org


http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238444.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238444.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238444.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238444.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238444.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238444.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.238444.118/-/DC1

Selection and pathogenicity near splice sites

Table 1. Diagnostic de novo mutations in noncanonical dinucleotide near-splice positions
Splice
Chr:pos_ref/alt Symbol VEP annotation annotation Associated disorder Clinician classification
7:42063221_G/C  GLI3 intron_variant acc-14 Greig cephalopolysyndactyly Likely pathogenic, full contribution
syndrome
16:3819367_C/T  CREBBP intron_variant acc-13 Rubinstein-Taybi syndrome type 1 Likely pathogenic, full contribution
22:24143120_T/G  SMARCBT intron_variant acc-11 Rhabdoid predisposition syndrome  Likely pathogenic, full contribution
1/Coffin-Siris syndrome 3
18:52895603_T/C  TCF4 intron_variant acc-11 Pitt-Hopkins syndrome Likely pathogenic, full contribution
5:88025173_A/C  MEF2C splice_region_variant acc-9 Mental retardation-stereotypic Likely pathogenic, full contribution
movements-epilepsy and/or
cerebral malformations
9:130988306_G/A DNM1 splice_region_variant acc-8 Epileptic encephalopathy Likely pathogenic, full contribution
8:61763045_G/A  CHD7 splice_region_variant acc-7 CHARGE/Kallmann syndrome type Definitely pathogenic, full contribution
5/idiopathic hypogonadotropic
hypogonadism
17:38801875_T/C  SMARCET  splice_region_variant acc-4 Coffin-Siris syndrome 5 Likely pathogenic, full contribution
1:27097607_C/A  ARIDTA splice_region_variant acc-3 Coffin-Siris syndrome 2 Likely pathogenic, full contribution
9:140728798_C/G  EHMTI1 splice_region_variant acc-3 9q Subtelomeric deletion Definitely pathogenic, full contribution
syndrome/Kleefstra syndrome 1
2:223160248_T/C  PAX3 splice_region_variant don-1 Waardenburg syndrome type 1/ Likely pathogenic, partial contribution
craniofacial-deafness-hand
syndrome
2:166229861_A/G  SCN2A splice_region_variant don+4 Nonspecific severe ID?/benign Likely pathogenic, full contribution
familial neonatal infantile
seizures/infantile epileptic
encephalopathy
9:130422391_A/G  STXBP1 splice_region_variant don+4 Angelman/Pitt-Hopkins syndrome- Likely pathogenic, full contribution
like disorder/epileptic
encephalopathy early infantile
type 4
22:41556731_G/A  EP300 splice_region_variant don+5 Rubinstein-Taybi syndrome type 2 Likely pathogenic, full contribution
2:149221493_G/C  MBD5 splice_region_variant don+5 EHMT1-like ID? Likely pathogenic, full contribution
9:130427615_G/C  STXBP1 splice_region_variant don+5 Angelman/Pitt-Hopkins syndrome- Likely pathogenic, full contribution
like disorder/epileptic
encephalopathy early infantile
type 4
17:42956919_C/T  EFTUD2 splice_region_variant don+5 Mandibulofacial dysostosis with Definitely pathogenic, full contribution
microcephaly
20:61452890_C/G COL9A3  splice_region_variant don+8 Multiple epiphyseal dysplasia type 3  Likely pathogenic, partial contribution

Variant and proband information for 18 de novo likely diagnostic splice region variants identified in previously undiagnosed DDD probands in known
dominant DD-associated genes (hg19 coordinates).
4(ID) Intellectual disability.

Assessing splicing pathogenicity prediction tools

The population genetic metrics of purifying selection and muta-
tion enrichment metric for pathogenicity that we have derived
provide an orthogonal approach to assessing the accuracy of splic-
ing pathogenicity prediction tools, compared with the standard
approach of assessing classification accuracy for clinically inter-
preted variants. We assessed four splicing pathogenicity prediction
tools: two recently published genome-wide ensemble learning
methods—AdaBoost and randomForest, Spidex (based on deep
learning trained on RNA sequencing data), and the longer-stand-
ing, widely used MaxEntScan (MES) (Yeo and Burge 2004; Jian
et al. 2014a; Xiong et al. 2015).

