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A B S T R A C T

Monitoring crop and rangeland conditions is highly relevant for early warning and response planning in food insecure areas of the world. Satellite remote sensing can
obtain relevant and timely information in such areas where ground data are scattered, non-homogenous, or frequently unavailable. Rainfall estimates provide an
outlook of the drivers of vegetation growth, whereas time series of satellite-based biophysical indicators at high temporal resolution provide key information about
vegetation status in near real-time and over large areas. The new early warning decision support system ASAP (Anomaly hot Spots of Agricultural Production) builds
on the experience of the MARS crop monitoring activities for food insecure areas, that have started in the early 2000's and aims at providing timely information about
possible crop production anomalies. The information made available on the website (https://mars.jrc.ec.europa.eu/asap/) directly supports multi-agency early
warning initiatives such as for example the GEOGLAM Crop Monitor for Early Warning and provides inputs to more detailed food security assessments that are the
basis for the annual Global Report on Food Crises. ASAP is a two-step analysis framework, with a first fully automated step classifying the first sub-national level
administrative units into four agricultural production deficit warning categories. Warnings are based on rainfall and vegetation index anomalies computed over crop
and rangeland areas and are updated every 10 days. They take into account the timing during the crop season at which they occur, using remote sensing derived
phenology per-pixel. The second step involves the monthly analysis at country level by JRC crop monitoring experts of all the information available, including the
automatic warnings, crop production and food security-tailored media analysis, high-resolution imagery (e.g. Landsat 8, Sentinel 1 and 2) processed in Google Earth
Engine and ancillary maps, graphs and statistics derived from a set of indicators. Countries with potentially critical conditions are marked as minor or major hotspots
and a global overview is provided together with short national level narratives.

1. Introduction

Agricultural production follows strong seasonal patterns related to
the biological life cycle of crops and rangelands and it is at the same
time dependent on climatic drivers and on physical characteristics of
the landscape. This complexity, together with the challenges added by
trends in human population growth, environmental degradation and
climate change, continue to increase the needs for timely agricultural
information. In this framework, agricultural monitoring is relevant to
detect short-term deficits in crop production in response to weather
variability but also to facilitate longer-term rural development, espe-
cially in areas of the world affected by a high risk of food insecurity. As
a result, a number of monitoring systems exists at the global and re-
gional scales (Fritz et al., 2018).

Information on crop and rangeland conditions ultimately facilitates
risk reduction and leads to improved statistical analyses at a range of
scales, enabling a timely and accurate national to sub-national agri-
cultural statistical reporting that can be used to plan policies that pre-
vent or mitigate food crisis. Recent examples of food production

oscillations threatening food security include the 2015–2016 El Niño
event with its strong negative impact on agriculture in both Eastern and
Southern Africa (FAO, 2016) as well as the latest drought affecting the
Horn of Africa in 2016–2017 (FAO, 2017).

Remote sensing can significantly contribute to agricultural mon-
itoring as it allows gathering information about the biophysical state of
vegetation over large areas with high revisit frequency (Atzberger et al.,
2016). Crop development and growth can be monitored from space
using spectral information in particular in the visible and near-infrared
reflected domain (Rembold et al., 2016a), although other spectral re-
gions are also relevant (e.g. the short-wave infrared for estimating ve-
getation water content, Colombo et al., 2011). Global coverage has
been provided for many years by moderate spatial resolution (250 to
1000m) satellite instruments with daily revisit at global level (e.g.
Moderate-resolution Imaging Spectroradiometer, MODIS; Satellite Pour
l'Observation de la Terre, SPOT-VEGATATION). High spatial resolution
imagery (10–20m) with high temporal frequency (5 days) is also be-
coming available thanks to the Copernicus program (Sentinel 1 and 2)
but does not have a long time series yet, which limits their use in many
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crop monitoring applications that typically compare the current situa-
tion to the past.

A pragmatic and widespread approach to extract the relevant in-
formation from the various spectral bands of satellite sensors relies on
the computation of vegetation indices (VIs) that are mathematical
combinations of spectral bands used to quantify vegetation amounts
and vigour. Among the different VIs, the Normalized Difference
Vegetation Index (NDVI; Rouse et al., 1974) based on the red and near-
infrared reflectances is often employed for studying vegetation health
and crop production.

To detect unfavourable growth conditions before crop development
is affected, the main meteorological drivers of vegetation growth (i.e.
precipitation, temperature, incident radiation) can also be monitored.
In particular, in food insecure arid and semi-arid areas of the world,
precipitation often represents the main limiting factor to vegetation
growth. Among the various rainfall-based indexes that have been pro-
posed for drought monitoring, the Standard Precipitation Index (SPI,
World Meteorological Organization, 2012) is commonly employed to
track precipitation anomalies. SPI can be compute from rainfall stations
data. However, the sparse and irregular network of rainfall station
makes regional and global analysis difficult. Gridded global rainfall
estimates are generated by atmospheric circulation models (e.g. rainfall
product from the European Centre for Medium-Range Weather
Forecasts, ECMWF, 2015) or derived from meteorological satellite ob-
servations and rainfall station data (e.g. CHIRPS, Funk et al., 2015).

At present, multi-decadal archives of continuous observations are
available for both satellite vegetation indexes and rainfall estimates,
making time series analysis a common tool for drought monitoring
(Rembold et al., 2016a). Typically, the first step in the crop and ran-
geland early warning context is the computation of rainfall or VI
anomalies. For instance, by computing the anomaly of the current NDVI
observation, the actual current vegetation status is compared to pre-
vious seasons or to what can be assumed to be the average or normal
situation. Detected anomalies are then used to draw conclusions on
vegetation status and yield limitations. As anomalies at different loca-
tions may refer to different stages of development, the analysis has to
include information on the actual development stage of the vegetation.
Information about temporal vegetation phenology can be retrieved
from satellite VI time series and used for a correct interpretation of
observed anomalies (e.g. Meroni et al., 2014a; Meroni et al., 2014b).

Starting in 2001, the Monitoring Agricultural Resources unit
(MARS) of the Joint Research Centre (JRC) has applied techniques
developed for crop monitoring in Europe to areas with high risk of food
insecurity (Rojas et al., 2005). The first operational product in a series
of national and regional crop monitoring bulletins for the food security
analysis community was focussing on Somalia. It consisted of a report
issued every 10 days on crop conditions based mainly on remote sen-
sing information. The regular analysis continued until 2006, when the
methodology was fully integrated into the capacity of the Food Security
and Nutrition Analysis Unit - Somalia project (Massart et al., 2010).
Similar regular reports were also produced for many years for Ethiopia,
Eritrea (still active) and, at the regional level, for East and West Africa.
After 2010 and on request of partner Directorate Generals of the Eur-
opean Commission (EC) and of European Union (EU) Delegations, these
bulletins were produced on an ad hoc basis, during or after food se-
curity crises. This was the case for example for Niger, Kenya, North
Korea, Angola, Zimbabwe, Namibia and several others. At the same
time, there was also a transition towards including more information
about other dimensions of food security, going beyond crop production
monitoring. In recent years in fact there has been a trend for harmo-
nized food security assessments (for example thanks to the Integrated
Food Security Phase Classification initiative, IPC Global Partners
(2012), and the Cadre Harmonisé, AGRHYMET (2014)) and for multi-
agency reports such as the Global Report on Food Crises (Food Security
Information Network, 2017). These approaches combine and harmo-
nize information from different sources other than agronomic data (e.g.

economic and nutrition surveys, prices information, conflicts informa-
tion) and provide a higher level of synthesis to end users and policy
makers. In addition, global agricultural production monitoring in-
itiatives have been launched such as the Group on Earth Observations
Global Agricultural Monitoring (GEOGLAM) initiative launched by the
G20 international forum in 2011. These collaborative actions provide
consistent and timely information at the global level based on con-
tributions by their members.

