
The role of carotenoids in the prevention of human pathologies

H. Tapieroa, D.M. Townsendb, and K.D. Tewb

aUniversité de Paris—Faculté de Pharmacie CNRS UMR 8612, 5, rue Jean Baptiste Clément, 
94200 Chatenay Malabry, France

bFox Chase Cancer Center, Philadelphia, PA, USA

Abstract

Reactive oxygen species (ROS) and oxidative damage to biomolecules have been postulated to be 

involved in the causation and progression of several chronic diseases, including cancer and 

cardiovascular diseases, the two major causes of morbidity and mortality in Western world. 

Consequently dietary antioxidants, which inactivate ROS and provide protection from oxidative 

damage are being considered as important preventive strategic molecules. Carotenoids have been 

implicated as important dietary nutrients having antioxidant potential, being involved in the 

scavenging of two of the ROS, singlet molecular oxygen (1O2) and peroxyl radicals generated in 

the process of lipid peroxidation. Carotenoids are lipophilic molecules which tend to accumulate 

in lipophilic compartments like membranes or lipoproteins. Chronic ethanol consumption 

significantly increases hydrogen peroxide and decreases mitochondrial glutathione (GSH) in cells 

overexpressing CYP2E1. The depletion of mitochondrial GSH and the rise of hydrogen peroxide 

are responsible for the ethanol-induced apoptosis. Increased intake of lycopene, a major carotenoid 

in tomatoes, consumed as the all-trans-isomer attenuates alcohol induced apoptosis in 2E1 cells 

and reduces risk of prostate, lung and digestive cancers. Cancer-preventive activities of 

carotenoids have been associated as well as with their antioxidant properties and the induction and 

stimulation of intercellular communication via gap junctions which play a role in the regulation of 

cell growth, differentiation and apoptosis. Gap junctional communication between cells which 

may be a basis for protection against cancer development is independent of the antioxidant 

property.
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1. Introduction

Carotenoids belong to the tetraterpenes family and are represented by more than 600 known 

natural sructural variants. Carotenoids are synthesized in plants, fungi, bacteria and algae 

whereas in animals and human they are not and are incorporated from their diet. The 

formation of the tetraterpene skeleton (phytoene), results from a loss of a proton, generating 

a double bond in the center of the molecule. Carotenoids are divided in two classes, 
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carotenes containing only carbon and hydrogen atoms and oxocarotenoids (xanthophylls) 

which carry at least one oxygen atom. According to the number of double bonds, several cis/
trans (E/Z) configurations are possible for a given molecule. In bacteria the double bond has 

trans-configuration whereas in plants and fungi this double bond has the cis-configuration 

and an additional isomerization step is involved to change the configuration of the central 

double bond giving eventually lycopene.

Lycopene is an open chain hydrocarbon containing 11 conjugated and 2 non-conjugated 

double bonds arranged in a linear array (Fig. 1). During chemical reactions, light or 

thermoenergy, these bonds can undergo isomerization from trans to mono or poly-cis 
isomers and the most commonly identified are all trans, 5-cis, 9-cis, 13-cis and 15-cis 
isomeric forms of lycopene. α-Carotene has a β-ring at one end of the chain and an ɛ-type at 

the other. γ-Carotene, a precursor of β-carotene and δ-carotene, a precursor of α-carotene 

are carotenoids where only one end of the chain has become cyclized (Fig. 2). Xanthophylls, 

oxygenated, green leaf carotenoids such as zeathanthin, lutein and violaxanthin are also 

widely distributed (Fig. 3). Carotenoids are natural pigments contributing to yellow, orange 

(yellow and orange fruits and vegetables contain hydrocarbon carotenes with substantial 

levels of cryptoxanthins and xanthophylls) and red pigmentations to plant tissues (red fruits 

and vegetables contain mainly lycopene). The green vegetables had high contents of both 

xanthophylls and hydrocarbon carotenes. Lycopene is a characteristic lipophilic red pigment 

in ripe tomato fruit (Lycopersicon esculente; Solanaceae). Since it lacks β-ionone ring 

structure, it lacks provitamin A activity. The orange color of carrots (Daucus carota; 

Umbelliferae/Apiaceae) is caused by β-carotene, widespread in higher plants and the 

brilliant red pigment of pepper (Capsicum annuum; Solanaceae) is due to capsanthine. 

