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Abstract
Neuromodulatory strategies are increasingly adopted for the treatment of intractable epilepsy in children. These encompass a
wide range of treatments aimed at externally stimulating neural circuitry in order to decrease seizure frequency. In the current
review, the authors discuss the evidence for invasive neuromodulation, namely vagus nerve and deep brain stimulation in affected
children. Putative mechanisms of action and biomarkers of treatment success are explored and evidence of the efficacy of
invasive neuromodulation is highlighted.
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Introduction

Pediatric epilepsy is a debilitating condition with a prevalence
of 3.2 to 5.5/1000 in North America and Europe [1, 2]. While
seizure control may be achieved with medical therapy alone,
approximately 30–35% of patients are ultimately diagnosed
with drug-resistant epilepsy (DRE), defined by a failure to
achieve seizure freedom despite two appropriately trialed
anti-epileptic medications [3]. Alternative treatment modali-
ties must therefore be considered including surgical resec-
tions, disconnections, or neuromodulatory techniques.
Surgery may provide seizure freedom in appropriately select-
ed candidates as demonstrated in a single-center trial showing
freedom from seizure in 77% of patients who received surgery
compared to 7% in the medical-therapy group [4]. Indeed, the
Early Randomized Surgical Epilepsy Trial provided class I
evidence for the benefit of early surgical resection compared
to medical management in adolescents with temporal lobe
epilepsy [5]. However, many children are not appropriate

candidates for surgical resection particularly if there is no lo-
calization found on EEG or MRI, or if the seizure focus is
centered in eloquent cortex. As such, neuromodulatory tech-
niques have emerged as promising treatment options to reduce
seizure burden for DRE.

Advancements in cortical mapping and neural network
modeling have begun to shed light on the aberrant circuits
implicated in epilepsy. This has helped pave the way for the
application of various neuromodulatory techniques for the
treatment of a variety of epileptic syndromes. Among these
strategies, deep brain stimulation (DBS) and vagus nerve
stimulation (VNS) have emerged as promising options for
managing patients with DRE who may not be candidates for
surgical treatment. A number of other neuromodulation strat-
egies are also currently under investigation for their utility in
DRE including the responsive neurostimulation system
(RNS), pre-ablative cerebral warming, focused ultrasonogra-
phy, and repetitive transcranial magnetic stimulation (rTMS).
This review will focus on open stimulation systems, specifi-
cally the role of DBS and VNS for the treatment of DRE,
briefly highlighting other neuromodulation systems, and will
provide current evidence surrounding potential predictive
markers to better inform patient selection.

Emerging Role of Neuromodulation
in Epilepsy

Neuromodulatory strategies offer an adjunct treatment option
for patients with DRE. These devices provide electrical or
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magnetic stimulation with the ultimate goal of reducing aber-
rant brain excitability which underlies seizure generation.
Open-loop systems, such as DBS and most VNS devices,
provide pre-programmed electrical stimulation to target spe-
cific brain structures thought to be implicated in seizures.
Closed-loop systems provide stimulation in response to detec-
tion of seizure activity. Select RNS and VNS systems operate
based on closed-loop principles. While treatment efficacy
varies across studies, patient-related predictive factors are cur-
rently being studied in order to better determine ideal candi-
dates for therapy.

Deep Brain Stimulation

Since its first application for the treatment of Parkinson’s dis-
ease, DBS has expanded our armamentarium of treatment
options for a variety of neurological disorders. Only recently
has DBS been applied to the management of epilepsy with
promising results.

Mechanism of Action

DBS delivers electrical stimulation to specific targets involved
in seizure propagation in order to modulate cortical excitabil-
ity, thereby reducing the frequency and severity of seizures.
After the implantation of DBS electrodes, the stimulation can
be adjusted to optimize therapeutic effects. The SANTE trial
demonstrated significant reductions in monthly median sei-
zure frequency from a multi-center prospective randomized
cohort of 110 adults with DRE undergoing anterior nucleus
DBS compared to controls [6]. In the pediatric population,
DBS has been most successful with implantation into the
centromedian thalamic nucleus with seizure frequency reduc-
tion of 30 to 100% in 17 of 18 patients [7–13]. There have
been six pediatric patients who have benefitted from DBS
placed bilaterally in the anterior thalamic nucleus (ATN) [10,
14–17]. In specific situations, DBS implanted into the hippo-
campus, subthalamic nucleus, posteromedial hypothalamus,
and mammillothalamic tract has reduced seizure frequency.

