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Abstract
A brain–computer interface (BCI) is a technology that uses neural features to restore or augment the capabilities of its
user. A BCI for speech would enable communication in real time via neural correlates of attempted or imagined speech.
Such a technology would potentially restore communication and improve quality of life for locked-in patients and other
patients with severe communication disorders. There have been many recent developments in neural decoders, neural
feature extraction, and brain recording modalities facilitating BCI for the control of prosthetics and in automatic speech
recognition (ASR). Indeed, ASR and related fields have developed significantly over the past years, and many lend
many insights into the requirements, goals, and strategies for speech BCI. Neural speech decoding is a comparatively
new field but has shown much promise with recent studies demonstrating semantic, auditory, and articulatory decoding
using electrocorticography (ECoG) and other neural recording modalities. Because the neural representations for speech
and language are widely distributed over cortical regions spanning the frontal, parietal, and temporal lobes, the
mesoscopic scale of population activity captured by ECoG surface electrode arrays may have distinct advantages for
speech BCI, in contrast to the advantages of microelectrode arrays for upper-limb BCI. Nevertheless, there remain many
challenges for the translation of speech BCIs to clinical populations. This review discusses and outlines the current state-
of-the-art for speech BCI and explores what a speech BCI using chronic ECoG might entail.
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Background

Brain–Computer Interfaces and Speech BCI

A brain–computer interface (BCI) is a computational device
or platform that takes an input signal from the brain and de-
codes some type of information from it, in order to control a
physical device or software interface and/or facilitate sensori-

motor or cognitive restoration or augmentation. Most broadly,
a BCI serves as an interface between the human brain and
technology. The literature refers to BCI using a number of
synonyms, including brain–machine interface (BMI) and neu-
ral prosthetic.

A speech BCI is a device that produces some form of speech
output (e.g., words, sentences, synthesized speech) from a mea-
sure of the user’s brain signals. Such a technology could also
serve as a useful control signal for human–computer interactions,
such as navigating the internet, controlling home automation, or
communicating with a personal assistant. Speech BCI is in early
developmental stages with two primary tracks: interfaces using
noninvasive recording modalities and interfaces using implanted
electrodes. In the past, state-of-the-art BCIs from the latter track of
development were not convincing enough to outweigh the risks
of implantation, even for patient populations that could benefit
most. However, we believe that the field is now at a critical
turning point, in which scientific advances justify the risks of an
implanted speech BCI.
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Target Population

In its current state, implanting a BCI would be reasonable only
in a target population for whom the potential benefits would
outweigh the risks of brain surgery. A variety of patient popu-
lations have expressive speech impairments and could poten-
tially benefit from such a device. The largest populations argu-
ably consist of patients with primary progressive aphasias due
to stroke or neurodegenerative speech disorders, but these dis-
orders pose a far greater challenge due to lesions of cortical
areas that would be important for a speech BCI [1]. On the
other hand, patients with locked-in syndrome (LIS) are aware
and conscious and have intact language cortices, but are unable
to communicate due to severe paralysis of the limbs, face, and
muscles of articulation, despite remaining otherwise cognitively
intact [2]. LIS can arise due to a variety of neurological causes,
such as traumatic, neoplastic, inflammatory, or metabolic le-
sions of the brainstem or neuromuscular disorders like amyo-
trophic lateral sclerosis (commonly known as ALS) [2]. For
many individuals with LIS, their only means of communication
is through limited eye movements and blinking; however, for
those with total locked-in syndrome, even this type of commu-
nication may be unreliable [2]. Those who are not yet in a
totally locked-in state can often communicate through slow
and labored speech, through the use of gestures or eye blinks
or by focusing their gaze on specific letters and symbols on
communication boards to signal their intention to a caretaker
[2]. More high-tech solutions like voice amplification devices
and eye-tracking devices may also assist in communication [2].
An ideal speech–BCI system with sufficiently high perfor-
mance would provide an alternative to these systems, allowing
those with LIS to communicate more effectively and efficiently
without the need for a caretaker to initiate a conversation or to
speak for them. Such a technology could empower these indi-
viduals and dramatically improve their quality of life.

Neural Bases of Speech Production

Despite significant progress over the past decade in machine
learning and automatic speech recognition (ASR), there is still
much to learn about the neurobiological mechanisms of speech
production. Historic studies using functional lesioning and a
variety of neuroimaging techniques have mapped the brain
areas responsible for processing different aspects of speech
and the general dynamics of how they interact [3]. Indefrey
[3] has described one of the most comprehensive models of
these dynamics to date based on a variety of imaging studies.
Indefrey’s [3] model separates speech production into 6 distinct
stages: conceptual preparation, lemma retrieval, phonological
code retrieval, phonological encoding, phonetic encoding, and
articulation (see Fig. 1). Most simply, this stream of processes
can be thought of as the serial transformation of speech infor-
mation along a continuous Bspeech pathway.^ In natural

speech, however, the transformation of information along this
pathway is in fact cascaded and not strictly sequential, with
substantial temporal overlap, parallel processing, and feedback
in the cortical networks responsible for the aforementioned
transformations [3]. Nevertheless, the functional-anatomic
compartmentalization of the neural speech pathway suggests
that neural speech decoding could intercept this stream at many
different points along the pathway with different tradeoffs.

Electrocorticography in BCI

Not all brain recording modalities are ideal for real-time BCI.
Noninvasive magnetic imaging modalities like functional
magnetic resonance imaging (fMRI) and functional near-
infrared spectroscopy (fNIRS) can interrogate the majority
of the brain surface at good spatial resolution, albeit through
an indirect, delayed measure of neural activity, the hemody-
namic or blood-oxygen-level dependent (BOLD) response
(with hemodynamic lag), with insufficient temporal resolution
to match real-time speech synthesis [4, 5]. For this reason,
these modalities are ill-suited for real-time BCI control.
Although magnetoencephalography (MEG) has good spatial
resolution and excellent temporal resolution, its neural source
localization can be challenging [6], and its need for electromag-
netic shielding [7] poses significant challenges in deploying
MEG for real-world BCI.

The current gold standards for BCI, electroencephalography
(EEG) and microelectrode arrays (MEAs), have shown much
success in the literature, but they too have drawbacks. EEG can
interrogate most of the brain surface with excellent temporal
resolution but has poor spatial resolution and poor signal quality
(particularly for high-frequency activity) largely due to the dis-
tance of the electrodes from the electrical source(s) in cortex
[8–10]. Nonetheless, EEG has been widely adopted due to its
portability and its ability to resolve changes in overall brain
states for simple-but-effective BCI designs [11]. On the other
hand, MEAs record activity from single neurons with excellent
temporal resolution but sample this activity from a very small
patch of cortex [12]. MEA needle electrodes physically pene-
trate the brain and elicit tissue responses that affect signal sta-
bility over the long-term due to scarring and neuronal cell death
[13, 14]. Nonetheless, MEAs facilitate effective BCIs for motor
prosthetic control [15–17]. However, we posit that their limited
spatial coverage is insufficient for neural speech decoding, in
which sampling neural activity across a large speech network is
likely necessary for success.

ECoG electrodes are typically composed of platinum–
iridium discs that are embedded in silastic sheets that are sur-
gically implanted directly beneath the dura (subdurally),
though they may also be implanted above it (epidurally)
[18]. These electrodes present a potentially ideal compromise
between the drawbacks of the other brain recording modali-
ties. Figure 2 shows a typical ECoG array. Like EEG, ECoG
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measures the summed local synaptic field potentials (LFPs) of
underlying neuronal populations [18], a direct measure of
neural activity inaccessible to fMRI [4]. Because the elec-
trodes are in direct contact with the cortical surface, source
localization is trivial, and signal quality is greatly enhanced,
especially for high-frequency activity [18]. ECoG electrodes
can also feasibly be combined into grids and strips consisting
of dozens or hundreds of electrodes to sparsely cover large
and/or distributed regions of the brain [18]. Though the ECoG
arrays used in epilepsy seizure monitoring typically have an
exposed surface diameter of 2.3 mm and an interelectrode
spacing of 10 mm [18], these arrays can also be manufactured
with much smaller electrode dimensions and spacing going as
low as 1 mm in diameter and in spacing [20]. Together, these
allow ECoG to measure neural-population activity with unri-
valed spatial and temporal resolution.