Astaxanthine, is commonly found in marine animals and is responsible for the pink/red 

coloration of crustaceans. Shellfish and fish such as salmon are unable to synthesize 

carotenoids; hence, astaxanthin is produced by modification of plant carotenoids obtained in 

the diet. Carotenoids function along with chlorophylls in photosynthesis and serve as 

important protectants for plants and algae against photooxidative damage, quenching toxic 

oxygen species. Some herbicides (bleaching herbicides) act by inhibiting carotenoids 

biosynthesis and the unprotected plant is subsequently killed by photooxidation.

In animals and human, carotenoids particularly β-carotene and lycopene, play a role in the 

protection against photooxidative processes by acting as singlet molecular oxygen and 

peroxyl radicals scavengers and can interact synergistically with other antioxidants. They 

have been implicated in the inhibition of cancer cells in vitro [1–3], in animal models [4–8] 

and in human, as important dietary phytonutrients having cancer preventive activity for lung, 

colon, breast and prostate cancer [9–11].

The A group of vitamins are important metabolites of carotenoids. Vitamin A1 (retinol) has 

a diterpene structure but it is derived in mammals by oxidative metabolism of tetraterpenoid, 

mainly β-carotene, taken in the diet. Cleavage occurs in the mucosal cells of the intestine 

and is catalysed by an O2-dependent dioxygenase, probably via an intermediate peroxide. 

Vitamin A2 (dehydroretinol) is an analog of retinol containing a cyclohexadiene ring 

system. Retinol and its derivatives are found only in animal products and these provide some 

of our dietary need (Fig. 4).
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2. Bioavailability of carotenoids

Among the 600 known carotenoids in nature, only about 20 are found in human plasma and 

tissues. Lycopene is the most predominant carotenoid in human plasma and has a half life of 

about 2–3 days. Owing to its lipophilic nature, lycopene was found to concentrate in LDL 

and VLDL fractions and not in HDL fraction of the serum [29]. The strong association with 

plasma cholesterol is most likely due to the fact that lycopene is predominantly transported 

in LDL which carries the bulk of cholesterol in the plasma [30–32].

Lycopene is a non-provitamin A and one of the major carotenoids in western diets 

accounting for more than 50% of carotenoids in human serum [12]. Tomato products (juice, 

ketchup, soup, sauce) are the major contributors of lycopene in the diet [16–18]. While 

lycopene is concentrated in tomatoes its content varies from 0.85 mg to 13.6 mg/100 g 

acording to fruit ripening and to the tomato variety. In raw tomatoes, all-trans is the 

predominant isomeric form of lycopene but isomerization to cis occurs during cooking, food 

processing or storage [13,14]. trans-lycopene and trans-β-carotene were stable for up to 3 

years of storage in liquid frozen serum at −80 °C [15]. Consumption of tomato products with 

olive oil but not with sunflower oil improves the antioxidant activity of the plasma [19]. 

Other sources rich in lycopene include watermelon, pink grapefruit, pink guava and papaya 

[20,21]. Lycopene is synthesized via a series of four desaturation reactions from phytoene. 

These reactions occur in the plastids of higher plants and are catalyzed by two membrane 

bound desaturases [22]. Lycopene itself is cyclized to ɛ and β-carotenes both of which are 

precursors of xanthophylls, found in the photosynthetic apparatus. The genes for virtually all 

these enzymes have been cloned and can now be used for plant transformations, particularly 

to elevate the level of lycopene in tomatoes [23].