To provide early warning information at the global level on a near
real time basis, MARS recently developed and launched a new on-line
early warning system called ASAP (Anomaly hot Spots of Agricultural
Production). ASAP capitalizes on global datasets of weather and vege-
tation data from models and remote sensing observations and on well-
established time series analysis methods. The system makes available
timely overviews of production anomalies at the global level as input to
more detailed agricultural monitoring or food security assessments. In
this way, it complements the quantitative crop monitoring and yield
forecasting analysis provided by MARS for Europe and its neighbouring
countries and summarized in the MARS bulletins (Baruth et al., 2018).
This integration with the MARS Crop and Yield Forecasting System
(MCYFS, Genovese et al., 2004) is both geographic and thematic, since
ASAP provides global early warning information with a focus on food
insecure countries as opposed to the detailed agricultural monitoring
and yield forecasting for Europe and neighbouring countries included in
the MARS bulletins. The user communities are also clearly dis-
tinguished with the MARS bulletins serving primarily the Directorate
General for Agriculture and Rural Development and the EU Member
States, and ASAP addressing the Directorate General for International
Cooperation and Development in charge of programming the food se-
curity related assistance for the EC, the EU delegations in food insecure
countries, and the international multi-agency initiative GEOGLAM -
Crop Monitoring for Early Warning (CM4EW, https://cropmonitor.org/
), as well as regional and national food security analysts across the
globe.

In particular, ASAP provides information at two levels: 1) ten-day
automatic warnings at sub-national level, and 2) monthly country as-
sessments with the identification of agricultural production hotspots
and summary narratives by JRC experts. The automatic warnings are
generated globally for crop and rangeland areas. The warnings classi-
fication system is described in details in Sections 2 and 3, while in
Section 5 some examples of its outputs are provided. The warnings,
together with input indicator maps and a set of additional graphs and
statistics at sub-national level, are made available on-line in the ASAP
Warning Explorer (https://mars.jrc.ec.europa.eu/asap/hsds/) for users
with expertise in geospatial data.

The expert-based assessment at national level targets 80 selected
countries included the list of food insecure countries monitored by the
GEOGLAM-CM4EW and additional countries where food security and
rural development are target sectors of the European Development
Fund. It involves the analysis of the automatic warnings together in
conjunction with additional information, in particular high spatial re-
solution remote sensing data, news from the press and a large set of
maps, graphs and statistics generated by the ASAP system (see Section
4). Agricultural analysts identify the countries with production deficits
possibly leading to increased risk of food insecurity and mark them as
minor or major hotspots. The map of the current hotspot countries, a
global overview and country reports that includes short early warning
messages by MARS analysts are published on the ASAP Hot Spot web
page (https://mars.jrc.ec.europa.eu/asap/).

2. Data and geographical settings

2.1. NDVI and rainfall estimates

The analysis is performed on NDVI data from the MetOp mission
(operated by the European Organization for the Exploitation of
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Meteorological Satellites, EUMETSAT) at 1 km spatial resolution
available form year 2007. The NDVI is computed from top-of-canopy
red and near-infrared reflectances obtained using the SMAC atmo-
spheric correction algorithm (Rahman and Dedieu, 1994) applied to
daily images of the AVHRR/3 instrument on board of the MetOp-A
platform. Ten-day maximum NDVI composites (Holben, 1986) are then
produced and temporally smoothed with the Swets algorithm (Swets
et al., 1999).

Rainfall estimates (RFE) are gathered from the European Centre for
Medium-Range Weather Forecasts (ECMWF) forecasting system.
Compared to other data sources, ECMWF models additionally provide
near real-time estimation of the air temperature, that is used for the
estimation of potential evapotranspiration component of the water re-
quirement satisfaction index (GWSI) an indicator of crop and rangeland
water stress that will be incorporated in ASAP in the near future (see
Section 6). The time series of ERA-Interim reanalysis model is used for
the period spanning from 1989 up to 2015. Era-Interim variables are
produced at 6-hourly time-step at a spatial resolution of approximately
80 km. Data from 2016 up to the time of analysis are from the high-
resolution forecast model (HRES), originally produced (at 00 and 12
UTC) with a 3-hourly time-step and approximately 9 km spatial re-
solution (ECMWF, 2015) and then gridded to a 0.25° resolution. While
HRES forecasts are produced for the next 10 days, only those of the first
day of this 10-day forecast depth, considered more reliable estimates of
actual precipitation, are retained here and used to compute daily pre-
cipitation values. After computation of daily values, ERA-Interim is
then scaled to the reference grid of HRES and temporally aggregated to
10-day cumulative precipitation values. Different models are used be-
cause the ERA-Interim reanalysis model is not publicly available in near
real-time.

To match two different resolutions used in the warning classifica-
tion system (1 km NDVI and 0.25° ECMWF RFE), the coarser resolution
data is resampled to the 1 km grid using nearest neighbour resampling.

2.2. Crop and rangeland masks

Cropland and rangeland areas in Africa are identified using masks
generated from the land cover/land use dataset of Vancutsem et al.
(2013). For the rest of the world we used the GlobCover 2005–06
(Bicheron et al., 2008) with the exception of following countries/re-
gions where we used more specific land use maps: Afghanistan (Land
Cover of Afghanistan 1993; FAO, 1993), Argentina (Cobertura del suelo
de la Republica Argentina 2006–07; Volante, 2009), Australia (National
scale land use 2001–02; Bureau of Rural Sciences, 2006), Europe
(Corine land cover map 2000; Bosard et al., 2000), Mexico (MODIS land
cover classification; Giri and Jenkins, 2005), U.S.A. (National Land
Cover Database of United States; Homer et al., 2004).

The masks, derived from cropland and rangeland maps with re-
solution of 250m (Vancutsem et al., 2013), are expressed at the lower
spatial resolution of NDVI data (1 km) as area fraction images (AF, i.e.
the percentage of the pixel occupied by crop and rangeland, ranging
from 0 to 100%).

2.3. Geographical domain

The warning classification scheme is applied globally at the first
sub-national administrative level, i.e. GAUL level 1, Global
Administrative Units Layers of the Food and Agriculture Organization
(FAO) of the United Nations (FAO, 2014). This level was identified as a
compromise with respect to the trade-off between the need of analysing
units with homogeneous agro-ecological characteristics (ideally small
units) vs. the need of summarizing the results for a global outlook
(ideally large units). In addition, working with administrative units has
the advantage that they are well recognized and analysts can easily
compare with other data normally available at the administrative level
(crop types, calendars, area and yield statistics, etc.).

The GAUL1 units have been adapted to the specific needs of the
early warning system with minor modifications (e.g. suppression/ag-
gregation of negligibly small units, split of large and agro-climatically
heterogeneous units, and exclusion of units with irrelevant crop or
rangeland area). The modified units will hereafter referred to as ASAP
units.

2.4. Identification of water-limited units

Water, temperature and radiation are the main limiting factors to
vegetation growth at the global level (Nemani et al., 2003). All limiting
factors are indirectly covered by the NDVI series used in ASAP, which
allows to spot sub-optimal vegetation growth, independently from the
drivers. Nevertheless, with ASAP we also monitor precipitation deficit
with the aim of anticipating biomass development problems. However,
as the interpretation of precipitation anomalies in non water-limited
areas is not straightforward and may be misleading, the use of pre-
cipitation-related indicators in the warning classification system is re-
stricted to water-limited regions. To define water-limited regions, we
used a simplified annual climatic water balance, represented by the
difference between the mean cumulative annual values of precipitation
and potential evapotranspiration, similarly to the aridity index of the
United Nations Environment Programme (Middleton and Thomas,
1997). Both precipitation and potential evapotranspiration are from
ECMWF ERA-Interim over the period 1989–2015. A negative water
balance indicates regions where water is a limiting factor, i.e. the
evaporative demand exceeds precipitation.

2.5. Data processing

Imagery data processing is mainly based on the free software
SPIRITS (Eerens et al., 2014; Rembold et al., 2015) in combination with
the open source tools GDAL 11.1 (Warmerdam, 2008) and POSTGIS 2.3
(Obe and Hsu, 2011). Data are managed using PostgreSQL 9.5(https://
www.postgresql.org/). Graphs are generated by R 3.12 (R Core Team,
2016). Web tools are developed using mainly Geoserver (http://
geoserver.org/), Openlayers (https://openlayers.org/) and highcharts
(www.highcharts.com). The whole processing chain is automated using
JAVA (https://www.java.com/) and Python scripts (Python Core
Team., 2016).