The mechanism of DBS was initially hypothesized to sim-
ulate ablative procedures, because high-frequency stimulation
brought on similar inhibitory treatment effects. However,
high-frequency thalamic DBS has demonstrated both axonal
activation within 2 mm of the electrode and subthreshold sup-
pression [18]. After implantation in a specific target, changes
in stimulation amplitude, frequency, and pulse width can af-
fect the efficacy of treatment [19, 20]. EEG and fMRI data
have demonstrated that DBS can provide more far-reaching
effects and could modulate neural networks [21]. It is not yet
clear how prolonged electrical stimulation will cause synaptic
changes or neurochemical or receptor expression. In epilepsy,
the cortical-striatal-thalamic network and the limbic circuit of

Papez have been identified as important networks upon which
neuromodulation can affect seizure propagation [21]. The hy-
pothesis for the mechanism for ATN-DBS is the therapeutic
modulation of ipsilateral Papez structures, including the ento-
rhinal cortex, hippocampus, parahippocampal gyrus,
mammillothalamic tract, and cingulate and inferior temporal
gyrus [21–23].

Treatment Parameters

The current literature demonstrates that the stimulation param-
eters for CM electrodes in pediatric patients are usually char-
acterized by lower frequencies (60–130 Hz), pulse width of
100 or 450 μs, and 6–8 V [9, 11, 12]. In patients who received
ATN electrodes, stimulation parameters include frequencies
ranging from 100 to 200 Hz, pulse width of 9–160 μs, and
voltage of 1.5–8 V [14–17].

Predictors of Response

There is a paucity of data on predictors of response to DBS
and studies that exist are limited by heterogeneous patient
populations. DBS is rarely offered as the first-line treatment
in epilepsy. Velasco et al. [11] have demonstrated seizure fre-
quency improvement in 9 children with Lennox-Gastaut after
the insertion of bilateral CM electrodes. DBS has also been
considered in children who have already undergone resective
surgery without significant post-operative seizure reduction
[14, 24, 25]. DBS has been used in four children who had a
history of status epilepticus with an improvement in seizure
frequency in three of these children [15, 26].

Considerations in Children

Due to the dearth of long-term evidence of chronic brain stim-
ulation in children, there is expected caution exercised prior to
the use of DBS for epilepsy [27]. The youngest patient report-
ed to undergo DBS for epilepsy was 4 years old [10], although
it is unknown if there is a minimum age. With continued brain
growth and development with age, it remains unknown
whether electrode or wire migration may occur and compro-
mise treatment effect or lead to complications. Children may
also be more susceptible to infection from implanted foreign
material. While literature pertaining to DBS in children is
limited, there are four documented cases of children requiring
permanent or temporary explantation of DBS electrodes due
to infection or skin erosion [11, 24, 28].

Vagus Nerve Stimulation

VNS is considered a promising treatment strategy for DRE.
While response rates remain variable, recent studies have
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begun to uncover drivers of treatment effect and identify po-
tential biomarkers to aid in patient selection.

Historical Context

The origins of our understanding of vagus nerve stimulation
arise from pioneering neurophysiological studies that largely
occurred in the first half of the twentieth century. Early work
initially revealed that VNS can desynchronize cortical electri-
cal activity in cats [29]. In 1952, Zanchetti et al. showed that
VNS blocked interictal spiking in a cat model of epilepsy [30].
On the heels of these studies, further research revealed that
VNS can reduce motor seizures and seizure frequency in var-
ious other animal models of epilepsy [31–33]. This body of
pre-clinical work ultimately sets the stage for the first human
implanted VNS device in 1988 [34].

Mechanism of Action

An integrated network of signals between brainstem centers
and cortical structures is thought to underlie VNS treatment
effect. Recently termed the Bvagus afferent network^ [35], this
circuitry has been widely studied in an attempt to determine
predictors of treatment response. Almost 80% of vagal fibers
carry afferent sensory input. These signals are primarily sent
to the nucleus tractus solitarius in the brainstem. From here,
widespread projections are relayed to key brainstem centers
including locus coeruleus, dorsal raphe nucleus, and
parabrachial nucleus which then project diffusely to higher
cortical structures.