Animals maintained on lycopene diet, consumed on average 142 μg of lycopene per day of 

which 104 μg was absorbed by the body (which corresponds to 73% net dietary uptake) 

calculated as the difference between lycopene intake and fecal output [24]. Ingested 

carotenoids including lycopene are incorporated into dietary lipid micelles, absorbed into the 

intestinal mucosal lining via passive diffusion. They are incorporated into chylomicrons and 

released into lymphatic system for transport to the liver. Lycopene accumulates in 

hepatocytes and to a lesser extent in spleen. It tends to accumulate in tissues such as testes, 

adrenal glands and prostate [25] Carotenoids are transported by the lipoproteins into the 

plasma for distribution to different organs [26–28].

Although trans-lycopene constitutes the predominant isomer in food sources, in human 

plasma, 50% of the total lycopene has been found as cis isomers [25]. Whether this is due to 

in vivo isomerization or preferential absorption of cis-lycopene is still unclear. Very little is 

known about in vivo metabolism of lycopene. A number of oxygenated metabolites have 

been found in plasma and tissues such as 2,6-cyclolycopene-1,5-diols [33]. It can undergo 

in-vivo oxidation to form epoxides that can be converted to 5,6-dihydroxy-5,6-

dihydrolycopene [34]. These oxygenated lycopenes are products of in vivo oxidation and 

may have physiological roles per se.
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Carotenoids are lipophilic molecules which tend to accumulate in lipophilic compartments, 

like membranes or lipoproteins. They are often solubilized in organic solvents such as 

tetrahydrofuran (THF) or dimethylsulfoxide (DMSO). However, an uncontrolled 

precipitation process occurs upon addition of these solutions to aqueous media. In this 

process, carotenoid crystals are formed with a non-controllable particle size. The solubility 

and uptake of these large crystals in the cells is quite limited and there is almost no 

protection against chemical degradation. Alternative ways of delivering lipid-soluble 

compounds include micelles, microemulsions, nanoparticles, water-dispersible beadlets, 

artificial liposomes, or specialized formulations, each of which has an influence on the 

uptake and stability of the compound [35–38]. Synthetic lycopene is a red crystalline powder 

that is soluble in fat and most organic solvents, but insoluble in water. It is sensitive to light 

and oxygen and is not suitable for commercial use. The market material contains 5–10% 

lycopene in beadlet formulations [39]. It has a low order of acute toxicity and no teratogenic 

effects were noted in rats with 1000 mg/kg body weight/day.

The high concentration of lycopene in blood correlates with reduced risk of prostate cancer 

[40–43], digestive tract cancers [44–46], pancreatic cancer [47] cervical intraepithelial 

neoplasia [48] and myocardial infarction [17,49]. It is assumed that these effects are 

associated to its high antioxidant activity and singlet oxygen quenching capacity [29]. In 

addition, lycopene levels are shown to be inversely associated with age [50,51]. Blood 

lycopene level may differ from blood β-carotene level. In smokers and in alcohol consumers 

the blood level of β-carotene is lower than that of non-smokers [52–55,57] which does not 

seem to be the case for lycopene [50,51,56,57].

3. Cellular and molecular processes

3.1 The carotenoid antioxidative effects

Oxidative stress has been widely postulated to be involved in the causation and progression 

of several chronic diseases. ROS are generated endogenously through normal metabolic 

activity, life style activities, and diet. They react with critical cellular biomolecules such as 

lipids, proteins and DNA and initiate events that lead to increased risk of chronic disease 

such as cancer, cardiovascular disease, and osteoporosis. Consequently, dietary antioxidants 

which inactivate ROS and provide protection from oxidative damage are being considered as 

important preventive strategic molecules [58–63]. The total antioxidant capacity of plasma is 

due to the relative concentration in antioxidant compounds and to their synergism. In 

particular an interaction exists between aqueous and lipophilic antioxidants in defending 