ECoG also offers advantages for decoding. It is likely that
many degrees of freedom will be necessary to adequately mod-
el enough speech articulators simultaneously (e.g., one per ar-
ticulator) or to adequately reconstruct the complexity of the
speech waveform (e.g., one per spectrotemporal bin, etc.).
Speech is distributed in many different parts of the brain, each
playing an integral role in representing the different aspects of
speech. Because ECoG is able to record activity from these
multiple, highly distributed speech areas simultaneously with
high quality, it may be more naturally attuned to providing the
degrees of freedom necessary for high-performance decoding.

However, ECoG also has drawbacks. Its biggest drawback
is its relative invasiveness, requiring burr holes or cranioto-
mies to place the electrodes [18]. For this reason, ECoG has
most often been used in drug-resistant epilepsy patients,
as well as in tumor patients, undergoing resection [18].
Electrode array placement in these patients is dictated solely
by medical considerations [18]. Nonetheless, one or more
segments of the speech network may be covered by electrodes
in some patients who volunteer for research exploring the
feasibility of ECoG-based speech BCIs. Because this line of
research is restricted to a relatively small clinical population
with intact speech, its generalizability to the target population
of patients with communication impairments is limited.
However, this issue can be partially accounted for by remov-
ing electrodes contaminated by proximity to epileptic foci or
tumors and through careful patient selection. Results in other-
wise cognitively normal patients are more likely to generalize
to a healthy population.

In spite of the aforementioned drawbacks, ECoG
studies in patients undergoing resection continue to con-
tribute significant scientific information about the feasi-
bility of ECoG-based speech BCIs. Based on the cumu-
lative experience of multiple such studies around the
world, there is growing confidence in the potential ben-
efits of ECoG-based speech BCIs to overcome their
inherent risks in patients with severe communication
disabilities.

Fig. 1 Stages of speech production according to Indefrey’s [3] model.
The color-coded table to the right summarizes the stages of processing in
speech production and time course in response to an image stimulus. The

color-coded image to the left displays regions implicated in each stage of
processing along with peak activation times observed experimentally in
milliseconds [3]. Figure reused with permission from Ref. [3]
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Neural Speech Decoding

Types of Neural Speech Decoding

Speech can be examined through three major representations,
semantic, auditory, and articulatory, each present at different
points along the speech production pathway. Regarding se-
mantics, speech can be represented by the underlying concepts
or discrete words conveyed by that speech. Though the natural
representation of semantics in the brain is not fully under-
stood, various feature-encoding models exist that map seman-
tic attributes of speech in high-dimensional space (see Fig. 3)
[21]. When decoding speech production, semantics would
likely be intercepted at one of the earliest stages of speech
production, i.e., conceptual retrieval, in widely distributed re-
gions in the brain, especially in the temporal lobe, as well as in
the frontal, parietal, and occipital lobes [22]. Regarding audi-
tion, speech can be represented as its acoustic waveform and
its corresponding spectrotemporal features (see Fig. 4). These
features can be further segmented into phonemes, the funda-
mental sound units of words (e.g., the Bah, Bp,^ and Bl^ sounds
in Bapple^), of which there are ~48 in American English [23].
Neural representations of phonemes or related acoustic repre-
sentations could potentially be intercepted for decoding in one
of the middle stages of speech production, i.e., phonological
code retrieval or syllabification (or later if intercepted as an
efference copy). This would likely require recordings from
auditory association cortices within the temporal lobe, partic-
ularly along the lateral superior temporal gyrus (STG) [24].
Regarding articulation, speech can be represented as a se-
quence of phonation and articulatory gestures generated by
the muscles and organs within the vocal tract and mouth in-
cluding the tongue (see Fig. 5). Articulation has been well
characterized by a source–filter model of speech production,
in which the vocal cords (the source) vibrate to generate
sound, which is then modulated by the positions of the

articulators (the filter) over time to generate phonetic sounds
[25]. When decoding speech, this representation would likely
be intercepted in one of the later stages of speech production,
i.e., phonetic encoding or articulation in the speech-related
motor integration areas of the brain, such as Broca’s area
and the ventral sensorimotor cortex (vSMC) [27, 28].

The aforementioned representations could also be exam-
ined during overt (audible) or covert (silent or imagined)
speech. Most work to date has focused on decoding overt
speech, because it provides a ground-truth with which to align
neural events with behavior, e.g., speech onset, offset and
duration, and phoneme boundaries. Covert speech is difficult
to decode because alignment of neural events with covert
speech is ill-posed and because it is difficult to ensure subjects
are actively participating. Semi-overt (or mimed) speech, in
which articulation occurs without phonation, is rarely studied
but can help isolate motor from auditory components of neural
responses during speech production.

Each representation also offers unique benefits for speech
BCI. The earlier the stage at which the speech representation is
intercepted, the lower the latency at which the speech could be
synthesized. Decoding the semantics of speech could be ad-
vantageous, as it could form the basis of an extremely versatile
communication platform, potentially untethered to some of
the normal constraints of language. However, because a com-
pact natural representation of semantics is not known, and
because decoding a potentially infinite number of semantic
concepts is ill-constrained, progress has been limited in
this area. On the other hand, decoding the auditory or articu-
latory aspects of speech could be advantageous due to their
highly quantifiable spectrotemporal (acoustic) and gestural
(articulatory) targets. In auditory decoding, spectrotemporal
modeling of speech and auditory processing used in ASR,
cochlear implant, and hearing research could potentially
be borrowed to improve decoding using this approach.
Similarly, in articulatory decoding, existing knowledge of
somatotopic mapping of the speech articulators, work in vocal
tract modeling [29], and articulatory-to-acoustic inversion
[30] for speech synthesis and highly successful approaches
from motor BCIs with MEAs could potentially be borrowed
to improve decoding using this approach. Further, although
work in covert neural speech decoding is limited, this may be
less problematic for patients with severe neuromuscular weak-
ness, in whom attempts to move may generate more neural
activity in primary motor areas than would be generated by
able-bodied subjects imagining the same movements [31, 32].

Semantic Decoding

Semantic decoding is a relatively new area in ECoG research,
but key findings suggest its potential utility for speech BCI.
The first relevant study by Liu et al. [33] was not intended to
study semantics, but to study visual object recognition. In this

Fig. 2 Subdural electrocorticography (ECoG). (a) Intraoperative
photograph of surgical implantation of a high-density 128-channel grid
(8 × 16 electrodes, 2-mm diameter, 5-mm spacing) flanked by two stan-
dard linear 1 × 8 electrode strips (4-mm diameter, 2.3-mm diameter ex-
posed surface area, 10-mm spacing). (b) Surface rendering of brain re-
construction from registration between preoperative MRI and postopera-
tive CT image. (c) Trial-averaged high gamma power changes (increases
shown with red color scale, decreases shown with blue color scale) rela-
tive to prestimulus baseline during syllable reading are shown for each
ECoG recording site (average reference) in a channel raster in WebFM
[19]. The bright patch of cortex corresponds to a low-grade glioma in the
precentral gyrus. The size and hue of the circles over the colored elec-
trodes (c) correspond to the magnitude of relative high gamma power
changes (increases shown with red color scale, decreases shown with blue
color scale). Time is shown relative to cue onset (c) at 0 s (left vertical
line) with high gamma power reflected on the brain at a single time point
(right vertical line, 1.328 s). High gamma power increases (c) occur in a
large area of the ventral sensorimotor cortex, as well as in a smaller, more
dorsal area, in alignment with speech responses

R
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study, object-category information was decoded in single tri-
als in ECoG using activity in the temporal and occipital lobe,
suggesting the presence of visual-semantic integration in these
areas tied to semantic category recognition. Follow-up re-
search by Wang et al. [34] and Manning et al. [35] confirmed
this result respectively by predicting semantic category in sin-
gle trials using only speech-production-locked activity in the
high gamma band (60–120 Hz) in the left inferior frontal gy-
rus (IFG) and posterior STG and by finding that semantic
similarity of neural activity exhibits a distinct band-diagonal
structure, implying near-optimal self-similarity, and that it is
highly correlated with the semantic similarity of the words
themselves just prior to word recall, likely reflecting speech
intention (see Fig. 6). The results of Wang et al. [34] led them
to suggest the potential for a semantics-based speech BCI, the
first known reference to such a concept in the literature.