We divided the scores from each prediction tool, plus CADD
(Kircher et al. 2014), into 20 equal-sized bins to facilitate cross-
method comparability. We calculated the MAPS for each bin of
each of the scoring metrics for the splicing variants observed in
the 13,750 DDD unaffected parents, and saw a strong positive cor-
relation between the pathogenicity metric and MAPS for all tools
(Fig. 4). AdaBoost had the highest absolute MAPS value for the
top-scoring bin, suggesting that it is best able to identify variants
under the strongest purifying selection. The proportion of variants
in the unaffected parents falling in genes with pLI>0.9 broadly re-

capitulates this pattern, with fewer variants in high-pLI genes in
the highest scoring brackets for all metrics (Supplemental Fig.
S5). We then looked at the distribution of scores for each tool for
the 83 splicing DNMs observed in DDD probands in autosomal
dominant DD-associated genes that were covered by all five scor-
ing systems to compare the performance of the metrics on muta-
tions more likely to have a deleterious impact on splicing with
the expectation that these potentially damaging variants would
be scored highly by the metrics, giving high values of area under
the curve (AUC) (Fig. 5). Again, all metrics performed well, with
the majority of DNMs being classified in the most deleterious score
brackets. Here AdaBoost gave the highest AUC value, suggesting it
weighted these likely damaging variants as more deleterious than
the other metrics comparatively. When CSS positions were re-
moved from the analysis, AdaBoost remained the tool with the
highest AUC. The largest reduction in the AUC metric was seen
for Spidex and CADD, indicating these tools may be the least infor-
mative for positions outside of the CSS. Upon removal of the
CSS positions from the analyses of MAPS and deficit of parental
variants in high-pLI genes, similar results were revealed, with the
highest AdaBoost scores retaining strong signals of purifying selec-
tion but a marked reduction in signal from the highest Spidex
scores (Supplemental Figs. S6, S7).
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Figure 3. Clinical classifications of noncanonical near-splice DNMs. Relationship between clinical clas-
sifications of 38 splice region DNMs in undiagnosed DDD probands and PPVs calculated using observed

and expected numbers of DNMs in 7833 probands.

Taken together, these data show a strong relationship be-
tween the considered splicing pathogenicity scoring systems and
the general landscape of purifying selection on splicing control
but show that the utility of these systems in identifying likely diag-
nostic variants is limited outside of the CSS.

Discussion

Our study represents a large, unbiased exploration of the per-
turbation of splicing by genetic variation in near-splice regions,
with complementary signals of selection observed through two
different population-based analyses. Selection can be driven by
many factors, including monogenic disease resulting in reduced
reproductive fitness. DDs represent the largest single class of