lipoproteins against oxidative damage [64,65]. Carotenoids are most likely involved in the 

scavenging of two ROS, singlet molecular oxygen (1O2) and peroxyl radicals. They are also 

effective deactivators of electronically excited sensitizer molecules which are involved in the 

generation of radicals and singlet oxygen [66]. Dietary carotenoids protect human 

lymphocytes from damage by singlet oxygen 1O2, and lower the risk for several 

degenerative disorders, including various types of cancer, cardiovascular or ophtalmological 

diseases. The interaction of carotenoids with 1O2 depends on physical quenching which 

involves direct energy transfer between both molecules. The efficacy of carotenoids for 

physical quenching is related to the number of conjugated double bonds present in the 
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molecule which determines their lowest triplet energy level. β-Carotene, zeaxanthine 

cryptoxanthin, and α-carotene, which are detected in human serum and tissues belong to the 

group of highly active quenchers of 1O2. The most efficient carotenoid is the open ring 

carotenoid lycopene, which contributes up to 30% to total carotenoids in humans [67–70]. 

Scavenging of peroxyl radicals generated in the process of lipid peroxidation interrupts the 

reaction sequence which finally leads to damage in lipophilic compartments. Moreover, 

induction of phase II enzymes, conjugate reactive electrophiles and act as indirect 

antioxidants, achieving protection against a variety of carcinogens in animals and humans. 

Transcriptional control of the expression of these enzymes is mediated at least in part 

through antioxidant responsive elements (ARE). The transcription factor Nrf2, which binds 

to ARE, appears to be essential for the induction of glutathione-S-transferases (GSTs), 

NAD-(P)H:quinone oxidoreductase (NQO1) as well as the thiol-containing reducing factor, 

thioredoxin [71,72]. In rodents, lycopene resulted in increased levels of GSH and the phase 

II GSTs [73,74]. Canthaxanthin and astaxanthin (not lutein and lycopene) were active in 

inducing phase II metabolizing enzymes, p-nitrophenol-UDP-glucuronosyl transferase and 

NQO1 [73,74]. Lycopene was reported to be more effective than β-Carotene in cell 

protection against hydrogen peroxide (H2O2) and nitrogen dioxide radical (NO•
2) 

components that can arise from cigarette smoke [75–79]. Clinical trials on the incidence and 

mortality of cancer and cardiovascular disease in smokers have shown that β-Carotene 

supplemental is either non-protective or even detrimental [80,81]. One of the reasons for this 

is that the antioxidant activity of carotenoids depends on the oxygen tension present in the 

system. At low partial pressures of oxygen such as those found in most tissues under 

physiological conditions, β-Carotene was found to inhibit oxidation. The initial antioxidant 

activity of β-Carotene is followed by a prooxidant action at high oxygen tension. Thus, in 

thymocytes, β-Carotene is an antioxidant at low oxygen pressure but a pro-oxidant at high 

oxygen concentrations [82]. In addition, lycopene may have also prooxidant activities 

depending on the type of oxidants used. Thus, it can be either antioxidant or prooxidant at 

normal oxygen tension in human foreskin fibroblasts cells (Hs68) [83]. The prooxidant 

effects of β-Carotene may be related to adverse effects observed under the supplementation 

of high doses of β-Carotene [84,85]. However, it has been suggested that some of the 

degradation products of β-Carotene rather than β-Carotene itself may be prooxidant or 

procarcinogenic [86,87]. Cu(II)-initiated LDL oxidation was inhibited in purified LDL by β-

Carotene but not by lycopene or lutein [88]. Furthermore, in vitro enrichment of LDL with 

β-Carotene inhibited endothelial cell-mediated oxidation, while enrichment with lycopene or 

lutein enhanced cell-mediated oxidation [90]. In liposomes oxidized by peroxyl radicals, the 

ineffectiveness of lycopene was probably due to the rapid degradation of β-Carotene [89]. 

However, it remains unclear how β-Carotene and lycopene may enhance lipid peroxidation. 