The previous ECoG studies were then, after a short gap in
the literature, followed by two more recent studies [21, 36].
Chen at al. [36] observed that stimulus-locked activity in the
ventral temporal lobe encodes semantic representations uncor-
related with the visual similarity of the images presented or
phonological similarity of the names of the objects shown.
Rupp et al. [21] found that semantic-attribute-encoding models
can be used to decode untrained objects with ECoG using high
gamma activity (70–110 Hz) in the basal occipitotemporal area
along specific semantic dimensions with accuracies comparable
to whole-brain fMRI. Further, they found that individual patient
results closely agree with reports from other imagingmodalities
on the time course and functional organization of semantic
processing along the ventral visual pathway during object rec-
ognition [21]. These findings are consistent with previous re-
search defining the ventral temporal lobe as a key area encoding

Fig. 3 Semantic feature-encoding model used by Rupp et al. [21]. (a)
Mean spectral power (numbered 1 to n) during particular temporal win-
dows in specific frequency bands in specific channels collected while a
subject views and names images from each semantic category can be
concatenated into a neural feature vector (N) for each semantic category
[21]. (b) Reverse-decoding scheme, in which expected neural activity is
predicted from a semantic feature-encoding model [21]. Semantic attri-
butes (numbered 1 to m) corresponding to each semantic category can be
concatenated into a semantic feature vector (S), which can be used in a

neural encoding model (β), in this case through linear ridge regression, to
predict N from S [21]. In this reverse-decoding process, which can often
be more effective, new neural activity patterns are compared to the char-
acteristic Btemplate^ patterns generated by β and assigned to the closest
category [21]. Note, however, that it would also be valid to predict se-
mantic features from neural activity and compare them to the character-
istic semantic feature vectors instead. Figure reused with permission from
Ref. [21]
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visual object semantics but suggest that further research is nec-
essary to determine how semantic dimensions are encoded an-
atomically within the brain. Further, they suggest that semantics
can be decoded with high accuracy in single trials and thus
potentially in real time.

Auditory Decoding

Neuroimaging research has contributed to an increasingly
detailed model of the cortical regions in and around the
STG responsible for speech perception, including those that
could be of utility for speech BCI [37]. Recent studies using
fMRI, EEG, and MEG have found evidence for three
tonotopic gradients in the auditory cortex, two stronger
tonotopic gradients in the rostral and caudal Heschl’s gyrus,
which includes the primary auditory cortex (A1), forming a
BV^ shape, and one weaker gradient in the planum temporale
within Wernicke’s area, as illustrated in Fig. 7 [38–40].
However, other studies suggest that neural responses in the
auditory cortex can reflect perceived pitch, which differs
based on harmonics present in the signal, in addition to raw
frequency components of acoustic stimuli [41, 42]. Thus, a
pitch-adjusted spectral target for an auditory speech BCI
may align better with components of the natural auditory res-
ponse and provide maximal performance.

Several ECoG studies suggest a reliable correlate of
the finely graded auditory response is captured by the
coarser population-level activity resolved by ECoG [43–45].
Mesgarani et al. [43] and Hullet et al. [44] observed that the
STG exhibits a distributed population response in the high
gamma band (70–150 Hz) to continuously perceived speech
with a robust anterior–posterior spatial distribution of spectro-
temporal tuning encoding acoustic cues in a nonlinear fashion

Fig. 5 Key speech articulators in the human vocal tract. In the source–
filter model of speech production, the vocal cords (the source) vibrate to
generate sound, which is then modulated by the positions of the speech
articulators (the filter) over time to generate specific speech sounds (i.e.,
phonemes) [25]. These speech articulators and the vocal cords are shown
above. Figure reused with permission from Ref. [26]

Fig. 4 Spectrotemporal representations of speech acoustics. (a) Raw audio waveform of Bhello^ uttered by a male speaker. (b) Spectrogram of Bhello^
uttered by a male speaker. Changes in the audio signal for each phoneme are reflected in both the temporal (a) and spectrotemporal (b) domains
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or through a combination of cues. In particular, the posterior
STG is more highly tuned for temporally fast varying speech
sounds with relatively constant energy across the frequency
axis (i.e., low spectral modulation), whereas the anterior STG
is more highly tuned for temporally slow varying speech
sounds with a high degree of spectral variation across the

frequency axis (i.e., high spectral modulation), as illustrated
in Fig. 8 [44]. On the other hand, Hamilton et al. [45] observed
that spatially localized, caudal, or posterior regions of the STG
are more sensitive to speech onset, while spatially distributed,
rostral or anterior and medial regions of the STG are more
sensitive to sustained speech. Together, these studies suggest

Fig. 6 Semantic organization in cortex according to Manning et al. [35].
(a) Mean power at specific frequencies are calculated from neural record-
ings during word presentation and recall and then passed through princi-
pal components analysis (PCA) [35]. The PCA components that vary
systematically with the meanings of the presented words are used to
construct a neural similarity matrix by measuring the pair-wise cosine
similarities between the PCA feature vectors for each word [35]. (b)
Semantic features of the words themselves are calculated through latent

semantic analysis (LSA) [35]. A semantic similarity matrix is constructed
by measuring the pair-wise cosine similarities between the LSA feature
vectors for each word [35]. Note that the neural similarity (a) displays a
distinct band-diagonal structure, implying near-optimal self-similarity
[35]. This, along with the finding that neural and semantic similarity are
highly correlated just prior to word recall, suggests that words are
encoded in cortex based on semantic features during speech intention
[35]. Figure reused with permission from Ref. [35]

Fig. 7 Tonotopic organization in
the auditory cortex. Two,
stronger, tonotopic gradients from
low- (L) to high-frequency (H)
encoding auditory information are
present in the rostral (rHG) and
caudal Heschl’s gyrus (cHG),
forming a BV^ shape, and a third,
weaker, tonotopic gradient is
present in the planum temporale
(PT) [38, 39]. The above slice is
shown from a top-down view of
the superior-temporal plane
depicted in the bottom-right cor-
ner. Figure reused with permis-
sion from Ref. [39]
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that ECoG adequately captures spectrotemporal tuning of the
STG to speech organized by acoustic features rather than by
discrete phoneme categories.

Silent reading tasks in fMRI and ECoG suggest that covert
speech shares a substrate with perceived speech [46, 47].
Specifically, these studies observed 1) that activity during si-
lent reading is significantly correlated with BOLD [46] and
high gamma activity (50–150 Hz) [47] in temporal voice-
selective areas (TVAs), such as the A1, posterior and medial
superior temporal sulcus (STS), and ventral occipital temporal
cortex [46, 47], and 2) that there is considerable jitter between
activation peaks in single trials in visual and auditory cortices,
suggesting that covert reading is both a visual and auditory
process with each process occurring simultaneously but inde-
pendently [47]. This activity is greater for direct versus indi-
rect passages (i.e., first- versus third-person descriptions) and
positively modulated by subject attention [46]. Further re-
search suggests a fine grapheme–phoneme correspondence
(GPC, i.e., sound–letter mapping) [48, 49]. In an ECoG study
by Perrone-Bertolotti et al. [48], the STG and IFG were im-
plicated in simple and complex phoneme detection modulated
byGPC. Similarly, in anMEA study by Chan et al. [49], firing
of several STG units to visual letters correlated with specific
auditory phonemes (a la GPC). Together, these findings
suggest that covert speech can be decoded phonemically.
However, they also suggest that optimally training and testing
a decoder based on auditory representations of speech produc-
tion may require the subject to evoke the auditory experience
that accompanies speech production, which may be unnatural
and effortful for some.