noncanonical splice positions has been
underappreciated. We estimate that
~27% (95% CI: 18%-39%) of splice dis-
rupting pathogenic mutations within
the DDD cohort are in noncanonical po-
sitions. In sites with pathogenic or likely
pathogenic clinical significance in ClinVar (Landrum et al. 2016)
overlapping with our splicing positions of interest (and with non-
synonymous consequences removed), we found 83.5% of variants
fell within canonical positions, with just 16.5% in noncanonical
positions. When adjusted for number of submissions as a proxy
for allele count, this figure was 17.5%, perhaps indicative that re-
currence strengthens evidence of pathogenicity. Both of these
values are significantly below our estimate of 27% (Fisher’s exact
test P=1.22x 107" and P<2.2x 107", respectively), suggesting
underascertainment of noncanonical splicing variants by ~35%-—
40% in clinical databases, despite a growing understanding of
the importance of such sites in splicing regulation (Kircher et al.
2014; Ferreira et al. 2016; Soukarieh et al. 2016; Cummings et al.
2017; Ito et al. 2017; Soemedi et al. 2017; Ke et al. 2018).
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Figure 4. Selective constraint and pathogenicity scores. MAPS, with 95% ClI, calculated for pathogenicity score brackets (least to most severe) in 13,750
unaffected parents from the DDD project, with Spearman’s rank correlation coefficient.
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Estimates of the relative contribution of canonical and non-
CSS mutations are sparse in the literature. These estimates are
also typically based on clinically interpreted variants and so are
likely to be biased by the accuracy of current clinical practices.
When comparing canonical and noncanonical mutations within
the Human Gene Mutation Database (HGMD), based on variation
described in publications, Krawczak et al. (2007) stated canonical
mutations accounted for 64% of mutations at donor sites and
77.4% of mutations at acceptor sites, giving an estimated nonca-
nonical contribution of ~30% overall (consistent with our data), al-
though data taken from Caminsky et al. (2014) put this estimate
at ~43% (above our upper bound). These values are closer to our
27% estimate than to the ClinVar proportion of ~17%, despite
our approach focusing on DNMs and dominant disorders, whereas
the other two studies did not discriminate on mode of inheritance
and included recessive disorders, which can also be caused by
noncanonical splicing mutations (Basel-Vanagaite et al. 2013;
Brunham et al. 2015) and exonic variants. Our findings highlight
the complementarity of assessing the clinical importance of non-
canonical splice variants both through the traditional approach
based on clinically interpreted variation accrued through diagnos-
tic practice and through unbiased approaches that leverage popula-
tion variation and unbiased models of germline mutation.

Our analysis of noncanonical splice position mutations did
not include exonic missense variants (Teraoka et al. 1999; Ars
et al. 2000; Krawczak et al. 2007) nor did it explicitly include
branchpoints (Maslen et al. 1997; Di Leo et al. 2004; Crotti et al.
2009; Aten et al. 2013), splicing enhancers and suppressors
(Lorson et al. 1999; Liu et al. 2001), or deep intronic mutations
(Cummings et al. 2017; Vaz-Drago et al. 2017). Detecting splice
disrupting variants at these sites is even more challenging, as de-
spite recent efforts (Corvelo et al. 2010; Wang and Wang 2014;
Mercer et al. 2015; Badr et al. 2016; Taggart et al. 2017), compre-
hensive catalogs of all branchpoints and exonic and intronic splic-
ing enhancers and silencers are currently unavailable, algorithms
that predict the impact of mutations at such sites are not highly
accurate, and some of these sites are not covered by exome se-
quencing (the greater utilization of whole-genome sequencing
will allow greater opportunity to find and assess the contributions

of more distal splice disrupting variants). As such, our estimate of
the contribution of noncanonical splicing position mutations is
likely to be a lower bound. Thus our estimate of 35%-40% under-
ascertainment in clinical databases may be conservative, and the
true extent of missed diagnoses may be even higher.

The size of the available data sets determines our power to
detect signals of selection and enrichment of DNMs; so although
we could show signal at splice-important noncanonical positions,
there may be other positions with more subtle signals of selection
that we lacked the power to detect. Another limiting factor for
such analyses is the specificity with which we can identify splicing
related sequences. For splice sites themselves, well-curated resourc-
es of intron-exon junctions exist (e.g., from GENCODE), giving a
high degree of confidence that what we are assessing is indeed
near-splice sequence. For exonic and intronic splicing enhancers
and suppressors, although attempts at comprehensive identifica-
tion have been made (Fairbrother et al. 2002; Zhang and Chasin
2004; Goren et al. 2006; Ke et al. 2011), there is little concordance
between available resources (Céaceres and Hurst 2013), meaning
nonenhancer/suppressor sequence would almost certainly be in-
cluded in analyses, limiting power to detect any signal. Collation
of yet larger data sets and a greater understanding of other splicing
elements will help to identify these sites, using the same method-
ology applied here.