3. Methods

The warning classification system for crops and rangelands is up-
dated every 10 days when a new NDVI temporal composite and ten-day
rainfall cumulates are made available. For simplicity and conciseness,
hereafter we will only refer to croplands in the explanation of the
methodology that is applied without modification to rangelands as well.
The basic indicators used in the system are NDVI and RFE anomalies.
Although anomalies can be computed at any location and any time of
the year, they are relevant in agronomic sense only where and when
crops are growing. Whereas crops are spatially identified by the mask
described in Section 2.2, their average growing season is defined by
satellite-derived phenology.

3.1. Satellite-derived phenology

To define the mean growing season period we use the satellite-de-
rived phenology computed on the long-term average of 10-day
SPOT-VEGETATION NDVI time series (average temporal evolution
computed over the period 1999–2013). The software uses an approach
based on thresholds on the green-up and decay phases as described in
White et al. (1997).

The following key parameters are retrieved for each pixel: number
of growing seasons per year (i.e. one or two); start of season (SOS, i.e.
the time when NDVI rises above 25% of the ascending amplitude of the
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seasonal profile); time of maximum NDVI (TOM); start of senescence
period (SEN, when NDVI drops below 75% of the descending ampli-
tude); and end of the season (EOS, when NDVI drops below 35%).

With this information it is then possible to determine, at any time of
analysis, if a pixel is “active” (i.e. in the period of average growing
season) and to compute the progress of the season and the phenological
stage. The progress of the season is the percentage of the length of the
growing season (i.e., EOS minus SOS) that has passed at the time of
analysis. A progress of 50% thus indicates that the pixel is half-way
through the season. The period between SOS and TOM is referred to as
phenological stage “expansion”, the one between TOM and SEN as
“maturation”, and the one between SEN and EOS as “senescence”.

3.2. Pixel level analysis

3.2.1. Computation of anomalies
Remote sensing and meteorological data are first analysed at the

pixel level by computing anomalies. We use the cumulative value of
NDVI over the growing season, a proxy of biomass production (Prince,
1991; Tucker et al., 1985) and crop yield (e.g. Funk and Budde, 2009;
Meroni et al., 2013). At time of analysis t= T (being t the ordinal 10-
day period during the year, t= [1, 36]), the cumulative value of NDVI
(NDVIc) and the derived anomalies are defined by:

∑=
=

NDVIc T NDVI t( ) ( )
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T
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zNDVIc T
NDVIc T μ T
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( ) ( )
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where SOS is the start of season, μNDVIc(T) and σNDVIc(T) are the multi-
annual mean and its corresponding standard deviation of NDVIc at time
T, and n is the number of 10-day periods from SOS to T. Mean and
standard deviation values are computed over the historical multi-an-
nual archive of NDVI observations and updated at the beginning of each
calendar year. zNDVIc is a standardized anomaly (z-score) expressing
the current NDVIc deviation from the mean value in standard deviation
units. mNDVId is the mean difference of NDVI (i.e. current value minus
historical average).

RFE data are used to compute the Standardized Precipitation Index
(SPI, World Meteorologic Organization, 2012), an index widely used to
characterise meteorological drought at a range of timescales. The SPI is
a probability index that expresses the observed cumulative rainfall for a
given time scale (i.e. the period during which precipitation is accu-
mulated) as the standardized departure from the rainfall probability
distribution function. The frequency distribution of historic rainfall
data for a given pixel and time scale is fitted to a gamma distribution
and then transformed into a standard normal distribution. We com-
puted the SPI using data from 1989 to current date and two accumu-
lation periods: one and three months. SPI1 and SPI3 (i.e. using 1 and
3months accumulation period) are considered to account for a short
and prolonged meteorological water shortage, respectively.

3.2.2. Flagging critical anomalies
To determine the fraction of the crop area in each ASAP unit that is

affected by a severe anomaly, we proceed as follows. Pixel level stan-
dardized anomalies (SPI1, SPI3, and zNDVIc) are flagged as “critical”
when smaller than −1 (i.e. negative anomaly larger than one standard
deviation). Under the assumption of normal distribution, 16% of the
observed values would be smaller than −1.

In this way, each pixel in the ASAP unit is flagged as critical (or not)
for SPI1, SPI3 and zNDVIc. To avoid flagging as critical those vegetated
pixels with small NDVI inter-annual variability we also consider the
mean of the difference between NDVI and its long term average over
the growing season (mNDVId). Thus, pixels having a zNDVIc value

smaller than −1 are flagged as critical only if also mNDVId<−0.05.
Symmetrically, we also consider large positive anomalies (zNDVIc>1
and mNDVId> 0.05) to flag the pixel as “exceptionally favourable
conditions”. The combination of zNDVIc and mNDVId is called
zmNDVI.

3.3. ASAP unit level analysis

3.3.1. Spatial domain
Warnings are issued at the ASAP unit level. Pixel-level information

is summarized at this level, computing the fraction of the unit area that
is affected by different critical anomalies (see Section 3.3.3). We ana-
lyse cropland and rangeland areas separately. Anomalies occurring
outside such targets are not considered. All area-based calculations are
made taking into account the area fraction of cropland and rangeland in
each pixel using AF images. For instance, the extent of the crop area is
the sum of the area of the crop pixels weighted by their AF.

3.3.2. Temporal domain
Anomalies are computed only for times when crops are growing.

Although we use static crop AF images as a base layer, we “switch on
and off” the property of being an active crop at the pixel-level, ac-
cording to the pixel phenology. In this way, we obtain 36 crop masks,
one per each 10-day interval of the year, indicating per pixel the pre-
sence of crop in its growing season period. In order to focus the analysis
over the main growing season period of the ASAP unit, the classification
is performed only when the time of analysis is within the multi-annual
average period of the growing season for at least 15% of the total crop
area.

Mono- and bi-modal seasons (i.e. one and two growing cycles per
solar year, respectively) may be present within an ASAP unit. Although
a dominance of one of the two modalities can be expected, both of them
can be present at the same time. As a reference for the entire unit, we
compute the median progress of the season (in %) and the modal
phenological stage (expansion, maturation and senescence). This
“merging” of the two seasons was conceived in order to avoid treating
mono- and bi-modal separately, with the consequence of doubling the
targets (i.e. crop/rangeland, mono−/bi-modal) and making results
more difficult to be interpreted by the user.

3.3.3. Computation of the fraction of critical area
The warning level is based on the fraction of the area (of crop pixels

having an ongoing growing season) being subjected to the different
critical anomalies (SPI1, SPI3, and zmNDVIc). This geographic ag-
gregation scheme (Rojas et al., 2011) aims at detecting unfavourable
growing conditions that affect a significant fraction of the crop area and
may thus lead to a food security problem. We thus trigger a warning
only if two conditions on the anomalies are met: i) the negative
anomaly of at least one indicator is severe (Section 3.2.1) and ii) it
affects a significant extent of the active area in the ASAP unit. It is noted
that by taking the overall spatial mean of the anomaly we would instead
mix the two components. For instance, a negative anomaly affecting
half of the crop area when the remaining area shows a positive anomaly
would result in a spatial average showing normal conditions.

We compute the critical area fraction (CAF) as the ratio between the
crop area flagged as critical and the total crop area with an active
growing season at time of analysis:

=CAF critical area
active area

_
_x

x

(4)

The subscript x refers to the indicator considered (i.e. SPI1, SPI3,
zNDVIc). In addition to the CAF of each single indicator, we also con-
sider the CAFu, computed with a critical area composed by the spatial
union of the areas flagged by each indicator, and the CAFe, determined
by zNDVIc area flagged as exceptionally favourable.
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3.3.4. Warning classification
When one or more CAFs exceed a threshold of 25% (i.e. one quarter

of the active crop area) a warning is triggered for the ASAP unit. To
avoid triggering a warning when CAF is above the threshold but re-
presents only a small area that has very limited potential impact on
food security, we retain the warning only if the active area is larger
than 100 km2.

The specific warning level is determined by the type and combi-
nation of CAFs exceeding the threshold. We put emphasis on the re-
liability of the various indicators and their agreement. We acknowledge
that for the water-limited areas considered in ASAP, rainfall is the main
driver of crop and rangeland growth. An observed deficit may thus
affect future crop development. The longer the deficit, the higher the
likelihood of a detrimental effect. NDVI anomalies show instead that
biomass development is indeed affected by drought (or other perils like
pests or flooding). Thus, we rank the NDVI anomaly events with higher
warning level (level 2) compared to those due to RFE alone (level 1,
Table 1). Finally, the occurrence of anomaly events generated by dif-
ferent indicators is ranked with level 3, the highest level reachable
before the senescence phase.