Several ECoG studies explicitly study the relationship be-
tween overt and covert speech [50–52]. Magrassi et al. [50]

observed that activity in the theta band (2–8 Hz) was maxi-
mally correlated to the speech envelope (likely reflecting pro-
sodic or syllabic rate) prior to articulation in both overt and
covert reading, whereas activity in the high gamma band
(range not given) was also highly correlated to the speech
envelope (likely reflecting phonetic rate and words in isola-
tion) but less so than activity in the theta band. Similarly,
Brumberg et al. [51] observed that activity in the high gamma
band (70–170 Hz) progresses from speech motor areas in the
ventral precentral gyrus and Broca’s area to auditory speech
areas in the middle temporal gyrus (MTG) and middle and
posterior STG (including the A1 and Wernicke’s area) during
both overt and covert reading. Additionally, Martin et al. [52]
observed that a model built to reconstruct auditory speech
features from high gamma activity (70–150 Hz) during overt
speech could reconstruct these same features during covert
speech. The common areas activated during overt and covert
speech are shown in Fig. 9, and the speech reconstruction
results are shown in Fig. 10. These results suggest a shared
auditory and articulatory substrate between overt and covert
speechwith a spatiotemporal progression of activity aligned to
speech production.

However, further studies suggest a differential contribution
of auditory and articulatory areas to overt and covert speech
production over time [53–55]. In an MEG study by Tian and
Poeppel [55], it was observed that overt and covert speech
articulation are fundamentally different but that overt and co-
vert perception are highly similar. Specifically, they observed
that activation during covert articulation extends to posterior
parietal areas rather than the motor cortex, as in overt articu-
lation, but that auditory activation in bilateral temporal areas is
present during both overt and covert speech perception [55].

Fig. 8 Spectral tuning along the superior temporal gyrus according to
Hullet et al. [44]. Above is a map of the maximally activated Bbest
frequencies^ (BF) of the spectrotemporal receptive fields (STRFs) of
subpopulations of neurons within the superior temporal gyrus (STG)
[44]. Spectral tuning runs along the STG in the anteroventral direction
from high (1000 Hz, red) to low (125 Hz, blue) spectral modulation [44].
The STG is surrounded by the lateral sulcus (LS), central sulcus (CS) and
middle temporal gyrus (MTG) [44]. Figure reused with permission from
Ref. [44]

Fig. 9 Shared neural substrate between overt and covert speech. Shared
activation between overt and covert speech is located primarily in the
superior temporal gyrus, premotor cortex, and primary motor cortex
[51]. Shared activation can also be observed in the frontal eye fields
and dorsolateral prefrontal cortex; however, this may be indicative of
visual processing and decision making [51]. Figure reused with
permission from Ref. [51]
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Covert speech articulation also displays an Bauditory-like^
response following articulation highly similar to that observed
during hearing, suggesting the presence of an Befference
copy,^ a feed-forward prediction of the perceptual outcome
of an action [55]. These findings are supported in ECoG
studies by Pei et al. [53] and Leuthardt et al. [54], in which
both overt and covert speech repetition tasks using both audi-
tory and visual cues (4 combinations) were performed. In
these studies, areas within the STG, including the planum
temporale within the A1 (BA41/42) and Wernicke’s area
(BA22), showed more pronounced activation during covert
speech than in the primary motor cortex, with some disagree-
ment about the premotor cortex [53, 54]. However, the dis-
agreement about the premotor cortex was cleared in ECoG
studies by Pei et al. [56] and Ikeda et al. [57] studying pho-
nemes in isolation, in which high gamma activity (70–110Hz)
in the premotor cortex and the STG contributed most to
decoding performance for covert speech. Of particular note
is that unlike previous studies, Ikeda et al. [57] did not find
significant activation in Broca’s area, which led them to pos-
tulate an involvement of Broca’s area in sequencing phonemes
[57]. Together, these studies suggest that a tightly controlled
covert speech paradigm is necessary to ensure consistent re-
sults and that auditory approaches may perhaps be more read-
ily adaptable to covert neural speech decoding. Additionally,
they suggest that decoding phonemes in context may differ

from decoding them in isolation. However, further research is
necessary to identify the precise contributions of the different
types of activity to decoding performance over time and the
potential integratory role of Broca’s area in sequencing
phonemes.

Articulatory Decoding

It is well established in the literature that the muscles of the
human body are somatotopically mapped in the motor cortex
[58, 59]. This mapping has been utilized in previous BCI
studies of upper-limb movements [60–62] and naturally ex-
tends to speech articulators, as evidenced by multiple ECoG
studies [63–65]. Bouchard et al. [63] found that temporally
locked activity in the high gamma band (85–175 Hz) in the
ventral sensorimotor cortex (vSMC) is organized spatially by
articulatory features, following a dorsal–ventral layout mim-
icking the rostral-to-caudal layout of the vocal tract during
overt reading, and that a coordination of multiple articulator
representations across the vSMC network is necessary to gen-
erate speech (see Fig. 11). Toyoda et al. [64] found that vari-
ably timed high gamma augmentation and attenuation (70–
110 Hz) at distinct sites corresponded to particular phonemes
during overt isolated-phoneme articulation and that voice-
onset-locked activity in larynx-sensorimotor areas differs be-
tween voiced and unvoiced phonemes. Lotte et al. [65] found

Fig. 10 Auditory spectrogram
reconstruction. (a) Original and
reconstructed spectrograms for
overt speech [52]. (b) Original
and reconstructed spectrograms
for covert speech [52]. Because
there is no ground-truth audio
signal for covert speech, the
spectrogram of the overt speech
that would have been spoken is
used in place of the original [52].
Figures reused with permission
from Ref. [52]
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that phonemes can be decoded during continuous overt speech
using high gamma activity (70–170 Hz) in speech sensorimo-
tor areas using articulatory correlates, such as place of articu-
lation, manner of articulation, voicing, and vowel-versus-con-
sonant classification. Together, these studies suggest that tem-
porally locked, somatotopically mapped activity in the vSMC
can distinguish phonetic segments of speech based on articu-
latory features, which suggests that this approach may be
highly informative for real-time neural speech decoding.

Several studies investigate to what extent activity in the
vSMC is correlated with speech articulation versus speech
perception [66–68]. Cheung et al. [66] found in ECoG that,
in contrast to the somatotopic map during overt speech pro-
duction, an acoustically based topographic map similar to that
in the STG emerges during speech perception in the high
gamma band (70–150 Hz). The negative finding is backed
by Arsenault and Buchsbaum [67], who found in fMRI that
univariate and multivariate analyses failed to find evidence for
somatotopic coding in the motor or premotor cortex, which
partly include the vSMC, during speech perception when
compared to mimed speech, a paradigm which isolates artic-
ulation from the confound of self-perception. On the other
hand, Glanz Iljina et al. [68] found that high gamma activity
(70–350 Hz) was present in an electrostimulation-defined
mouth motor region in the superior ventral premotor cortex,

which partly includes the vSMC, both during speech produc-
tion early relative to speech onset and during speech percep-
tion. Further, they found that this activity was not present
during nonspeech perception and that it was not significantly
modulated by acoustic background noise [68]. Together, these
results suggest a role of the vSMC during speech perception
(and thus potentially covert speech) possibly related to the
envisioning of speech intention. However, further research is
necessary in this area.