The nature of many DDs makes obtaining RNA samples from
relevant tissues of patients (i.e., neural tissue) acutely problematic,
so we investigated the effects on splicing of several of the poten-
tially diagnostic DNMs using a minigene vector system. We were
able to show changes to splicing for five out of six likely diagnos-
tic PolyPy variants as well as the likely diagnostic don+5 variant,
supporting the clinical interpretation based on clinical pheno-
type. We did not observe an effect on splicing for one likely diag-
nostic PolyPy variant and for one PolyPy variant of uncertain
clinical significance. Although the accuracy of minigene assays
compared with patient RNA is generally high (Bonnet et al.
2008; Thery et al. 2011; van der Klift et al. 2015), known limita-
tions of the system (e.g., lack of full endogenous genetic context
[Baralle et al. 2006; Sangermano et al. 2018] and sensitivity to cell
type used [Lastella et al. 2006]) mean we cannot definitively state
that the effects seen in the minigene assay would be the same in
the full genetic, developmental, and cellular context within the
patient.

We envisage that greater appreciation of the importance of
near-splice site mutations will increase diagnostic yields, as well
as provide increased power for the detection of new genetic as-
sociations, both within the field of rare disease and beyond. We
highlight two challenges to improving detection of pathogenic
non-CSS mutations.

First, many commonly used in silico tools for annotating
the likely functional impact of variants do not discriminate be-
tween different non-CSS positions with very different likelihoods
of being pathogenic. Moreover, commonly used annotation
tools differ in the ways in which variants are annotated, with splic-
ing variants displaying the highest level of disagreement between
tools (McCarthy et al. 2014). This highlights the need for a more
consistent and evidence-based annotation of splicing variants.
Of the positions shown in our analyses to be most damaging,
don+5 sites are annotated by the Variant Effect Predictor (VEP)
(McLaren et al. 2016) and SnpEff (Cingolani et al. 2012) as “spli-
ce_region_variant,” whereas most positions of the PolyPy are an-
notated as intronic so are potentially easily overlooked. With
Annovar’s (Wang et al. 2010) default settings, only the CSSs are
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flagged as splicing variants, although with both Annovar and
SnpkEff, the user can optionally extend the region to be annotated
as splice variants. We note that Ensembl has recently implemented
a VEP plugin that allows greater granularity in splice region anno-
tation  (https://github.com/Ensembl/VEP_plugins/blob/release/
88/SpliceRegion.pm), including annotating the don+5 and other
near-donor positions, as well as the PolyPy region. This type of in-
creased granularity of splicing annotation should facilitate consid-
eration of these variants in future studies.

Second, current tools that predict the pathogenicity of non-
CSS mutations have limited accuracy, and it is not clear how to
translate the scores that they output into a likelihood of pathoge-
nicity. The quantitative framework that we introduced here of es-
timating PPVs for different classes of mutations by comparing the
number of observed mutations to the number expected under a
well-calibrated null model of germline mutation has much more
direct relevance to clinical interpretation, although the interpreta-
tion of specific DNMs still proves problematic, particularly for
DNMs in sites of intermediate PPV. We propose that the scores
generated by such splicing prediction tools could be calibrated
by performing analogous analyses of mutation enrichment to esti-
mate PPVs for different bins of scores. As the size of trio-based co-
horts increases, the accuracy of calibration will improve.

In summary, our results show a significant contribution of
noncanonical splicing mutations to the genetic landscape of
DDs, a finding that is highly likely to be recapitulated across other
monogenic disorders and contexts. We show the importance of
noncanonical positions (particularly the don+5 site and pyrimi-
dine-removing mutations in the PolyPy region). These inferences
are supported both by population genetic investigations of purify-
ing selection and by a disease-based approach, considering the
burden of DNMs in approximately 8000 children with severe
DDs. Mutations at some noncanonical splicing positions convey
a risk of disease similar to that of protein truncating and missense
mutations but are underrepresented in existing databases of dis-
ease-causing variants.