In smokers it has been suggested that β-Carotene forms radical cations by regenerating a 

vitamin E radical [91,92]. Vitamin C plays an important role in reducing the radical cation of 

β-Carotene [91,92], however, because the high lipophilicity of β-Carotene and its location at 

the interior membrane, the hydrosoluble vitamin C cannot efficiently reduce the carotene 

radicals. Another possibility is that β-Carotene may react with lipid peroxyl radicals and 

form radical cations, which can then be reduced by vitamin E. Vitamin C in turn can reduce 

vitamin E radical to regenerate vitamin E to prevent the damaging effects of β-Carotene 

cation [93]. Analysis of the antioxidant status of blood in rats, revealed that some 
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antioxidant enzymes, such as superoxide dismutase, glutathione reductase and glutathione 

peroxidase can be induced by lycopene [94]. Recently, it has been reported that lycopene 

prevents cataractogenesis in vivo and in vitro by virtue of its antioxidant properties [95].

4. Effect on gap junctional communication

Gap junctions are cell-to-cell channels which enable connecting cells to exchange low-

molecular weight compounds like nutrients and signaling molecules [96]. One feature of 

carcinogenesis is the loss of gap junctional communication (GJC) [97]. Induction of 

intercellular communication via gap junctions can be achieved with carotenoids and 

retinoids and is correlated with inhibited cell growth of chemically transformed cells [98]. 

Non-tumorous cells communicate via GJC, whereas most tumor cells have dysfunctional 

homologous or heterologous GJC [99]. Carotenoids, in addition to their antioxidant 

properties, stimulate GJC in a differential and dose dependent manner [100–102]. 

Stimulatory effects on GJC were described for lycopene which also affects cell growth 

[100–103]. The biochemical mechanism underlying the activation of GJC is not yet well 

understood. Carotenoids have been reported to react with almost any radical species. The 

products of such reactions are frequently short-lived radical species. In the majority of 

interactions with radicals, carotenoids break down to degradation products similar to what is 

seen with oxidative degradation [104]. There is evidence from cell culture studies that 

central cleavage products of carotenoids are ultimately active components triggering GJC. 

Oxidation products such as the dialdehyde 2,7,11-trimethyl-tetradecahexaene-1,14-dial 

obtained from the oxidation of lycopene, stimulates GJC in WB-F344 cells, rat liver 

epithelial cells [104] but other oxidation products formed upon chemical oxidation of 

lycopene were not active. Lycopene, increases GJC between cells and enhances the 

expression of connexin 43, a gene encoding major gap junction protein, and thereby 

upregulated GJC and acts as anti-carcinogen. However, its effect is less pronounced than β-

Carotene or canthaxanthin [105–107]. Other mechanisms including posttranslational 

modification, protein trafficking or changes in pH or calcium levels may be also relevant in 

the stimulation of GJC [108–110]. Loss of GJC may be important for malignant 

transformation, and its restoration may reverse the malignant process [99,100]. The GJC 

ability of lycopene and its singlet oxygen quenching abilities or anti-oxidant properties are 

independent of each other (Fig. 5) [101,102].

5. Role of carotenoids in human health

Since carotenoids are highly hydrophobic, their interaction with ROS is expected to occur in 

a lipophilic environment, such as in cell membranes and lipoprotein components. The 

carotenoids found in cells and tissues are selectively absorbed by membranes depending on 

the structural carotenoid features (size, shape and polarity), as well as on membrane 

characteristics (composition and fluidity) [111]. These properties determine the 

incorporation yield and the carotenoid’s ability to fit into the membrane bilayer [28]. 

Controversial data are reported about location and distribution of carotenoids in the 

membrane bilayers. Specific interactions with membranes can occur in the presence of non-

polar carotenoids (β-Carotene and lycopene) or polar carotenoids (zeaxanthin and lutein). 