Multiple studies have shown that an articulatory approach
to neural speech decoding is feasible for BCI [69–71]. Tankus
et al. [69] found using hybrid (clinical + microwire) depth
electrodes that single neurons in the rostral anterior cingulate
and adjacent medial orbitofrontal cortex are sharply and spe-
cifically tuned to individual vowels and that the firing of neu-
ral populations to vowels is organized according to their place
and manner of articulation as reflected by the International
Phonetic Alphabet (IPA) chart (as inferred from the error
structure of their neuronal classifier). The latter result is illus-
trated in Fig. 12. Because the IPA chart corresponds to the
position of the highest point of the tongue during articulation,
this organization of speech features corresponds to a function-
al spatial–anatomical organization according to tongue height
[69]. This finding is supported by an ECoG study by Mugler
et al. [70], which found that overtly spoken consonants are

Fig. 11 Somatotopic organization in the ventral sensorimotor cortex
according to Bouchard et al. [63]. (a) Electrodes over the ventral senso-
rimotor cortex (vSMC) are colored based on their distances from the
Sylvian fissure (Sf) [63]. (b) A close-up view of the vSMC in relation
to the precentral gyrus (PrCG), postcentral gyrus (PoCG), central sulcus
(CS), Sf, and subcentral gyrus (as corrected from guenon in the erratum)
[63]. (c) Localization of speech-articulator representations, where the

color scale corresponds to the average magnitude of the articulator
weightings along the dorsal–ventral (d-v) and anterior–posterior (a-p)
axes [63]. (d) Functional somatotopic organization of the speech articu-
lators with the following color correspondence: lips (L, red); jaw
(J, green); tongue (T, blue); larynx (X, black); mixed (gold) [63].
Figures reused with permission from Ref. [63]
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organized according to their place and manner of articulation
as reflected by the IPA chart (as inferred from the error in the
confusion matrices from their decoding results). The best-
performing electrodes were found in speechmotor areas along
the posterior frontal lobe around the vSMC, with performance
relying on precise temporal alignment to phoneme onset and
use of activity in the high gamma band (65–250 Hz) [70].
Further, Mugler et al. [70] obtained 36% classification accu-
racy for phonemes overall and up to 63% for single phonemes,
allowing word identification equivalent to information trans-
fer rates of up to 3.0 bits/s (33.6 words/min), which they
deemed sufficient to support the use of speech articulation
for BCI control. In a follow-up ECoG study, Mugler et al.
[71] found that, despite their inherent correlation, articulatory
gestures could be decoded using high gamma activity (70–
300 Hz) in speech motor areas with significantly higher per-
formance than phonemes at all electrodes, particularly in more
posterior areas of cortex, rather than more anterior areas in
which performance was similar. Together, these findings sug-
gest the potential for an articulatory speech BCI and the
potential superiority of articulatory-gesture features when
decoding from speech motor areas.

A variety of ECoG studies support the assertion that articu-
latory representations in the vSMC contain sufficient informa-
tion for high-performance speech BCI. For example, Bouchard
and Chang [72] accurately predicted 81% of the acoustic var-
iability across vowels during overt syllable production in single

trials using activity primarily from the high gamma band (70–
150 Hz) in the vSMC. Similarly, Kanas et al. [73] achieved
98.8% accuracy with the same experimental paradigm in voice
activity detection (VAD) using a support vector machine
(SVM) classifier, with high gamma being the most informative
band (88–144 Hz) and the posterior STG, STS, and vSMC
containing the most informative electrodes. At the word level,
Mugler et al. [74] decoded phoneme position in word context
during overt word production based on differences in peak high
gamma timing (70–300 Hz) with 76.94% accuracy. At the sen-
tence level, Zhang et al. [75] correctly classified 77.5% of trials
during overt sentence repetition using dynamic time warping in
combination with an SVM classifier and high gamma activity
(60–90 Hz) primarily in the posterior IFG. These results sug-
gest that relatively high performance can be achieved with
relatively small training times, but do not elucidate to what
extent articulatory information alone contributed to the perfor-
mance, requiring further research.

Feasibility of Speech BCI

Overt neural speech decoding, though difficult, has shown the
most progress to date and may be most applicable for patients
with total LIS for whom intercepting overt speech (effectively
bypassing the neural pathways to the speech articulators)
would be adequate. Overt and covert neural speech decoding
has typically been done using neural activity in the high

Fig. 12 Concordance of neural activity organization with tongue height
as observed by Tankus et al. [69]. (a) Decoding accuracy of vowels with
standard error bars shown in green and chance-level decoding accuracy
shown as dashed red lines [69]. (b) Confusion matrix for vowel decoding
illustrating pair-wise confusability when decoding vowels [69]. (c)
Tongue position within the vocal tract for each vowel according to the
International Phonetic Alphabet (IPA) chart [69]. The vowel confusion

matrix (a) displays a distinct band-diagonal structure with maximal error
between neighboring vowels when ordered based on the place of the
tongue during articulation in accordance with the IPA chart (b), which
suggests the presence of a functional spatial–anatomical organization of
neural activity according to tongue height [69]. Figure reused with per-
mission from Ref. [69]
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gamma band, which has consistently been shown to be the
most informative band for neural speech decoding. The exact
limits of this band are unknown, with previous studies suc-
cessfully utilizing frequencies as low as 50 Hz and as high as
~100, 200, or even 300 Hz. Nonetheless, this finding directly
aligns with previous research studies, which suggest that high-
frequency activity corresponds most with the firing of individ-
ual neurons within a population [76–78]. On the other hand,
covert neural speech decoding, which may be necessary for
patients with less-severe cases of LIS, has proven extremely
challenging, largely due to weaker activation observed during
covert versus perceived and overt speech and the lack of a
clear response to align to as with overt speech, e.g., acoustic
or articulatory recordings. For this reason, the refinement of
covert neural speech decoding will depend largely on novel
experimental paradigms and the translation of techniques
from overt neural speech decoding. For more in-depth discus-
sion, see Martin et al. [79].

Two chronic studies have been performed to date, in which
subjects with LIS have been trained to control a BCI facilitat-
ing communication, including one by Vansteensel et al. [80]
using motor-BCI-based communication system with a limited
number of electrodes to type individual letters and one by
Guenther et al. [81] to control a real-time speech synthesizer
for select vowels using a single neurotrophic electrode. Of
particular note is that Guenther et al. [81] was able to increase
the subject’s accuracy by 25% (from 45 to 70%) and decrease
his average endpoint error in a block paradigm by 46% using
auditory feedback from the decoded sound. This suggests that
feedback training may be key to successful speech–BCI
training.

No chronic neural speech decoding studies using ECoG
have been performed to date; however, multiple acute studies
have demonstrated the potential feasibility of such an ap-
proach. Herff et al.’s [82] BBrain-to-Text^ system was the
first demonstration of a working system, which transcribed
overt speech intention inferred from widely distributed brain
areas directly into text with word and phone error rates rang-
ing 25 to 60% and 50 to 80% for vocabularies ranging 10 to
100 words respectively (all significantly above chance).
Though their performance was relatively modest, it serves
as a useful benchmark to understand how performance might
scale with increasing vocabularies. Additionally, follow-up
analysis demonstrates that these above-chance results extend
to decoding using only prephonatory activity, a rough analog
for decoding covert speech intention according to the authors
[83]. This was followed by two studies demonstrating with
Moses et al. [84] and Moses et al.’s [85] NSR (BNeural
Speech Recognition^) system 1) that utilizing both spatial
and temporal information and incorporating language model-
ing and sequential path probabilities improves neural speech
decoding performance and 2) that sentences can be classi-
fied with 90% accuracy using a unique online block-wise

retraining and classification scheme with limited vocabularies
of 10 sentences (both during speech perception). Though it is
unclear how well these results will generalize in pretrained
models, high-performance decoding in real time may be pos-
sible given further refinement of neural speech decoding
approach.