The warning “1-” is the first level and it is triggered when the spatial
union of the critical areas of all the three indicators exceeds the
threshold of 25%. That is, none of the CAFx exceeds the area threshold,
but the total area affected by at least one of critical indicators (CAFu)
does.

Levels from 1 to 1++ are triggered by rainfall-based indicators.
The lowest level in this group is triggered by a deficit in the last month
(i.e. SPI1) while the intermediate level (1+) is triggered by a more
prolonged deficit (i.e. during the last three months, SPI3). The highest
level of the group (1++) is assigned to the co-occurrence of the two
conditions: a relatively long lasting deficit (SPI3) that persists in the last
month (SPI1). An increased warning level (2) is assigned to the NDVI
indicator as it shows that the growth of the vegetation has been af-
fected, regardless of the causes. The level 3 (ranging from 3 to 3++) is
assigned to the co-occurrence of NDVI- and rainfall-based indicators
with a similar logic that was used for the level 1 group.

The phenological stage has an effect on the warning level: during
senescence, rainfall based indicators do not trigger a warning and only
NDVI is used because rainfall shortage does not necessarily affect crop
production during this stage. In addition, a different warning level is
assigned to the NDVI anomaly during senescence to highlight that at
poor seasonal performance evaluated towards the end of the season can
be considered a confirmation of season failure rather than a warning.

The occurrence of a positive anomaly in the NDVI-based indicators
is also represented, and labelled as “exceptionally favourable condi-
tions”. It is noted that the same ASAP unit may present simultaneously
an “exceptionally favourable condition” and a warning, for example in
the case of spatially heterogeneous crop conditions within a large unit.
The observed frequency of such co-occurrence is indeed negligible
(< 0.004% of total number of warnings).

4. Other information used for agricultural production hot spot
identification

The final identification of hot spot countries by MARS analysts is
based on the automatic ASAP warnings described in the previous
paragraphs and on a set of additional information that includes high
spatial resolution data, maps, statistics, graphs and relevant multi-
lingual media information extracted using existing media monitoring
techniques.

4.1. High resolution data

One of the main novelties of ASAP is the integration of high spatial
and temporal resolution data.

Available Sentinel 2 and Landsat 8 data for any ASAP unit are re-
trieved from the Google Earth Engine catalogue (Gorelick et al., 2017).
A viewer is implemented as a Google App Engine web application,
which is directly linked to Google Earth Engine. For the ASAP unit of
interest and a time-period, the viewer shows: i) a near-infrared false
colour composition for the selected period and the same period of the
previous year; and ii) the NDVI difference between the two periods.

The user can select a compositing period length, its ending date and
maximum image cloud cover fraction. Default values are set to a
monthly composite ending the day of the last assessment, with 10%
maximum cloud cover. The images acquired over the selected period
are composited and mosaicked over the ASAP unit of interest as single
images of near-infrared false colour composition and NDVI. The
minimum operator is selected to temporally composite the individual
bands of the false colour image. The maximum operator is used to
temporally composite the NDVI images. The false colour and NDVI
composites are generated for both instruments (Sentinel 2 and Landsat
8), the selected period and the same period of the previous year. The
NDVI is displayed as a difference image (current year minus the pre-
vious year).

An example is provided in Fig. 5. The visualization of high resolu-
tion imagery adds relevant information for analysis such as vegetation
cover and vigour at field level for the month prior to analysis. This
viewer is, for the time being, the only platform providing a graphic user
interface to quickly access Landsat and Sentinel monthly RGB compo-
sites and NDVI differences with the previous year, mosaicked for the
administrative region of interest.

4.2. Statistics, maps and graphs

A large set of summary statistics, relevant maps and graphs are
produced at the country level every ten days and made available to
analysts through a web-based interactive dashboard that supports the
analyst's work of identifying whether a country should be classified as a
hotspot. The full set of such information is not available to external
users.

ASAP statistics at country level include: area subject to critical

Table 1
ASAP warning levels as a function of the individual indicators with
CAF > 25% and phenological phase at which the warning occurs. The symbol
U represents the spatial union operator used to compute CAFu. zmNDVI stands
for zNDVIc AND mNDVId, both being flagged as critical. zmNDVI+ indicates
that the CAFe is exceeded (i.e. exceptionally favourable conditions). The legend
used for mapping is depicted as coloured points.
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anomalies for SPI1, SPI3 and zmNDVI expressed as area (km2), per-
centage of active area and percentage of total area; crop and rangeland
total area (km2) and active area (km2 and fraction of total area in
percentage) at the time of the analysis; and history of previous monthly
country hotspot classifications.

ASAP graphs include: the recent history of the warnings for all ASAP
units in the country in matrix form (example provided in Table 2);
active area fraction by anomaly range in crop and rangeland areas for
NDVId, zNDVIc, SPI1 and SPI3 at national level; active area (km2) and
fraction of active area (%) anomaly range in crop and rangeland areas
for NDVId, zNDVIc, SPI1 and SPI3 in the ten most relevant ASAP units
(example provided in Fig. 2a).

ASAP maps at country level include: a country overview of auto-
matic warnings triggered at ASAP sub-national level for the reference
dekad; crop and rangeland maps; and satellite-based phenology in-
formation. The latter includes: number of growing season per year; time
of the start and end of the first and of the second season; progress of the
season (an example is shown in the time series of Fig. 1); length of the
first and of the second season. In addition, ASAP generates 10-day
composite maps of the following indicators for the last two months:
NDVI; zNDVIc; mNDVId; NDVId; SPI1; SPI3; zNDVI; rainfall; rainfall
cumulated over the last month; and finally the difference anomaly (i.e.
current value minus historical average) of the previous two rainfall
variables.

A subset of the country-level information used by the analysts is
made available to the public on the ASAP web site in the country report
page when a new hotspot assessment is performed (i.e. every month).
Additional statistics, graphs and indicators at ASAP sub-national level
are available through the ASAP Warning Explorer (examples provided
in Fig. 4).

4.3. Media monitor

Analysts can retrieve additional information by the multi-lingual
media review provided by tailored queries (related to themes such as
agriculture, drought, crisis, etc.) of the Europe Media Monitor (http://
emm.newsbrief.eu/NewsBrief/alertedition/en/FoodSecurityFoodAid.
html). This news analysis system gathers an average of 175,000 online
news articles per day from about 4000 online sources in up to 75 lan-
guages (Steinberger, 2013). The specific strength of this system is the
multi-language capability, allowing to pick up events of interest for
countries that do not necessarily feature in international media.

5. Examples of recent ASAP warnings and agricultural production
hot spot identification

5.1. Southern Africa 2015–2016

Southern Africa was affected by an intense drought related to a
strong El Niño event during the 2015–2016 agricultural season. Fig. 1
shows the time series of the ASAP warnings for crops over the Southern
Africa during the agricultural season of 2015–2016 depicting the evo-
lution of the El Niño impact from its early appearance. Although the

warning classification is performed every 10-days we report here the
results at the monthly time-step for simplicity.

The temporal evolution of the impact depicted by ASAP warnings is
in agreement with the information of various ground reports published
later in the season (WFP, 2016; GEOGLAM CM4EW, 2016) and sum-
marized hereafter.

Drought conditions in Southern Africa started in the third quarter of
2015 and rains, which normally mark the onset of the season in
October, were delayed in many regions by one month. After the be-
ginning of the rainy season, precipitation remained significantly below
average for large parts of the region. This is visible in the ASAP
warnings of 01 Nov. and 01 Dec., largely triggered by rainfall deficits
(warnings level 1) and by the combination of NDVI and rainfall
anomalies (warnings level 3). Mainly in the Eastern part of South
Africa, Botswana, Namibia, Southern Angola, Zimbabwe, parts of
Mozambique, Malawi and Zambia, the late onset of the season was
followed by a dry and hot period until December. Between October and
early February many of these areas had only received between 50 and
70% of their usual total cumulated seasonal rainfall (Rembold et al.,
2016b). According to ASAP warnings, the maximum spatial extent of
the area affected by biomass anomalies (triggered by zmNDVI, warning
level 2 to 3) was achieved already in January. The Eastern part of
Southern Africa received good quantities of rainfall during March, but
this was mostly too late for crop conditions to recover. According to
ASAP warnings, season failures (level 4 warning due to NDVI anomaly
during the senescence phase) affected large part of this area. In South
Africa the seasonal rainfall pattern, with initial strong deficits and late
recovery, led to a total production that was about 40% below the
5 years average (WFP VAM, 2016).