The antioxidant capacity of these two classes of carotenoids proved to be dependent on their 
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different location in the bilayer. While β-Carotene and lycopene were able to quench 

radicals in the hydrophobic part of the membrane, zeaxanthin was effective as an antioxidant 

in the polar region, exposed to an aqueous environment. Polar carotenoids can regulate the 

membrane fluidity in a way similar to cholesterol, although they locate differently within the 

lipid bilayer membrane [112–114].

6. Lycopene effects in alcohol-induced liver injury

Oxidative stress has been implicated in the pathogenesis of alcohol-induced liver injury 

[115]. Induction of cyto-chrome P4502E1 (CYP2E1) by ethanol is one of the main 

mechanisms through which ethanol generate oxidative stress [116]. Several pathways have 

been shown to contribute to the pathogenesis of alcoholic liver disease [117]. One of these is 

the induction of CYP2E1 by ethanol with the generation of oxidative stress and lipid 

peroxidation upon oxidation of ethanol [118]. When rats were fed ethanol with diets 

containing polyunsaturated fatty acid (PUFA), this toxicity is increased possibly because the 

presence of PUFA and enhanced lipid peroxidation after induction of CYP2E1 by ethanol 

[119]. Oxidative stress generated in the HepG2 human hepatic cells transfected with 

CYP2E1 cDNA (2E1 cells), increased H2O2 production that is associated with depletion of 

mitochondrial GSH are responsible for the ethanol induced apoptosis. In 2E1 cells that kept 

some liver characteristics, without expressing cytochrome P450 activity, lycopene 

significantly attenuates alcohol-induced apoptosis [120]. Moreover, arachidonic acid (AA), 

is an important constituent of membrane phospholipids. The double bonds found in AA of 

the cellular lipids are available targets for ROS. After conversion to prostaglandins (PG) 

leukotrienes and generation of oxygen-derived free radicals, it mediates a variety of 

pathological processes [121–123]. Because of the oxidative stress, AA is toxic to HepG2 

and 2E1 cells. Although, lycopene at 10 μM attenuated AA toxicity in HepG2, the most 

significant effect was observed in 2E1 cells, suggesting that lycopene acts as an anti-oxidant 

thereby preventing the severe oxidative stress induced by AA in 2E1 cells [124].

7. Photoprotective potential of carotenoids

Photooxidative processes play a role in the pathobiochemistry of light exposed tissues 

including the eye and the skin. Age-related macular degeneration which affects the macula 

lutea of the retina, the area of maximal visual acuity is a major cause for irreversible 

blindness among the elderly in the Western world [125]. Macular pigments protect against 

the photooxidative processes which may be related to the antioxidant activities of the 

macular carotenoids and/or to their light filtering effects [126]. While lutein and zeaxanthin 

are responsible for coloration of the macula lutea, lycopene, α-carotene or β-Carotene are 

not found in this tissue.

Ultraviolet (UV) irradiation is associated with oxidative processes involved in photoaging, 

which induce photodamage and lead to premature skin aging [127]. Following UV 

irradiation, a cascade of genes are induced, including metal-loproteinase 1 (MMP-1) [128] 

and heme oxygenase 1 (HO-1) [129,130], respectively, the interstitial collagenase and the 

oxidative stress marker gene. Singlet oxygen is strongly implicated in the induction of these 

two genes [131,132]. The physiological consequence of increased MMP-1 expression is 
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increased skin collagen degradation and subsequent formation of wrinkles [127,133]. 