A variety of approaches for spectral feature extraction and
classification have been used for speech BCI thus far. The
typical scheme involves first extracting spectral energies in
specific frequency bands from each channel through a fast
Fourier transform (FFT), bandpass filter bank, or wavelet
transform. Though each method possesses its own design
tradeoffs due to its formulation, the FFT, bandpass filter, and
wavelet approaches are ultimately mathematically equivalent
[86]. These extracted features are then either regressed (or in
other words mapped) to semantic, auditory, or articulatory
parameterizations of the target speech or used to classify ut-
terances on a frame-by-frame or entire-trial basis. Regression
and classification can be done with a variety of algorithms,
from those as simple as support vector machines or linear
discriminant analysis to those as complex as hidden Markov
models or deep neural networks. A comprehensive review of
these machine learning approaches is outside of the scope of
this paper; however, all such algorithms ultimately accomplish
the same goal, that is to learn how to accurately and consis-
tently convert some parameterization of the subject’s neural
activity into a parameterization of the corresponding speech
signal, whether that consists of features that can be fed into a
speech synthesizer or simply labels describing the words that
comprise that speech. We encourage the inquisitive reader to
read through the methods of the cited papers in our neural
speech decoding sections.

Leveraging multiple levels of speech and language repre-
sentation may further increase the performance of speech
BCIs. This approach is outlined in a proof-of-concept study
by Bocquelet et al. [87], in which subjects were trained to
control a speech synthesizer with overt and semi-overt speech
paradigms while undergoing electromagnetic articulography
(EMA) recording, which was fed into a deep neural network
to map articulations to their corresponding acoustic outputs.
This study demonstrated intelligible, real-time synthesis of
vowels and consonants by compensating for differences in
sensor positions and articulatory differences between new
speakers and the reference speaker [87]. Although their meth-
odology was not tested with neural data, the authors suggested
that anatomical differences could be accounted for without
extensive retraining and that parameters derived from EMA
activity could be inferred from recorded neural activity [87].
Their proposed methodology is outlined in Fig. 13. The fea-
sibility of this approach with ECoG was investigated by
Bouchard et al. [88] and Conant et al. [89], who decoded vocal
tract kinematics during overt speech from the vSMC using
activity in the high gamma band (70–150 Hz), and Herff
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et al. [90], who decoded speech spectrograms during overt
speech from around the STG also using activity in the high
gamma band (70–170 Hz). Both demonstrated that decoded
activity can be used to resynthesize speech with high correla-
tion to the original speech signal, with the former showing that
vowels can be decoded with higher accuracy using anatomical
information than can be done using traditional methods
[88–90]. However, the most successful demonstrations to date
are arguably by Akbari et al. [91] and Milsap et al. [92].
Akbari et al. [91] demonstrated that highly intelligible speech
can be resynthesized from the A1; the best performance was
achieved using deep learning, both low- and high-frequency
information and a vocoder target, which provided 75% intel-
ligibility and 65% relative improvement over the linear-clas-
sifier, spectrogram-target baseline. On the other hand, Milsap
et al. [92] demonstrated that 100% neural VAD of isolated
syllables, with decoding performance likely limited only by
electrode placement and density of coverage and less than ~1-
s latency, is achievable through a simple matched-filter ap-
proach. Further, they observed that activity in the vSMC best
discriminates place of articulation and consonant voicing,
whereas activity in the STG best discriminates vowel height
[92]. Together, these results suggest that high-performance
speech BCI with high enough performance to justify a chronic
ECoG study is possible. Further, they suggest that an approach

that integrates multiple levels of speech and language repre-
sentation may allow for increased performance over simpler,
agnostic, classification methods.

Although the discussed results show promising algorith-
mic approaches for speech BCI, there remain significant
challenges that must be addressed. A truly functional speech
BCI will need to rely primarily on speech-production-or
intention-based cues. Truly continuous neural speech decoding
remains elusive, and most results with speech production have
been in decoding very restricted vocabularies of phonemes,
syllables, words, or sentences. Though highly intelligible
speech can be synthesized during speech perception [91],
speech generated from cortical articulatory representations
has thus far only shown to be correlated to the ground-truth
speech signal but not intelligible [88–90]. Though covert
speech shares major neural representations with perceived
speech, high-quality, covert neural speech synthesis using al-
gorithms trained on perceived speech has not been demon-
strated. Significant algorithmic breakthroughs will be neces-
sary before continuous neural speech decoding can allow a
patient to converse freely. However, continuous neural speech
decoding is not necessary for speech BCI to benefit patients.
Detecting isolated keywords or short phrases from ECoG ac-
tivity is a much more tractable problem and may be sufficient
to allow patients to control their devices or communicate basic

Fig. 13 Strategy proposed by Bocquelet et al. [87] to synthesize speech
from articulatory representations in the brain. (A) Overall flow of training
approach, in which a silent speaker synthesizes speech with an articula-
tory speech synthesizer calibrated to the anatomy of the speaker and
based on a real-time feedback loop. (B) Specific steps of articulatory-to-
acoustic inversion approach, in which articulatory features are adjusted to
match a reference speaker and then passed through a deep neural network
to obtain acoustic features that can excited by an Mel Log Spectrum

Approximation (MLSA) filter to synthesize speech [87]. In the original
study, articulatory parameters derived from electromagnetic
articulography (EMA) recordings were mapped to the intended speech
waveform [87]. However, the authors suggest that in a BCI application,
the EMA parameters could be inferred from neural activity and then
mapped to the intended speech waveform using the pretrained ground-
truth model [87]. Figure reused with permission from Ref. [87]
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needs and desires through simple neural voice commands.
Although a recent study of this by Milsap et al. [92] was lim-
ited to detecting syllables in isolation rather than full keywords
in naturalistic settings, good neural VAD and discriminability
suggests the promise of this approach. Finally, the results ob-
tained thus far have been achieved with limited data collected
acutely from patients with suboptimal coverage of cortical
areas important for speech production. It is likely that extended
or long-term studies in individual patients will be needed to
fully explore the potential capabilities of ECoG-based speech
BCI.

Safety and Efficacy of Chronic ECoG

Chronic ECoG in Animals

Studies in both rodents and primates have shown that subdural
ECoG arrays with dozens of electrodes can be used to record
and decode neural signals with acceptable frequency character-
istics reliably over several months [93–95]. Specifically, both
arm motion (often used as the basis for motor BCIs) and
computer-mouse control can be decoded reliably with no drift
in accuracy or performance drop-off or need for recalibration
[94, 95]. The long-term stability of ECoG signal quality and
decoding was also confirmed in the most comprehensive study
to date by Degenhart et al. [96]. In this study, a single monkey
was implanted with a high-density subdural ECoG grid over
cortical motor areas for 666 days to determine whether ECoG
signals can be recorded reliably long-term without significantly
damaging underlying cortical tissue. Histological analysis re-
vealed minimal damage to cortex beneath the implant, though
the grid was encapsulated in collagenous tissue, and macro-
phages and foreign body giant cells were observed at the
tissue-array interface [96]. Further, despite evident encapsula-
tion and foreign body response, the authors obtained stable
cortical recordings for more than 18 months following implan-
tation. Thus, in combination with previous studies, this study
suggested not only that ECoG recordings can remain stable
over a period of years but also that host tissue response does
not significantly hinder signal acquisition [96].

Long-Term ECoG-Based Neurostimulators in Humans

Though past human ECoG–BCI studies have not lasted for
longer than a month, ECoG–neurostimulator studies can serve
as useful reference for signal stability and complication rates
with chronic ECoG. The longest study with the most electrodes
was that of Duckrow and Tcheng [97], in which 24 human
subjects with epilepsy were implanted chronically with a com-
bination of subdural ECoG strips, grids, and depth electrodes,
consisting of anywhere from 24 to 208 electrodes, as well as a
NeuroPace-RNS neurostimulator system, and monitored

anywhere from 2 to 54 days to observe the daily variation in
their ECoG features. The authors successfully recorded activity
variation across brain regions by varying the active electrodes
and did not note any side effects beyond postoperative pain
[97]. This study suggests that extensive ECoG arrays with hun-
dreds of electrodes could potentially be implanted safely for up
to at least a couple months in humans.