Methods

Cohort and sequencing

For the full description of cohort and analytical methodology, see
previous DDD publications (Deciphering Developmental Disor-
ders Study 2015, 2017). Briefly, 7833 patients with severe, undiag-
nosed DDs were recruited to the DDD study from 24 clinical
genetics centers from across the United Kingdom and Ireland.
Whole-exome sequencing was conducted on the proband and
both parents, with exome capture using SureSelect RNA baits (Agi-
lent human all-exon V3 plus with custom ELID C0338371 and
Agilent human all-exon VS5 plus with custom ELID C0338371)
and sequencing using 75-bp paired-end reads using Illumina’s
HiSeq. Mapping was conducted to GRCh37 using the Burrows-
Wheeler aligner (BWA; v0.59) (Li and Durbin 2009), and variant
identification was conducted using the Genome Analysis Toolkit
(GATK; v3.5.0) (McKenna et al. 2010). Realigning to GRCh38
should not affect the conclusions of this work, as only high-confi-
dence intron-exon boundaries were used in the analyses. These
were taken from GENCODE v19 (GRCh37) but filtered to exclude
a small subset of exons that no longer met our stringent criteria
in GENCODE v22 (GRCh38), as described below. Variant annota-
tion was conducted with Ensembl’s VEP (https:/www.ensembl.
org/info/docs/tools/vep/index.html), using Ensembl gene build
76 (McLaren et al. 2016). DNMs were identified using DeNovoGear

(v0.54) (Ramu et al. 2013) and filtered using an in house pipe-
line, denovoFilter, developed by Jeremy F. McRae (Decipher-
ing Developmental Disorders Study 2017; https://github.com/
jeremymcrae/denovoFilter). Exome sequencing and phenotype
data are accessible via the European Genome-Phenome Archive
(EGA) under accession number EGAS00001000775 (https://www.
ebi.ac.uk/ega/studies/EGAS00001000775).

Defining exons of interest

We took exons from GENCODE v19 (https://www.gencodegenes.
org/human/release_19.html) that met the following criteria:
annotation_type="“exon,” gene_type=“protein_coding,” gene_
status=“KNOWN,” transcript_type = “protein_coding,” transcript_
status = “KNOWN,” annotation != “level 3” (automated annota-
tion), and tag="“CCDS,” “appris_principal,” “appris_candidate_
longest,” “appris_candidate,” or “exp_cont” (n=255,812 exons)
(Harrow et al. 2012). We removed a small subset of exons that
no longer met these criteria in the more recent, GRCh38-based
GENCODE v22 release (leaving 253,275 exons). We removed
any exons in which the median coverage at the canonical acceptor
or donor positions was <15x in two sets of DDD data that used dif-
ferent exon capture methods (Agilent human all-exon V3 plus
with custom ELID C0338371 and Agilent human all-exon V5
plus with custom ELID C0338371); 148,244 exons passed these
criteria.

We annotated individual genomic positions relative to the
acceptor and donor sites, removing any exons <14 bp and any po-
sitions that had multiple potential annotations. At the acceptor
end, we considered 25 bp of intronic sequence (acc-25 to acc-1)
and 11-bp exonic sequence (acc to acc+10). At the donor end, we
considered 10 bp of intronic sequence (don+1 to don+10) and
11-bp exonic sequence (don to don-10). This yielded approximate-
ly 6.9 million near-splice positions of interest.

The reference nucleotide composition at each position of the
splicing region of interest was calculated using all sites, and a
weighted position weight matrix graph was generated using the
seqLogo package via Bioconductor (Huber et al. 2015; https://
bioconductor.org/packages/release/bioc/html/seqLogo.html) in
R (version 3.1.3) (R Core Team 2018).

We define the PolyPy region as acc-3 and acc-5 to acc-17
based on pyrimidine content >70% in our exons of interest. We as-
sess changes from a pyrimidine to a purine (PyPu), adjusting for
the strand containing the exon.