Protection against MMP-1 UV-induction is obtained with low concentrations of vitamin C, 

vitamin E or carnosic acid. In contrast, β-Carotene or lycopene stimulated MMP-1 

expression. This effect was completely suppressed when vitamin E was included in a 

nanoparticle formulation [134]. Thus, depending on the experimental conditions, such as 

oxygen tension, carotenoid concentration and interactions with other antioxidants 

influencing the cellular and molecular responses, β-Carotene and lycopene can act as as 

antioxidants or prooxidants [135,136]. HO-1, a general stress gene is induced following 

UVA radiation and is highly implicated in skin aging [129,130]. UV-induced HO-1 mRNA 

expression was not affected by vitamin C, vitamin E or carnosic acid at the same 

concentrations that were effective for inhibition of MMP-1 expression. HO-1 expression was 

stimulated by β-Carotene when given alone, but the combination of β-Carotene, vitamin C 

and vitamin E suppressed this induction. Physiologically HO-1 represents an early response 

to stress and is induced in a similar way to heat shock proteins as part of the cellular defense 

to environmental and chemical stress. Thus, although HO-1 mRNA induction indicates 

higher oxidative stress, it is not clear whether its expression should be stimulated or 

inhibited.

While topical application of sunscreen provides a barrier protection to the skin epithelium, 

protection of the more profound dermal layers may be offered by dietary antioxidants [137]. 

Protection by β-Carotene is enhanced when combined with vitamin E [138]. Ingestion of 

tomato paste daily for 10 weeks, protected against UV light-induced erythema on the dorsal 

skin [139]. Lycopene present in skin can act as antioxidant, protecting against UV radiation. 

However, it is quickly depleted from skin upon exposure to solar radiation [140] and 

undergoes oxidative or enzymatic cleavage to form apo-carotenoids [141]. Therefore, it has 

been suggested that lycopene should be delivered as powdered nanoparticles together with 

vitamin C and or vitamin E [134].

8. Carotenoids and cancer

Before malignancy detection, high blood levels of insulin-like growth factor (IGF-1) predicts 

an increased risk of breast, prostate, colo-rectal and lung cancers [142–145]. In mammary 

cancer cells, lycopene treatment markedly reduced IGF-I stimulation of both tyrosine 

phosphorylation of insulin receptor substrate and DNA binding capacity of the AP-1 

transcription factor [146]. These effects were associated with an increase in membrane-

associated IGF-binding proteins (IGFBPs). Moreover, lycopene induced delay in 

progression through G1 and S phases [3,146]. A similar effect was demonstrated with α-

carotene in GOTO human neuroblastoma cells [147] without apoptotic or necrotic cell death. 

Cell cycle transition through a late G1 is governed by a retinoblasma protein pathway (pRb) 

[148], a tumor suppressor that prevents premature G1/S transition via physical interaction 

with transcription factors of the E2F family. The activity of pRb is regulated by an assembly 

of cyclins, cyclin dependent kinases (Cdks) and Cdk inhibitors. Cdk activity is modulated in 

both a positive and a negative manner by cyclins and Cdk inhibitors respectively. The D-type 

cyclins are the main elements acting as growth factor sensors [149]. Cyclin D1 is an 

oncogene expressed in many breast cancer cells as well as in primary tumors [150].
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The anticancer activity of carotenoid derivatives is mediated by the activation of retinoid 

receptors [151]. However, it can also be mediated by several cleavage products of β-

Carotene [152] and lycopene [146]. Lycopene was shown to be a powerful inhibitor of 

endometrial, mammary (MCF-7) and lung (NCI-H226) human cancer cells proliferation and 

suppress insulin-like growth factor-I-stimulated growth [153]. Moreover, it inhibits growth 

and development of KB-1 human oral tumor cells [154] and C-6 glioma cells transplanted 

into rats [155].

An early epidemiological study on elderly Americans indicated that high intake of tomatoes 

was associated with a significant reduction of mortality from cancers. The estimated intakes 

of total carotenoid, β-Carotene, α-carotene, lutein and β-cryptoxanthin were not associated 

with the risk factor. Higher estimated lycopene intake was inversely related to risk of 

prostate cancer [156]. Among all dietary carotenoid intake and serum carotenoid 

concentrations, only lycopene showed an inverse association with the risk of cervical 

intraepithelial neoplasia as compared to control [157]. Serum lycopene levels were also 

found to be inversely related to the risk of bladder cancer [158], and breast cancer [159]. 