The viability for ECoG has been demonstrated for longer
time spans as well, albeit with a much smaller number of
electrodes. A variety of studies have been performed retro-
spectively in up to 191 patients implanted with NeuroPace-
RNS or NeurovVista neurostimulator systems with 8 or 12
electrodes for as long as ~7 years [98–100]. All studies found
that activity remained stable over their period of implantation;
however, only Cook et al. [98] commented on clinical effec-
tiveness or rate of complication [98–100]. In Cook et al.’s [98]
study, no changes in clinical effectiveness were observed
4 months after implantation with only 3 significant complica-
tions [98]. These included a device migration and seroma
immediately following implantation, with the device repaired
uneventfully; an infection at 7 months, leading to explanation
due to lead damage; and discomfort due to lead tautness, lead-
ing to explantation at the patient’s request [98]. Based on these
studies, it is possible that a subject could be safely implanted
with ECoG for 6 months to a year or more, long enough to
establish the safety and efficacy of a chronic ECoG-based
speech BCI with a greater electrode count.

Rao et al. [101] recently demonstrated that ECoG signals
recorded chronically with an RNS system can be used for
neural speech decoding. Specifically, they observed that the
signals remained stable over 1.5 years and that they contained
useful speech correlates, including selectivity to phonetic fea-
tures of spoken sentences in Wernicke’s area and cortical
evoked responses in Broca’s area preceding speech onset dur-
ing overt word naming [101]. This finding suggests that an
ECoG-based speech–BCI system may continue to perform
well even over a period of years.

Epidural Versus Subdural ECoG

The relative utility of epidural and subdural ECoG has been
debated within the ECoG literature. Although the majority of
studies mentioned in this review used subdural grids, studies,
such as that Rouse et al. [95], have demonstrated that
decoding is possible in monkeys using epidural implants.
Epidural implants are somewhat less invasive than subdural
implants, because they do not require breaching the dura, re-
ducing the likelihood of rare complications such as meningi-
tis, cerebritis, and venous infarction, as well as more common
foreign body tissue reactions [95]. However, the dura mater
may significantly attenuate neural signals and decrease
decoding performance [102]. Bundy et al. [102] observed that
micro-scale, subdural electrodes have significantly higher

158 Q. Rabbani et al.



spectral amplitudes and reach the noise floor at a higher fre-
quency than micro-scale, epidural electrodes do, but that for
macro-scale electrodes, the statistical differences are small in
amplitude and likely irrelevant for BCI systems. Flint et al.
[103] observed that epidural decoding of hand grasps is com-
parable to subdural decoding. Together, these studies suggest
that larger, more sparsely spaced, epidural electrodes are com-
parable to larger, more sparsely spaced, subdural electrodes.
However, this may not be the case for smaller, more densely
spaced electrodes, which have shown useful for speech–BCI
applications in humans [104] and for which further research is
necessary.

Risks of Acute ECoG Implantation

ECoG implantation for seizure monitoring prior to epilepsy
surgery can serve as a useful reference point for the safety of
implanting more electrodes than those of the RNS and
NeuroVista systems mentioned, which typically implant no
more than 8 to 12 electrodes. Multiple studies have assessed
complication rate in hundreds of patients from acute intracra-
nial monitoring, which typically employs 32 to 128 or more
electrodes, and its change from past to present [105–110]. In
their study, Hamer et al. [106] noted that overall complication
rate from 1980 to 1997 decreased from 26.3% over the past
23 years, including 1 mortality after grid implantation, to 19%
over the past 5 years, including 2% permanent complications,
and 13.5% over the past 3 years, with no mortalities or per-
manent complications. Similarly, Nagahama et al. [110] noted
that overall complication rates from 2006 to 2015 decreased
from 13.9% over the first 5 years to 5.5% over the last 5 years,
though this change was not statistically significant due to the
low number of patients and relatively low complication rates
over both periods. However, they assert nonetheless that im-
proved surgical techniques have decreased complication rate
[110]. These include 1) elevated placement of the bone flap in
combination with expansive duraplasty using a dural substi-
tute, 2) meticuluous homeostasis of the dura following exci-
sion, and 3) suturing of the dural cuff to the craniotomy mar-
gin [110]. Generally, most recent studies note complications
rates of ~5 to 11% [105, 107, 109, 110] with the exception of
one that notes a complication rate of 23% [108]. However, all
studies note that none of the complications led to mortalities,
whereas only one notes a permanent complication in a single
patient. Together, these results suggest that ECoG implanta-
tion has become significantly safer over the last couple de-
cades. The risk of implantation remains not insignificant, and
can vary across institutions, but these complications are usu-
ally temporary and resolvable with medical care. Of note is
that though these studies were performed across multiple in-
stitutions with hundreds of patients each, only one mortality
was observed, suggesting thorough and regular screening

before and after surgery may significantly mitigate the risks
of a chronic implant.

Many of the aforementioned studies have also examined
the complication profile for different electrode configurations.
Hamer et al. [106] found that complications are associated
with a greater number of grids/electrodes (especially > 60
electrodes), longer duration of monitoring (especially >
10 days), older age of the patient, left-sided grid insertion
and burr holes in addition to craniotomy. On the other hand,
Nagahama et al. [110] found that hemorrhagic and edema/
compression complications correlated significantly with the
total number of electrode contacts, but not with age, history
of prior cranial surgery, laterality, monitoring duration, or
number of each electrode type. Although multiple studies
agree that the presence of subdural grids [105, 107] or the
presence of grids and/or strips generally [108] significantly
increases the chance of surgical complication, Vale et al.
[105] found no link between greater number of electrodes
and increased complication rate. There remains an unsolved
discrepancy between the findings of Vale et al. [105] and those
of Hamer et al. [106] and Nagahama et al. [110]. However, it
is likely that the extent of the implant is more important than
the exact number of electrodes, particularly when considering
higher-density ECoG grids. This suggests that chronic neural
speech decoding studies must strike a balance between mini-
mizing risk and obtaining sufficient coverage for decoding.

Challenges in Translation

ECoG Implantation

The surgical implantation of ECoG electrodes involves
breaching the skull in different ways, depending on the extent
of the implant. Linear electrode strips can be inserted via burr
holes, whereas rectangular grids require craniotomies [111].
Craniotomies carry a higher risk of infection [112, 113].
ECoG grids, though less invasive in some ways than penetrat-
ing electrodes, are relatively large and span a larger cortical
area. Because of their large surface area, they exhibit a height-
ened risk of mechanical damage to cortex, due particularly to
their mechanical mismatch with brain tissue, relative inflexi-
bility, and inability to mold to contours of the brain [114].
Multiple improvements, such as smaller-profile grids or grids
made with more biocompatible materials could minimize the
brain’s foreign body reaction. Similarly, a combination of nov-
el surgical techniques and electrode designs could mitigate
some of the risks of current surgical techniques, such as inser-
tion of expandable or flexible ECoG arrays through smaller
burr holes. The relative inflexibility of ECoG grids also limits
their ability to image neuronal activity in the sulci of the brain,
which may contain valuable information for decoding
[114, 115]. Research in this area is progressing steadily as
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researchers work to develop such flexible ECoG grids
[116–118].