MAPS

In 13,750 unaffected parents enrolled as part of the DDD study, as
well as more than 60,000 aggregated exomes from ExAC v0.3.1
(http://exac.broadinstitute.org/), we calculated the MAPS metric
(Lek et al. 2016) using code developed in house by Patrick J.
Short (Short et al. 2018; https://github.com/pjshort/dddMAPS).
The MAPS metric is based on the principle that negative selection
acts to keep deleterious variation rare at a population level, but
more mutable sequence contexts can contain variants that appear
more common because of recent recurrent mutational events, so
the metric corrects frequencies based on local sequence context us-
ing synonymous mutations. Only relevant ExAC sites with “PASS”
in the VCF “FILTER” column were counted, and EXAC and DDD
variants were filtered for FisherStrand (FS) <10. MAPS was cal-
culated for all SNVs overlapping our splice positions of interest
(201,587 near-splice variants for DDD, and 678,241 for ExAC),
the last base of the exon split by reference nucleotide (2109 vari-
ants for DDD, 6325 for ExAC), and the PolyPy split by PyPu
(15,847 wvariants for DDD, 58,762 for ExXAC) versus all other
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PolyPy changes (52,300 variants for DDD, 175,287 for ExAC), as
well as VEP (McLaren et al. 2016) ascertained synonymous
(580,066 variants for DDD, 1,513,758 for ExAC), missense
(1,125,167 variants for DDD, 2,786,533 for ExAC) and stop-gained
(25,863 variants for DDD, 78,496 for EXAC) sites across autosomal
regions. To establish whether the MAPS metric was significantly
different between PolyPy PyPu versus all other PolyPy changes, a
bootstrap resampling method was run with 1000 iterations.

Parental variants in high-pLI genes

We annotated all variant sites used in the MAPS calculations above
in the 13,750 DDD parents with the gene in which the variant fell
and the pLI score of that gene and calculated the proportion of
these sites that fell within genes with high pLI scores (more than
0.9) (Lek et al. 2016).

DNMs

DNMs were identified using DeNovoGear (Ramu et al. 2013) as
previously described in McRae et al. 2017 (Deciphering Develop-
mental Disorders Study 2017), and a stringent confidence thresh-
old (posterior probability greater than 0.8) was applied. We used
triplet-based mutation rates (Samocha et al. 2014) for each poten-
tial single-nucleotide change across our splicing regions of interest
to calculate the expected number of DNMs across autosomes in the
7833 probands. Expected values were adjusted for depth of se-
quencing coverage less than 50 to account for poorer ascertain-
ment of variants in low-coverage regions (exon depth <1, exp x
0.119; exon depth >1 and <50, expx (0.119+0.204 x log(depth))).
The values used for this correction are based on the relationship
between observed and expected synonymous DNMs at different
levels of coverage. We stratified this analysis into known domi-
nant, known recessive and non-DD-associated genes using the
DDG2P gene list (http://www.ebi.ac.uk/gene2phenotype), down-
loaded in January 2016. Genes with recessive and dominant
modes of inheritance were restricted to the recessive list (see Sup-
plemental Table S4). Observed and expected numbers of DNMs
were also calculated in subsets of the DDD probands with con-
fident diagnoses (individuals with a reported variant classed as
pathogenic or likely pathogenic by the referring clinician) and
those lacking a potential diagnosis (diagnosed n=1417, undiag-
nosed n=3364, with the remainder of the cohort having possible
or uncertain diagnostic states, as of January 2018). We used the
Poisson test (using R’s poisson.test, with two-sided alternative
hypothesis) to examine differences in the observed and expected
values and used a 5% FDR correction to control for multiple test-
ing using the p.adjust R package (method=fdr) across all tests
(Rv3.1.3) (R Core Team 2018).