With the application of molecular probing, immunohisto-
chemical staining, and advanced functional imaging, a num-
ber of hypotheses have been generated regarding the underly-
ing mechanism of action of VNS. Increased neuronal activity
has been seen with VNS stimulation in nucleus tractus
solitarius and its downstream targets [36]. Specifically, VNS
increases neuronal signaling in brainstem centers such as lo-
cus coeruleus resulting in increased noradrenergic signaling
within the amygdala, hippocampus, and prefrontal cortex
which has been associated with improved treatment response.
[37–41]

Modulation of thalamocortical connections is believed to
be a key component of VNS effect. Changes in thalamic blood
flow have been seen in patients receiving VNS [42], and in-
creased activation within the thalamus is associated with im-
proved treatment response [43]. Chronic VNS is also known
to increase thalamocortical somatosensory evoked potential
latency [44], and thalamic-anterior cingulate/insular cortex
connections have been found to be enhanced in VNS re-
sponders [45]. There is strong evidence to suggest that VNS
also induces plasticity within limbic system circuitry [46].
One hypothesis that has emerged posits that VNS leads to
increased production of neurotrophic factors within limbic

structures [39], enhancing neurogenesis which may facilitate
the formation of new synapses to rewire aberrant circuitry
[47]. VNS may also directly alter seizure frequency by way
of decreasing seizure thresholds in amygdala and hippocam-
pal neurons [48] [49, 50].

Increas ing l ines of evidence have impl ica ted
immunomodulation via hypothalamic signals as another
mechanism of VNS treatment effect. Pro-inflammatory cyto-
kines have been shown to promote seizure generation. Indeed,
chronic VNS leads to decreases in pro-inflammatory cyto-
kines such as IL-8 [51], and increased levels of anti-
inflammatory cytokines have been found in VNS responders
[52].

Treatment Parameters

VNS devices are often programmed two weeks after implan-
tation. Both output current and duty cycle may be optimized in
order to achieve treatment effect. Standard settings typically
start at a current of 0.25 mA, frequency of 20–30 Hz, and
pulse width of 250–500 μs. However, higher stimulation set-
tings have been shown to increase seizure reduction rates and
may thus be required in patients who do not initially respond
to therapy. Indeed, Bunch et al. found that 20% of initial non-
responders had improved response rates when higher stimu-
lation parameters were employed [53]. Duty time indicates the
time that stimulation is Bon^ or Boff.^ Overall, settings of 30 s
on and 5 min off have led to good treatment effect. However,
some initial non-responders may show enhanced response
with reductions in off time ≤ 1.1 min [54].

Predictors of Response

A growing body of work has helped identify potential predic-
tors of VNS effect. Assessment of functional connections and
electrical potentials has emerged as an appealing non-invasive
approach to examine treatment response. For example, en-
hanced connectivity between the thalamus, anterior cingulate,
and insular cortices has been shown to be associated with
enhanced VNS treatment effect [45]. Moreover, patient scalp
recording studies have shown that the P3 component of event-
related potentials was associated with VNS responsiveness
[55].

Whether certain seizure types may respond better to VNS
remains unclear. In a small cohort of patients undergoing VNS
for epilepsy, individuals with temporal seizure onset
responded best to VNS relative to patients with other seizure
foci [56]. The evidence is conflicting for the benefits of VNS
on generalized or focal epileptiform discharges with some
citing each type as having improved response [57, 58].
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Considerations in Children

The majority of studies on VNS for DRE have focused on
adult patients. While some reports have suggested that youn-
ger patients have better outcomes with VNS, the evidence is
scarce and limited to small studies [59]. Nevertheless, evi-
dence is growing for the safety and efficacy of VNS in the
pediatric population. Treatment response has been reported to
be quite good across studies with one cohort study reporting a
mean reduction in seizure frequency of 71% by 36 months
[60]. The side effect of VNSwithin this population is similarly
understudied; however, to date, few adverse effects have been
reported. [61–65]

Other Neuromodulatory Techniques

While DBS and VNS have gained the most attention as
neuromodulatory adjuncts to treat DRE, a number of other
strategies are currently being investigated. Responsive
neurostimulation device (RNS) is the only system to date
which continually monitors patient brain activity and sub-
sequently responds to early seizure signals by delivering
an electrical pulse to halt the generation of seizures. A
randomized trial including 191 patients with DRE showed
an almost twofold increase in the reduction of seizures
among patients with RNS compared to controls [66].

Repetitive transcranial magnetic stimulation (rTMS)
has most notably been investigated for the treatment of
depression and other neuropsychiatric disorders.
However, increasing evidence has demonstrated its poten-
tial utility in treating DRE in some patients. Low-
frequency rTMS (0.33–1 Hz) has been effective at reduc-
ing seizure frequency in adults [67]. However, to date, no
studies have examined the safety and utility of this thera-
py in children with DRE.

Conclusions

With the advent of more precise tools to measure, re-
cord, and modulate brain activity, neuromodulation sys-
tems hold the potential to treat neurological conditions
previously deemed refractory to standard treatment mo-
dalities. The study of these devices has helped better
understand the neural circuitry involved in epilepsy
and identify potential predictive biomarkers of treatment
response.

Required Author Forms Disclosure forms provided by the au-
thors are available with the online version of this article.
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