Another issue is the density of electrodes used to sample an
area. Standard spacing for ECoG grids is around 10 mm and
for high-density grids around 4 mm [119]. These spacings are
still too sparse to maximally resolve activity from underlying
neural populations, as has been confirmed in a neural speech
decoding study by Muller et al. [120], in which information
could be gleaned from spacings lower than 4 mm. μ-EGoG
arrays with smaller 1-mm spacings have also been used,
though primarily for research purposes [121]. However, this
increase in resolution comes at the expense of coverage. An
optimal ECoG grid should be dense but extensive enough to
sample activity from large swaths of cortex. However, an op-
timum balance in minimizing spacing must be made, as activ-
ity from individual electrodes becomes significantly noisier,
more difficult to resolve or informationally redundant for BCI
applications [122]. A combination of studies suggests that the
minimum size for electrodes should be ~1 mm and that spac-
ing for subdural and epidural electrodes should be ~1.25 and
~1.4 mm, respectively [20, 122, 123].

Current ECoG systems require patients to maintain a wired
connection with a head stage, amplifiers and a computer when
using their BCI. A percutaneous connector, such as the
Blackrock NeuroPort, can provide a single connection for
128 or more electrodes [124]. Such an implant also carries a
small risk of infection, which is heightened when a patient
remains implanted over an extended period of time, and so
requires frequent cleaning and monitoring. Nevertheless, the
NeuroPort has been demonstrated to be safe in MEA–BCI cli-
nical trials, including BrainGate, Revolutionizing Prosthetics,
and NeuroLife [125–127]. BrainGate has implanted several
patients at different institutions [125], whereas NeuroLife
has worked with a single patient implanted for 5 years now,
as of the time of writing [127]. Nonetheless, a wireless ECoG
system would drastically reduce the risk of infection by
allowing the surgical wound to fully close and heal. This
much-awaited advance is on the near horizon; multiple re-
searchers are working towards developing such wireless
ECoG systems [118, 128, 129]. However, the drawbacks of
wireless systems must also be considered, such as the chal-
lenges of transferring large quantities of data wirelessly and
doing so at sufficiently high speeds, as well as the issue of
repairing such systems when they fail. In order to diagnose
any issues with the hardware, it may be necessary to reopen
the skull, reintroducing the patient to surgical risk.

Neural Decoding Performance

A speech–BCI system must be able to decode user intention
accurately enough to allow for fluid communication. Looking
to the automatic speech recognition (ASR) literature, early com-
mercial ASR systems in the 1970s obtained word error rates

varying anywhere from 3 to 45%, though these were limited to
relatively small data sets of clean, noise-free recordings of speech
from single speakers [130]. The performance of ASR systems
has increased drastically since then, such as Microsoft’s ASR
system, which recently reached a word error rate of 5.8 and
11.0% on the Switchboard and CallHome datasets (each of
which contains dozens of hours of speech) matching human-
level performance at 5.9 and 11.3% [131]. It is likely that speech
BCI will follow a similar trajectory of development. Progress in
this area will likely come from development of machine learning
algorithms better suited for neural decoding and increased under-
standing how the brain encodes speech. However, the greatest
challenge lies in the relatively small datasets currently used in
most neural speech decoding studies, as well as the lack of a
standardized dataset in human speech–ECoG with which to ob-
jectively benchmark these algorithms. Large datasets have been
crucial to the success of deep learning models in ASR [132].
Thus, it is likely that chronic and otherwise large-scale studies
will be necessary to collect enough data to allow the application
of cutting-edge techniques like deep learning or the creation of a
standardized corpus for speech-ECoG.

A speech–BCI system would also require reasonably low
latency in displaying or synthesizing the decoded speech.
Real-time neural decoding is somewhat of a misnomer, as it
implies that neural activity is being recorded and decoded si-
multaneously. Computations take a finite time to complete, and
the more complex and numerous the computations, the higher
the computational overhead. Therefore, the computational com-
plexity of the decoding and signal-processing scheme must be
minimized to reduce computational overhead and allow as
close to Breal-time^ neural decoding as possible. A variety of
sources inform what a reasonable target for this may be. In
voice communication, 100 to 300 ms of propagation delay
causes slight hesitation in a partner’s response and beyond
300 ms causes users to begin to back off to avoid interruption
[133]. In delayed auditory feedback, studies note disruptive
effects on speech production in subjects with delays starting
around 50 ms and maxing out around 200 ms [134, 135], with
delays of 150 ms or so even inducing stress [136]; however,
disruptive effects occur even with delays as low as 25 ms when
the subject is instructed to speak quickly [134, 135]. Together,
these results suggest a ~50-ms latency target for an ideal speech
BCI system, though latencies of up to ~100 ms or so may still
be reasonable for facilitating communication.

An alternative way to examine latency in speech–BCI sys-
tems is to determine the maximum information transfer rate
needed for speech BCI to serve as an input interface, as laten-
cy would necessarily decrease the maximum number of words
or phonemes that could be transmitted. One study cites an
average (averaged from both studies) and maximum human
typing speed of 57.4 and 104 words per minute, respectively
[137]. Using these numbers, along with estimates that English
words contain about 4.79 letters on average [138] and that

160 Q. Rabbani et al.



English phonemes correspond to ~1.88 letters (not accounting
for frequency) [139], this results in latencies per phoneme of
about 410 or 226 ms. Similarly, another study cites an average
and maximum words per minute during human conversation
of 196 and 291 words per minute, respectively [140]. With the
previous assumptions, these correspond to latencies per pho-
neme of about 120 or 81 ms. Together, these suggest an ideal
latency target of ~81 ms for speech BCI, though ~120 ms
latency would be sufficient for average conversational speech
and latency in the 100s of milliseconds would be sufficient for
communicating by typing, which aligns reasonably with the
previous findings.

Finally, though deficiencies in this area may be better tol-
erated by locked-in patients, an ideal speech–BCI system
would likely need to be generalizable between users and re-
quire as little individualized training of the system for each
new user beforehand or additional calibration following. BCI
studies to date typically require extensive training over a pe-
riod of several days or weeks, typically with a 20- to 30-min
recalibration being necessary prior to each session [141].
However, recent studies suggest that initial training time can
be reduced to less than a minute and that subsequent calibra-
tion time can be eliminated entirely [141–143]. Replicating
such low initial training and subsequent calibration times in
speech BCI would be highly desirable. Only a couple decades
ago, it took a state-of-the-art ASR speech-to-text dictation
system, BDragon Speaking Naturally,^ 20 min of speech read
by the user plus 10 min of processing time, followed by the
user feeding in several of his or her previously typed docu-
ments to tailor the system to the user’s vocabulary and 2.5 h of
usage with manual corrections, before the system could
achieve 70 to 80% accuracy [144]. Today, smartphones come
equipped with personal voice assistants like Siri or Google
Voice, which require no training on the part of the user, obtain
results from their servers in a fraction of a second and work
with almost unlimited vocabularies [145] with word error
rates as low as 4.9% [146]. Until speech–BCI systems ap-
proach the nonexistent training times of current personal voice
assistants, it is unlikely that they will be widely adopted.
However, this is a challenging area of research, complicated
by the fact that neural representations of speech can appear so
differently within and between individuals, even more so than
in traditional speech recognition. Nonetheless, intensified ef-
forts in this area and further advances in more robust or adapt-
able machine learning and transfer learning may pave the way
towards overcoming this major challenge.

Conclusions

This review attempts a comprehensive overview of how
speech is represented in the brain and how it might be decoded
in a BCI. The key approaches to speech BCI arise in auditory,

articulatory, and semantic neural speech decoding, each en-
abling a fundamentally different but complementary form of
speech BCI. However, it may be that a multimodal approach
combining these different types of speech information will be
necessary to create an optimally performing speech BCI. We
also outline herein the reasons why ECoG may be an ideal
neural recording modality for speech BCI. A growing litera-
ture is demonstrating not only that real-time neural speech
decoding with ECoG is possible but also that ECoG can fa-
cilitate a relatively safe and stable, long-term BCI. Though
multiple barriers for widespread translation of ECoG-based
speech BCIs exist, such devices could potentially help patients
with locked-in syndrome and other severe communication
disorders in the short-term, allowing them to participate more
effectively and fully in their lives.With further advances in the
safety and efficacy of both invasive and noninvasive BCIs,
this technology may also reach a broader population.
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