The evolution of the event can be effectively monitored with the
table view of the recent history of the warnings in the country (Table 2).
The colour of each cell represents the warning level. The table columns
(i.e. the Y-axis) represent the 10-day periods extending back one year
and a half from the current date. The table rows (X-axis) are the ASAP
units of the country.

Besides showing the impact of El Niño, Table 2 provides an over-
view of the seasonality of the different ASAP units. Taking the Free
State unit as an example, it is possible to observe that the 2015 crop
season started in October and was immediately affected by negative
rainfall anomalies (warning level 1), followed by rainfall and NDVI
anomalies (warning level 3) until the beginning of January. From
January onwards the negative NDVI anomaly persisted although
without further severe rainfall deficits (warning level 2). Due to the
prolonged period of warnings, from early April, when the unit entered
senescence, it was classified as failed season (warning level 4).

In the Eastern region of Mpumalanga a recovery of crop conditions
due to late season rainfall is visible in Table 2, where the warnings stop
at the end of April 2016. This is confirmed also by crop production
statistics released by the Ministry of Agriculture in September 2016,
where Mpumalanga's final maize production is less affected (−11,8%
compared with the 2011–2013 average) as compared to the one of
other main maize producing regions (−53,8% in Free State
and− 25,1% in Gauteng) (Min. of Agriculture, Forestry and Fisheries,

Table 2
Table view of ASAP units for South Africa showing the 10-day warnings of the 18months period ranging from 11 Jan. 2015 to 10 Jul. 2016.

West Cape
Northern Cape
North West 1 exceptionally
Mpumalanga 2 favourable
Limpopo 3 not active
KwaZulu-Natal 4 none
Gauteng
Free State
Easter Cape
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South Africa, 2016).
Finally it is interesting to observe how the warning progressed over

the 2015/2016 season. In most cases, the sequencing of warning levels
went from 1 via 3 and 2 to 4, meaning that the first warnings were
triggered by rainfall deficits, then confirmed also by NDVI. With further
progress of the relatively long season and with some late improvement
of rainfall, the warnings are mainly due to below-normal vegetation
productivity as shown by the negative NDVI anomalies.

As further examples of additional information generated by ASAP
and that confirm the analysis above, Fig. 2 shows for South Africa the
histogram of active area (and fraction) affected by different anomaly
ranges of zNDVIc and the map of SPI1 at an early stage of the period
affected by El Niño (1 Dec. 2015). At the time of the 2015 El Niño
impact, only a prototype of the ASAP Early Warning Explorer was
running and there was no ASAP analyst assessment. However, in-
formation from the Warning Explorer substantially contributed to the
JRC analysis included in the report by Rembold et al., 2016b.

5.2. Coastal Kenya and Somalia 2016

Dry weather conditions during the short rainy season (approxi-
mately October–December) of 2016 have affected crop and rangeland
productivity in large parts of East Africa. In Somalia, where the season
extends roughly from October to January, rainfall-based warnings were
issued for all the main agricultural areas of Southern Somalia since the
beginning of October, whereas NDVI was affected the following 10-day
period (Fig. 3).

In the coastal areas of Kenya this season corresponds to the main
production season and similarly to Southern Somalia, the warnings
started in the second 10-day period of October 2016 and remained in
level 3 or moved to 4 until the end of the season in January/February
2017, in agreement with the analysis of WFP VAM (2017).

For the ASAP unit of Bay, the main production region for rainfed
sorghum, Fig. 4A-C reports the detailed information of the warning: the
level (3++, thus triggered by the three indicators considered), the area
statistics (crop area, active crop, area), the phenology (modal phase,
median progress and distribution) and the histogram of the share of
active area being affected by the various anomalies. Fig. 4D shows the

Fig. 1. Temporal evolution of triggered warnings and progress of the season for the cropland areas in Southern Africa from November 2015 to July 2016. For each
date the left and right panels represent the ASAP unit level warnings, and the pixel-level progress of the season, respectively. The reference date represents the first
day of the 10-day period. Warning and progress legend are reported in the last row.
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temporal evolution of rainfall and NDVI for the current year and
compares them with the historical average. This additional information
extracted from the ASAP system confirm the validity of the warnings
(Fig. 3). The profile shows for example that for Bay not only the 2016
Deyr season (Oct. to Jan.) is clearly below average, but that the pre-
ceding Gu season (Apr. to Jul. 2016) had also been affected by a de-
layed start and poor rainfall early in the season.

Finally, Fig. 5 shows an example of the high resolution analysis
provided by the ASAP web tool based on Google Earth Engine. Fig. 5A
shows the zNDVIc indicator at 1 km spatial resolution for the cropland
area of central Somalia as of the 20 Dec. 2016 while Fig. 5B and C
shows the 10m resolution NDVI monthly maximum composite for a
spatial subset (black square polygon in Fig. 5A, Bay unit) obtained from
Sentinel 2 instruments for December 2015 and 2106, respectively.
NDVI is computed from Level-1C products of Sentinel 2A and B (top of
atmosphere reflectances) in Google Earth Engine.

A clear reduction in NDVI is visible for December 2016 as compared
to December 2015. Relatively high value NDVI areas in December 2016
(green colours in Fig. 5C) are related to shrublands, which maintain a
close to normal vegetation vigour. The rest of the area (mostly in or-
ange) is occupied by rain-fed agriculture and shows reduced NDVI
values for the season.

The first ASAP analyst assessment took place in October 2016. Using
the automatic warnings and the high resolution evidence as input, the

analysts classified Kenya and Somalia as minor and major agricultural
production hotspot country, respectively. This difference was due to the
fact that Coastal Kenya is a marginal area for the crop production of the
entire country, while in Somalia the main producing areas were af-
fected. In the following months, Kenya was also classified as a major
hotspot since the drought conditions extended to other areas in the
country, including the pastoral drylands in the North.

The onset and evolution of the drought conditions as depicted by
ASAP warning was then confirmed by the Food and Nutrition
Assessment Unit of Somalia (FSNAU, 2017a) that declared a critical
food security situation (i.e. high risk of IPC phase 5 - famine) for the
country on the 2nd of February. After that, persistent drought condi-
tions were depicted by ASAP warnings in Southern Somalia and coastal
areas of Kenya. The various analyses performed for this season and the
seasonal forecasts pointing to below average rainfall expectations af-
fecting also the main season in Somalia (April–June), led to a joint
statement of JRC, FEWSNET, WFP and FAO on the 21st of February.
This document provided detailed information about the evolution and
expected impacts of the drought (WFP et al., 2017). Critical food se-
curity and the need of humanitarian assistance were repeatedly con-
firmed in the following months and persisted at the time of writing this
manuscript (July 2017, FSNAU, 2017b).

6. Ways forward

A number of improvements have been developed and are currently
being tested. The cropland and rangeland masks have been updated
using an optimal region-specific selection of recent available global and
regional land cover products (Pérez-Hoyos et al., 2017a; Pérez-Hoyos
et al., 2017b).

The MetOp NDVI time series has been replaced by the Moderate
Resolution Imaging Spectroradiometer (MODIS) NDVI filtered for op-
timal noise removal in near real-time applications (Klisch and
Atzberger, 2016), a processing that reduces the uncertainty and noise
contamination in near real-time NDVI data. MODIS has also replaced
SPOT-VEGETATION for the calculation of the phenological parameters.
Copernicus biophysical products (e.g. the Fraction of Absorbed Photo-
synthetically Active Radiation, FAPAR; https://land.copernicus.eu/
global/themes/vegetation) at 1 km spatial resolution and 10-day tem-
poral frequency form the reprocessed SPOT-VEGETATION archive
(Toté et al., 2017) and Proba-V observations are now available and
could be used as a back-up in the case of MODIS failure.