PPVs were calculated ((observed —expected)/observed) for
CSS positions, combined and individually; don+S5 sites; PolyPy
PyPu; PolyPy other; other near splice exonic and intronic variants;
and VEP defined missense and stop gained mutations.

We divided our exons into sextiles based on the pLI (Lek et al.
2016) of the gene to which they belong and calculated the ob-
served and expected number of DNMs in each sextile for don+5,
PolyPy PyPu, and synonymous variants (as above) to see if the en-
richment of don+5 and PolyPy PyPu changes was concentrated in
genes more likely to be intolerant of LoF mutations.

Potential diagnostic variants

DNMs overlapping with our near-splice positions of interest with-
in dominant DDG2P genes were identified in DDD probands lack-
ing a potential explanatory variant (December 2016, n=>5907).
The Human Phenotype Ontology (HPO; http://compbio.charite.

de/hpoweb/)-encoded (Kohler et al. 2017) phenotypes of the pro-
bands were assessed by consultant clinical geneticist Helen V.
Firth, along with the patient’s recruiting clinician, and were com-
pared with the known clinical presentation of individuals with
LoF mutations within those genes, classifying each variant as likely
diagnostic, unlikely diagnostic, or unsure, depending on the
strength of similarity between the proband and the disorder, as
well as the specificity of the phenotype. The relationship between
our PPVs and the proportion of clinical diagnoses in each class of
near-splice mutation was assessed using Pearson’s product-mo-
ment correlation using the cor.test function in R (version 3.4.4)
(R Core Team 2018).

The proportion of CSS to non-CSS splicing diagnoses was cal-
culated, along with 95% ClIs, based on 18 non-CSS diagnoses and
48 CSS diagnoses in the same regions using the prop.test package
in R (version 3.4.4) (R Core Team 2018).

Validation of putative splicing variants

Eight variants were selected for validation via a minigene vector
system. These comprised six likely diagnostic variants from the
PolyPy, a PolyPy variant of uncertain clinical significance, and a
likely diagnostic don+5 variant. Additionally, two untransmitted
variants identified in unaffected parents within the same
PolyPys as test variants were selected as negative controls. Details
of all variants selected for validation are shown in Supplemental
Table SS.

Cloning splicing vectors

The minigene splice assay vector was adapted from that used in
Singh et al. (2016), by replacing intron 1 with the first intron
from the rat insulin 2 gene (Ins2; Rnor_6.0 Chr 1: 215,857,148~
215,857,695). To generate individual assay vectors, either the
5’-most 231 bp (for the don+5 variant) or the 3'-most 274 bp (for
PolyPy variants) of this vector was replaced with the appropriate
endogenous intronic sequence encompassing the DNM of interest
(Supplemental Fig. S4A,B), as described below. Between 114- and
202-bp flanking endogenous intronic sequence was included,
along with 6-bp local exonic sequence from the gene of interest.

First, proband genotypes (Supplemental Table S5) were veri-
fied by capillary sequencing of genomic PCR products (Supple-
mental Table $6). Genomic regions containing the reference and
alternate sequences were then either amplified by nested PCR,
generated by site-directed mutagenesis, or generated using gene
synthesis (IDT). These fragments were subcloned by Gibson assem-
bly (NEB) into our minigene vector (Supplemental Tables S7, S8).
The regions assayed in our vectors are detailed by genomic coordi-
nates in Supplemental Table S5.

In vitro splicing assay

HelLa cells were seeded into 12-well plates at a density of 160,000
cells per well, grown for 24 h, and transfected with 1 pg of plasmid
vector using Lipofectamine 3000 (Invitrogen). All transfections
were performed in duplicate and cultured for 48 h. HeLa cells
were cultured in DMEM (10% FCS + 1% pen/strep) at 37°C in a hu-
midified incubator. Total RNA was extracted using a micro RNeasy
Qiagen kit and mRNA converted into cDNA using SuperScript IV
(Invitrogen). RT-PCR was performed using primers designed to
span from exon 1 to exon 2, exon 2 to exon 3, and exon 1 to
exon 3 and amplified on a thermocycler for either 25 or 35 cycles
(Supplemental Table S9). Amplicons were capillary sequenced
(GATC). For amplicons showing more than one splice variant
(mixed capillary traces, for CHD7-Alt and MBDS5-Alt), we cloned
the PCR amplicons (zero blunt PCR cloning kit, Invitrogen) and
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sequenced individual colonies by capillary sequencing to identify
the splice variants present (Supplemental Table S10).