Lower serum lycopene levels were also reported in human immunodeficiency virus (HIV) 

positive women and children [160,161]. An inverse relationship between dietary intake of 

lycopene-rich food and the risk of prostate cancer has been reported while β-Carotene, α-

carotene, lutein and β-cryptoxanthin did not show the same correlation [156]. However, 

lycopene alone is not a potent inhibitor of prostate carcinoma cell proliferation. The 

simultaneous addition of lycopene together with α-tocopherol, at physiological 

concentrations (less than 1 μM and 50 μM, respectively) resulted in a strong inhibitory effect 

of prostate carcinoma cell proliferation. The effect of lycopene with α-tocopherol was 

synergistic and was not shared by β-tocopherol, ascorbic acid and probucol [2].

9. Carotenoids in the prevention of cardio-vascular diseases

Coronary heart disease is the major cause of morbidity and mortality in the Western world. 

There is extensive evidence that oxidatively modified low-density lipoproteins (LDL) are 

involved in the initiation and promotion of atherosclerosis [61]. Cigarette smoking is a well-

known risk factor for coronary atherosclerosis [162]. Atherogenesis may be due to foam cell 

production by the introduction of a source of free radicals that cause LDL oxidation [163]. 

Thus, protection from LDL oxidation by antioxidants may lead to protection against human 

coronary heart disease. Smokers have significantly lower blood levels of β-Carotene than 

non-smokers [50–55,164], this does not seem to be the case for lycopene [56,57,164,165]. 

Since β-Carotene and lycopene are transported primarily in LDL, it has been suggested that 

they are in prime position to protect LDL from oxidation [166]. In a multicenter-case-control 

study of antioxidant nutrients in adipose tissue and risk of myocardial infarction, it was 

concluded that lycopene and not β-Carotene contribute to the protective effect. The 

protective potential of lycopene was maximum among individuals with highest polyunsatu-

rated fat stores [49,167].

In conclusion, the beneficial effects of carotenoids in human disease prevention have been 

widely reported particularly in alcoholic liver injury, cancer, cardiovascular diseases or as 

photoprotective. However, it remains to identify and characterize the active carotenoid 
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derivatives and to determine whether this potential is due to a synergistic action of various 

carotenoids and antioxidant micronutrients.
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Fig. 1. 
In plants and fungi, the central double bond of phytoene has the cis-configuration and an 

isomerization step is involved to change the central double bond to trans configuration 

which is subsequently metabolized to lycopene.
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Fig. 2. 
Carotenoids are natural pigments contributing to yellow, orange and red pigmentations 

found in plant tissues. Lycopene (see Fig. 1) is the characteristic carotenoid pigment in ripe 

tomato fruit (Lycopersicon esculente; Solanaceae). The orange color of carrots (Daucus 
carota; Umbelliferae/Apiaceae) is caused by β-Carotene, a widespread in higher plants. The 

brillant red pigment of peppers (Capsicum annuum; Solanaceae) is due to capsanthine and 

those commonly found in marine animals and is responsible for the pink/red coloration of 

crustaceans, shellfish and fish such as salmon is caused by astaxanthin. Astaxanthin is 

produced by modification of plant carotenoids obtained in the diet.
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Fig. 3. 
Xanthophylls, oxygenated carotenoids, such as zeathanthin, lutein and violaxanthin are 

widely distributed in green leaf carotenoids.
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Fig. 4. 
Vitamin A1 (retinol) is derived in mammals by oxidative metabolism of β-Carotene, taken in 

the diet. Cleavage is catalysed by an O2-dependent dioxygenase, probably via an 

intermediate peroxide. Vitamin A2 (dehydroretinol) is an analog of retinol containing a 

cyclohexadiene ring system. Retinol and its derivatives are found only in animal products.
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Fig. 5. 
Cellular processes of lycopene.
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