Additional improvements have been already scheduled and will
become available in 2018. In particular, the SPI1 indicator will be re-
placed by the standardized anomaly of the Global Water Requirement

Fig. 2. South Africa, 01 Dec. 2015. A): Active area and share of area affected by five classes of cNDVIz anomaly. B): SPI3 map. The numerical values for both legends
(zNDVIc and SPI3) are:> 1 (Very good), 0.5:1 (Good), −0.5:0.5 (Normal), −1:-0.5 (Bad), and < −1 (Very bad).

Fig. 3. Warning map as of 20-Oct-2016 for Somalia, Kenya and Ethiopia.
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Satisfaction Index, a soil water balance model conceptually similar to
that of Popov and Frere (1986) and aligned with the ASAP phenology.
In addition, the ASAP system will integrate information coming from
feedback provided by the food security analyst community and will
extend the set of indicators provided to analysts and users as ancillary

information. Among these indicators, the Heat Magnitude Day index
(Zampieri et al., 2017) will be implemented to monitor the effect of
heat waves, shown to have a significant impact on agricultural pro-
duction worldwide. Finally, we plan to replace the current ECMWF
precipitation data with the new ECMWF reanalysis product ERA5

Fig. 4. Statistics and graphs generated by the ASAP system on 20-Oct-2016 for the Bay unit of Somalia. A) Warning level details and summary statistics. B)
Percentage of active area by progress of the season classes. C) Critical area fraction by indicator. D): Temporal profiles of rainfall and NDVI for the unit. Previous year
(2015) and historical average (Hist. avg.) are reported for comparison. The vertical red line indicates the time of analysis (in this case 2nd dekad of October).

Fig. 5. A) ASAP indicator zNDVIc (20 Dec. 2016) for crop areas. The numerical values are:> 1 (Very good), 0.5:1 (Good), −0.5:0.5 (Normal), −1:-0.5 (Bad),
and < −1 (Very bad). B) Spatial zoom of a rain-fed agricultural area in unit Bay, Somalia (black box in A) of Sentinel 2 maximum value composite NDVI for the
month of December 2015. C) As B) but for December 2016.
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(ECMWF, 2017). Compared to the current settings in which we use
different models for the historical archive (ERA-Interim) and the NRT
(HRES) data, ERA5 will deliver homogeneous data with 31 km spatial
resolution.

System updates are announced in the “news” section of the website
(https://mars.jrc.ec.europa.eu/asap/news.php) and documented in the
updates of the ASAP manual (https://mars.jrc.ec.europa.eu/asap/asap-
info.php).

7. Conclusions

Since 2001 MARS has developed agricultural monitoring methods
for food security early warning outside Europe and has produced in
house, or contributed together with other agencies, to a long series of
food security assessments and bulletins. More recently, different global
remote sensing based products and monthly expert analysis have been
combined into a new early warning platform for the identification of
agricultural production hotspot countries on a monthly basis. The
hotspot country assessment, the ASAP unit level anomaly warnings and
the weather anomaly data used, do directly feed into multi-agency
global crop monitoring efforts such as the GEOGLAM Crop Monitor
activities (for Early Warning and for the Agricultural Market
Information System, AMIS), and provide inputs to more detailed food
security assessments such as those implementing the IPC/Cadre
Harmonisé framework (IPC Global Partners, 2012; AGRHYMET, 2014).

The hotspot assessment is largely based on the described automated
warning classification system, that monitors crops and rangelands
status at a 10-day time step, globally and in near real-time. But it also
includes analysis of other multi-resolution remote sensing indicators
and of other information sources such as media monitoring.

During recent major droughts that affected Southern Africa in
2015–2016 and the Horn of Africa in 2016–2017, the ASAP automatic
warnings were found to be timely and accurate in detecting onset and
spatial extent and the concerned countries have been identified as
agricultural production hotspots in a timely manner.

The ASAP system has been tested since mid-2016 and has been of-
ficially launched at the European Development Days (EDD) in Brussels
in June 2017, and is since then used in a fully operational mode. The
selection and processing of input indicators is constantly under im-
provement, as is the online visualization platform.

References

AGRHYMET, 2014. Cadre Harmonisé manual: Identification and Analysis of Areas at Risk
and Populations Affected by Food and Nutrition Insecurity in the Sahel and West
Africa. AGRHYMET Regional Centre, Niamey, Niger.

Atzberger, C., Vuolo, F., Klisch, A., Rembold, F., Meroni, M., Marcio Pupin, M.,
Formaggio, A., 2016. Agriculture. In: Thenkabail, P.S. (Ed.), Remote Sensing
Handbook. CRC Press, pp. 71–103.

Baruth, B., et al., 2018. What does it entail to run a European crop monitoring system? A
retrospective analysis of the past 25 years. Agric. Syst (this special issue).

Bicheron, P., Defourny, P., Brockmann, C., Schouten, L., Vancutsem, C., Huc, M.,
Bontemps, S., Leroy, M., Achard, F., Herold, M., Ranera, F., Arino, O., 2008.
GLOBCOVER: product description and validation report. In: Technical Report,
Available online. http://due.esrin.esa.int/page_globcover.php.

Bosard, M., Feranec, J., Otahel, J., 2000. CORINE land Cover Technical Guide -
Addendum 2000. In: European Environmental Agency Technical Report No. 40,
Copenhagen, Denmark.

Bureau of Rural Sciences of Australia, 2006. User Guide and Caveats for the 1992/93,
1993/94, 1996/97, 1998/99, 2000/01 and 2001/02 Land Use of Australia, Version 3.
In: Technical report, Available online. http://www.agriculture.gov.au/abares/
aclump/Documents/Nat_Luse_User_Guide.pdf.

Colombo, R., Meroni, M., Busetto, L., Rossini, M., Panigada, C., 2011. Optical remote
sensing of vegetation water content. In: Thenkabail, P.S., Lyon, J.G., Huete, A. (Eds.),
Hyperspectral Remote Sensing of Vegetation. CRC Press, Taylor & Francis, pp.
227–244 ISBN 978-1-4398-4537-0.

Core Team, R., 2016. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

ECMWF, 2015. User Guide to ECMWF Forecast Products. Available online. https://www.
ecmwf.int/sites/default/files/elibrary/2015/16559-user-guide-ecmwf-forecast-
products.pdf.

ECMWF, 2017. ERA5 data documentation. Available online. https://software.ecmwf.int/

wiki/display/CKB/ERA5+data+documentation.
Eerens, H., Haesen, D., Rembold, F., Urbano, F., Tote, C., Bydekerke, L., 2014. Image time

series processing for agriculture monitoring. Environ. Model. Softw. 53, 154–162.
https://doi.org/10.1016/j.envsoft.2013.10.021.

FAO, 1993. Land cover of Afghanistan. In: FAO Project Number AFG/97/001/a/08/12.
Available Online, . http://www.fao.org/geonetwork/srv/en/main.home.

FAO, 2014. The Global Administrative Unit Layers (GAUL) 2014. Available online.
http://www.fao.org/geonetwork/srv/en/metadata.show?currTab=simple&id=
12691.

FAO, 2016. 2015–2016 El Niño - Early Action and Response for Agriculture, Food
Security and Nutrition - UPDATE #10. (Rome).

FAO GIEWS, 2017. Prolonged and severe drought exacerbates food insecurity. In: Special
Alert No. 339, East Africa. 2017 July.

Food Security Information Network, 2017. Global Report on Food Crisis. https://www.
wfp.org/content/global-report-food-crisis-2017.

Fritz, S., Laso Bayas, J.C., See, L., Waldner, F., Jacques, D., Becker-Reshef, I., Whitcraft,
A., Baruth, B., Bonifacio, R., Crutchfield, J., Rembold, F., Rojas, O., Van der Velde,
M., Verdin, J., Wu, B., Yan, n., Gilliams, S., Mucher, S., Moorthy, I., McCallum, I.,
2018. A comparison of global agricultural monitoring systems and current informa-
tion gaps. Agric. Syst (this special issue).

FSNAU (Food and Nutrition Assessment Unit), 2017a. Nearly 3 million people in Somalia
face crisis and emergency acute food insecurity risk of famine increases. Nairobi/
Washington, 2 February. http://www.fsnau.org/downloads/FSNAU-FEWSNET-
Technical-Release-February-2017.pdf.