Chromatograms were generated in R (R Core Team 2018)
from .abl files using the sangerseqR (Hill et al. 2014) package
via Bioconductor (Huber et al. 2015; http://bioconductor.org/
packages/release/bioc/html/sangerseqR.html, R v3.1.3), and likely
consequences on the protein primary structure were generated us-
ing reference and alternative RNA sequences with the ExPASy nu-
cleotide sequence translation tool (Artimo et al. 2012; https://web.
expasy.org/translate/).

Splicing pathogenicity scores

Because our region of interest spanned more than 6 million indi-
vidual positions, each with three potential single-nucleotide
changes, we were restricted in the choice of splicing pathogenicity
prediction tools we could use, as many function primarily through
a low-throughput web interface model. We identified three re-
sources recently published that provide “genome-wide” splicing
pathogenicity scores. Two methods, dbscSNV’s AdaBoost and
randomkForest are based on ensemble learning combining predic-
tions from multiple other splice prediction tools, as well as conser-
vation and CADD scores (Jian et al. 2014a). The targeted region at
the acceptor end spans 14 bases (12 intronic, two exonic) and at
the donor end spans 11 bases (eight intronic, three exonic).
Spidex uses deep-learning methods trained on RNA sequencing
data to estimate the consequence of variants on the “percent
spliced in” of an exon relative to the reference sequence (Xiong
et al. 2015). Spidex scores positions up to 300 bp from intron/
exon boundaries, so it provides greater coverage of our splicing
region of interest. We also used the longer standing and widely
used MES (Yeo and Burge 2004), for which Perl scripts were
available, allowing the tool to be run locally for all alternative al-
leles of all positions of interest. The metric used for MES was the
percentage difference between the scores for the reference and al-
ternative alleles, with the greatest reduction in score classed as
most pathogenic. All sites were also scored with CADD (Kircher
et al. 2014).

To allow cross-tool comparison, we ordered positions by in-
creasing pathogenicity from each metric and split positions into
20 brackets such that the cumulative triplet-based mutation rate
for all variants in each bracket was equal and the 20th bracket
contained the positions with the most pathogenic scores. We cal-
culated MAPS and the proportion of parental variants falling in
high-pLI genes for each bracket for all five metrics, as above, and
looked at the number of DNMs in known dominant genes that
fell in each bracket for the five metrics. Each of these analyses was
conducted including and excluding CSS dinucleotide positions.

Splice region variants in the ClinVar database

We extracted all ClinVar (Landrum et al. 2016; https://www.ncbi.
nlm.nih.gov/clinvar/) variants using the UCSC Table Browser
(Karolchik et al. 2004) on February 05, 2017, and matched these
against our splicing positions of interest, removing exonic sites
with nonsynonymous consequences. This resulted in 3603 posi-
tions with clinical significance recorded as pathogenic or likely
pathogenic. We calculated the ratio of canonical to noncanonical
splice positions within these data. Because each variant is present
in these data only once, we adjusted for this by using number of
submissions as a proxy for allele count and calculated the ratio
of canonical to noncanonical variants. Differences between these
observed values and our expectations, based on 27% of splice af-
fecting mutations being in noncanonical positions, were assessed
using Fisher’s exact test (R v3.1.3) (R Core Team 2018).

Software availability

Code and data to reproduce the analyses within this paper are
available in the Supplemental code and figures, as well as on
GitHub (https://github.com/JLord86/DDD_Splicing).
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