FSNAU (Food and Nutrition Assessment Unit), 2017b. Quarterly brief - focus on post Gu
2017 season early warning. Nairobi, 17 July 2017. http://fsnau.org/in-focus/
quarterly-brief-june-2017-focus-post-gu-season-early-warning.

Funk, C., Budde, M.E., 2009. Remote sensing of environment Phenologically-tuned
MODIS NDVI-based production anomaly estimates for Zimbabwe. Remote Sens.
Environ. 113, 115–125. https://doi.org/10.1016/j.rse.2008.08.015.

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G.,
Rowland, J., Harrison, L., Hoell, A., Michaelsen, J., 2015. The climate hazards in-
frared precipitation with stations—a new environmental record for monitoring ex-
tremes. Sci. Data 2, 150066. https://doi.org/10.1038/sdata.2015.66.

Genovese, G., et al., 2004. Methodology of the mars crop yield forecasting system. In:
EUR Report EUR 21291 EN/1–4. Vol 1-4.

GEOGLAM, 2016. Early Warning Crop Monitor No. 5 - June 2016. https://cropmonitor.
org/index.php/2016/06/03/crop-monitor-for-early-warning-june-2016.

Giri, C., Jenkins, C., 2005. Land cover mapping of greater Mesoamerica using MODIS
data. Can. J. Remote. Sens. 31 (4), 274–282.

Gorelick, Noel, Hancher, Matt, Dixon, Mike, Ilyushchenko, Simon, Thau, David, Moore,
Rebecca, 2017. Google earth engine: planetary-scale geospatial analysis for everyone.
Remote Sens. Environ. 202, 18–27. (ISSN 0034-4257, 1 December). https://doi.org/
10.1016/j.rse.2017.06.031.

Holben, B.N., 1986. Characteristics of maximum-value composite images from temporal
AVHRR data. Int. J. Remote Sens. 7, 1417–1434. https://doi.org/10.1080/
01431168608948945.

Homer, C., Huang, C., Yang, L., Wylie, B., Coan, M., 2004. Development of a 2001
National Landcover Database for the United States. Photogramm. Eng. Remote. Sens.
70 (7), 829–840.

IPC Global Partners, 2012. Integrated Food Security Phase Classification Technical
Manual Version 2.0. Evidence and Standards for Better Food Security Decisions. FAO,
Rome.

Klisch, A., Atzberger, C., 2016. Operational drought monitoring in Kenya using MODIS
NDVI time series. Remote Sens. 8. https://doi.org/10.3390/rs8040267.

Massart, M., Rembold, F., Rojas, O., Leo, O., 2010. The Use of Remote Sensing Data and
Meteorological Information for Food Security Monitoring, Examples in East Africa.
In: Chuvieco, E., Li, J., Yang, X. (Eds.), Advances in Earth Observation of Global
Change. Springer Netherlands, Dordrecht, pp. 201–216. https://doi.org/10.1007/
978-90-481-9085-0_15.

Meroni, M., Marinho, E., Sghaier, N., Verstrate, M., Leo, O., 2013. Remote sensing based
yield estimation in a stochastic framework — case study of durum wheat in Tunisia.
Remote Sens. 5, 539–557. https://doi.org/10.3390/rs5020539.

Meroni, M., Fasbender, D., Kayitakire, F., Pini, G., Rembold, F., Urbano, F., Verstraete,
M.M., 2014a. Early detection of biomass production deficit hot-spots in semi-arid
environment using FAPAR time series and a probabilistic approach. Remote Sens.
Environ. 142, 57–68. https://doi.org/10.1016/j.rse.2013.11.012.

Meroni, M., Verstraete, M., Rembold, F., Urbano, F., Kayitakire, F., 2014b. A phenology-
based method to derive biomass production anomalies for food security monitoring in
the horn of Africa. Int. J. Remote Sens. 35, 2472–2492. https://doi.org/10.1080/
01431161.2014.883090.

Middleton, N., Thomas, D., 1997. World Atlas of Desertification, 2nd edn. UNEP, London.
Min. of Agriculture, Forestry and Fisheries, 2016. Summer Crops: Final Production

Estimate (2016) and Winter Cereals: Revised Area Planted and Second Production
Forecast, South Africa. http://www.nda.agric.za/docs/Cropsestimates/Media
%20Sept%202016.pdf.

Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni,
R.B., Running, S.W., 2003. Climate-driven increases in global terrestrial net primary
production from 1982 to 1999. Science 300, 1560–1563. https://doi.org/10.1126/
science.1082750.

Obe, R., Hsu, L., 2011. PostGIS in Action. Manning Publications Co, Greenwich, CT, USA.
Pérez-Hoyos, A., Rembold, F., Gallego, J., Schucknecht, A., Meroni, M., Kerdiles, H., Leo,

O., Kayitakire, F., 2017a. Development of a new harmonized land cover/land use
dataset for agricultural monitoring in Africa. In: WorldCover 2017 Conference, 14–16
March 2017. ESA-Esrin, Frascati, Rome, Italy.

Pérez-Hoyos, A., Rembold, F., Kerdiles, H., Gallego, J., 2017b. Comparison of global land

F. Rembold et al. Agricultural Systems 168 (2019) 247–257

256

https://mars.jrc.ec.europa.eu/asap/news.php
https://mars.jrc.ec.europa.eu/asap/asap-info.php
https://mars.jrc.ec.europa.eu/asap/asap-info.php
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0005
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0005
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0005
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0010
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0010
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0010
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0015
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0015
http://due.esrin.esa.int/page_globcover.php
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0025
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0025
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0025
http://www.agriculture.gov.au/abares/aclump/Documents/Nat_Luse_User_Guide.pdf
http://www.agriculture.gov.au/abares/aclump/Documents/Nat_Luse_User_Guide.pdf
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0035
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0035
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0035
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0035
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0040
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0040
https://www.ecmwf.int/sites/default/files/elibrary/2015/16559-user-guide-ecmwf-forecast-products.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2015/16559-user-guide-ecmwf-forecast-products.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2015/16559-user-guide-ecmwf-forecast-products.pdf
https://software.ecmwf.int/wiki/display/CKB/ERA5ataocumentation
https://software.ecmwf.int/wiki/display/CKB/ERA5ataocumentation
https://doi.org/10.1016/j.envsoft.2013.10.021
http://www.fao.org/geonetwork/srv/en/main.home
http://www.fao.org/geonetwork/srv/en/metadata.show?currTab=simple&id=12691
http://www.fao.org/geonetwork/srv/en/metadata.show?currTab=simple&id=12691
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0070
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0070
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0075
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0075
https://www.wfp.org/content/global-report-food-crisis-2017
https://www.wfp.org/content/global-report-food-crisis-2017
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0085
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0085
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0085
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0085
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0085
http://www.fsnau.org/downloads/FSNAU-FEWSNET-Technical-Release-February-2017.pdf
http://www.fsnau.org/downloads/FSNAU-FEWSNET-Technical-Release-February-2017.pdf
http://fsnau.org/in-focus/quarterly-brief-june-2017-focus-post-gu-season-early-warning
http://fsnau.org/in-focus/quarterly-brief-june-2017-focus-post-gu-season-early-warning
https://doi.org/10.1016/j.rse.2008.08.015
https://doi.org/10.1038/sdata.2015.66
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0110
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0110
https://cropmonitor.org/index.php/2016/06/03/crop-monitor-for-early-warning-june-2016
https://cropmonitor.org/index.php/2016/06/03/crop-monitor-for-early-warning-june-2016
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0120
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0120
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1080/01431168608948945
https://doi.org/10.1080/01431168608948945
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0135
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0135
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0135
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0140
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0140
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0140
https://doi.org/10.3390/rs8040267
https://doi.org/10.1007/978-90-481-9085-0_15
https://doi.org/10.1007/978-90-481-9085-0_15
https://doi.org/10.3390/rs5020539
https://doi.org/10.1016/j.rse.2013.11.012
https://doi.org/10.1080/01431161.2014.883090
https://doi.org/10.1080/01431161.2014.883090
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0175
http://www.nda.agric.za/docs/Cropsestimates/Media%20Sept%202016.pdf
http://www.nda.agric.za/docs/Cropsestimates/Media%20Sept%202016.pdf
https://doi.org/10.1126/science.1082750
https://doi.org/10.1126/science.1082750
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0190
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0195
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0195
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0195
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0195
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0200


cover datasets for cropland monitoring. Remote Sens. 9 (11), 1118.
Popov, G., Frere, M., 1986. Early agrometeorological crop yield assessment. In: FAO Plant

Production and Protection Paper 73, Rome.
Prince, S.D., 1991. Satellite remote sensing of primary production: comparison of results

for Sahelian grasslands 1981–1988. Int. J. Remote Sens. 12, 1301–1311.
Python Core Team, 2016. Python: A Dynamic, Open Source Programming Language.

Python Software Foundation.
Rahman, H., Dedieu, G., 1994. SMAC: a simplified method for the atmospheric correction

of satellite measurements in the solar spectrum. Int. J. Remote Sens. 15, 123–142.
https://doi.org/10.1080/01431169408954055.

Rembold, F., Meroni, M., Urbano, F., Royer, A., Atzberger, C., Lemoine, G., Eerens, H.,
Haesen, D., Aidco, D.G., Klisch, A., 2015. Remote sensing time series analysis for crop
monitoring with the SPIRITS software: new functionalities and use examples. Front.
Environ. Sci. 3, 129–134. https://doi.org/10.3389/fenvs.2015.00046.

Rembold, F., Meroni, M., Atzberger, C., Ham, F., Fillol, E., 2016a. Agricultural drought
monitoring using space-derived vegetation and biophysical products: a global per-
spective. In: Thenkabail, P.S. (Ed.), Remote Sensing Handbook. Remote Sensing of
Water Resources, Disasters and Urban Studies Vol. III. CRC Press, Taylor & Francis
Group, Boca Raton, FL, United States, pp. 349–365.

Rembold, F., Kerdiles, H., Lemoine, G., Perez-Hoyos, A., 2016b. Impact of El Niño on
agriculture in southern Africa for the 2015/2016 main season. In: Technical Report,
https://doi.org/10.2788/9743.

Rojas, O., Rembold, F., Royer, A., Negre, T., 2005. Real-time agrometeorological crop
yield monitoring in eastern Africa. Agron. Sustain. Dev. 25 (1), 63–77. https://doi.
org/10.1051/agro:2004056.

Rojas, O., Vrieling, A., Rembold, F., 2011. Assessing drought probability for agricultural
areas in Africa with coarse resolution remote sensing imagery. Remote Sens. Environ.
115, 343–352. https://doi.org/10.1016/j.rse.2010.09.006.

Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., Harlan, J.C., 1974. Monitoring the
Vernal Advancements and Retro Gradation of Natural Vegetation. Greenbelt, MD.

Steinberger, R., 2013. Multilingual and cross-lingual news analysis in the Europe media
monitor (EMM). In: Lupu, M., Kanoulas, E. (Eds.), Multidisciplinary Information
Retrieval. 6th 1059 Information Retrieval Facility Conference. Springer, pp. 1–4
Lecture Notes in Computer Science.

Swets, D., Reed, B.C., Rowland, J.D., Marko, S.E., 1999. A weighted least-squares

approach to temporal NDVI smoothing. In: Proceedings of the 1999 ASPRS Annual
Conference. American Society of Photogrammetric Remote Sensing, Prtland, Oregon,
pp. 526–536.

Toté, C., Swinnen, E., Sterckx, S., Clarijs, D., Quang, C., Maes, R., 2017. Evaluation of the
SPOT/VEGETATION collection 3 reprocessed dataset: surface reflectances and NDVI.
Remote Sens. Environ. 201, 219–233. https://doi.org/10.1016/j.rse.2017.09.010.

Tucker, C.J., Vanpraet, C.L., Sharman, M.J., Van Ittersum, G., 1985. Satellite remote
sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984.
Remote Sens. Environ. 17, 233–249.

Vancutsem, C., Marinho, E., Kayitakire, F., See, L., Fritz, S., 2013. Harmonizing and
combining existing land cover/land use datasets for cropland area monitoring at the
African continental scale. Remote Sens. 5, 19–41. https://doi.org/10.3390/
rs5010019.

Volante, J.N., 2009. Monitoreo de la cobertura y el uso del suelo a partir de sensores
remotos. In: INTA technical report project PNECO, pp. 1643. Available online.
https://inta.gob.ar/sites/default/files/script-tmp-informe_tecnico_lccs.pdf.

Warmerdam, F., 2008. The geospatial data abstraction library. In: Hall, B., Leahy, M.G.
(Eds.), Open Source Approaches in Spatial Data Handling. Springer, Berlin, pp.
87–104.

WFP VAM, 2017. East Africa: The 2016 Season: Severe Drought in the Horn of Africa.
http://documents.wfp.org/stellent/groups/public/documents/ena/wfp289530.pdf.

WFP, FEWS NET, European Commission, FAO, 2017. Persistent drought in Somalia leads
to major food security crisis. In: Joint Multi Agency Statement, . https://ec.europa.
eu/jrc/en/news/somalia-persistent-drought-leads-major-food-security-crisis.

WFP VAM, 2016. Southern Africa: Growing Season 2015–2016: A Season of Regional
Drought. http://documents.wfp.org/stellent/groups/public/documents/ena/
wfp282670.pdf.

White, M.A., Thornton, P.E., Running, S.W., 1997. A continental phenology model for
monitoring vegetation responses to interannual climatic variability. Glob.
Biogeochem. Cycles 11, 217–234. https://doi.org/10.1029/97GB00330.

World Meteorologic Organization, 2012. Standardized Precipitation Index User Guide.
World Meteorological Organization (WMO), Geneva, Switzerland.

Zampieri, M., Ceglar, A., Dentener, F., Toreti, A., 2017. Wheat yield loss attributable to
heat waves, drought and water excess at the global, national and subnational scales.
Environ. Res. 12, 064008. https://doi.org/10.1088/1748-9326/aa723b.

F. Rembold et al. Agricultural Systems 168 (2019) 247–257

257

http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0200
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0205
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0205
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0210
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0210
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0215
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0215
https://doi.org/10.1080/01431169408954055
https://doi.org/10.3389/fenvs.2015.00046
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0230
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0230
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0230
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0230
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0230
https://doi.org/10.2788/9743
https://doi.org/10.1051/agro:2004056
https://doi.org/10.1051/agro:2004056
https://doi.org/10.1016/j.rse.2010.09.006
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0250
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0250
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0255
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0255
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0255
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0255
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0260
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0260
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0260
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0260
https://doi.org/10.1016/j.rse.2017.09.010
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0270
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0270
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0270
https://doi.org/10.3390/rs5010019
https://doi.org/10.3390/rs5010019
https://inta.gob.ar/sites/default/files/script-tmp-informe_tecnico_lccs.pdf
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0285
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0285
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0285
http://documents.wfp.org/stellent/groups/public/documents/ena/wfp289530.pdf
https://ec.europa.eu/jrc/en/news/somalia-persistent-drought-leads-major-food-security-crisis
https://ec.europa.eu/jrc/en/news/somalia-persistent-drought-leads-major-food-security-crisis
http://documents.wfp.org/stellent/groups/public/documents/ena/wfp282670.pdf
http://documents.wfp.org/stellent/groups/public/documents/ena/wfp282670.pdf
https://doi.org/10.1029/97GB00330
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0310
http://refhub.elsevier.com/S0308-521X(17)30909-5/rf0310
https://doi.org/10.1088/1748-9326/aa723b

	ASAP: A new global early warning system to detect anomaly hot spots of agricultural production for food security analysis
	Introduction
	Data and geographical settings
	NDVI and rainfall estimates
	Crop and rangeland masks
	Geographical domain
	Identification of water-limited units
	Data processing

	Methods
	Satellite-derived phenology
	Pixel level analysis
	Computation of anomalies
	Flagging critical anomalies

	ASAP unit level analysis
	Spatial domain
	Temporal domain
	Computation of the fraction of critical area
	Warning classification


	Other information used for agricultural production hot spot identification
	High resolution data
	Statistics, maps and graphs
	Media monitor

	Examples of recent ASAP warnings and agricultural production hot spot identification
	Southern Africa 2015–2016
	Coastal Kenya and Somalia 2016

	Ways forward
	Conclusions
	References




