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Abstract

ATP-binding cassette (ABC) transporters are a family of proteins that translocate molecules across 

cellular membranes. Substrates can include lipids, cholesterol and drugs. Mutations in ABC 

transporter genes can cause human pathologies and drug resistance phenotypes in cancer cells. 

ABCA2, the second member the A sub-family to be identified, was found at high levels in ovarian 

carcinoma cells resistant to the anti-cancer agent, estramustine (EM). In vitro models with elevated 

levels of ABCA2 are resistant to a variety of compounds, including estradiol, mitoxantrone and a 

free radical initiator, 2,2′-azobis-(2-amidinopropane) (AAPH). ABCA2 is most abundant in the 

central nervous system (CNS), ovary and macrophages. Enhanced expression of ABCA2 and 

related proteins, including ABCA1, ABCA4 and ABCA7, is found in human macrophages upon 

bolus cholesterol treatment. ABCA2 also plays a role in the trafficking of low-density lipoprotein 

(LDL)-derived free cholesterol and is coordinately expressed with genes involved in cholesterol 

homeostasis. Additionally, ABCA2 expression has been linked with gene cluster patterns 

consistent with pathologies including Alzheimer’s disease (AD). A single-nucleotide 

polymorphism (SNP) in exon 14 of the ABCA2 gene was shown to be linked to early onset AD in 

humans, supporting the observation that ABCA2 expression influences levels of β-amyloid 

peptide (Aβ), the primary component of senile plaques. ABCA2 may play a role in cholesterol 

transport and affect a cellular phenotype conducive to the pathogenesis of a variety of human 

diseases including AD, atherosclerosis and cancer.
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1. Introduction

ATP-binding cassette (ABC) transporters are multi-domain membrane proteins that use 

energy from ATP hydrolysis to pump substrates directionally across cellular membranes [1]. 

The human ABC superfamily of proteins consists of at least seven sub-families: A (ABC1); 
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B (MDR/TAP); C (CFTR/MRP); D (X-linked adrenoleukodystrophy, ALD); E (OABP); F 

(GCN20); G (WHITE). A wide diversity of tissue expression has been reported. Expression 

patterns are also influenced by genetic polymorphisms, some of which have been associated 

with human disease pathologies. Reports have shown at least 605 single-nucleotide 

polymorphisms (SNPs) among 13 ABC transporter genes [2]. ABC transporters have a 

generic structure composed of two transmembrane domains and two ABCs [3]. The ABC 

consensus sequence is the hallmark of the ABC protein superfamily and is comprised of 

highly conserved Walker A and B motifs separated by 90–120 amino acids, within which 

there is a characteristic “signature” motif [4]. Inhibition of hydrolysis of one ABC domain 

can abrogate the activity of the other and thereby function in an alternating fashion while 

recognizing diverse nucleotides as hydrolytic substrates. Topology analysis has shown that 

the number of trans-membrane helices can range from 6 to 11 [5], and these function in 

substrate recognition, binding, and channeling. ATP hydrolysis in the ABC domain provides 

the necessary energy for substrate transport. Interactions between the ABC and membrane 

domains are integral in executing energy dependent transport. Within the A sub-family 

(ABCA) there are seven members that function in tissue-specific fashions. Table 1 provides 

a summary of ABCA sub-family function and association with disease; however broader 

reviews of transporter structure/function are available in the literature [6–10].

2. ABCA2

ABCA2 (270 kDa) is the largest of 49 identified members of the ABC transporter gene 

family (Fig. 1) [11]. This transporter was originally described along with ABCA1 in 

embryonic mouse brain [12,13]. Subsequent characterization of the full-length human 

ABCA2 cDNA and its detailed expression pattern showed that ABCA2 is most highly 

expressed in both fetal and adult brain, spinal cord, ovary and leukocytes [14]. Recently, 

ABCA2 protein was shown to localize in areas of the brain associated with adult 

neurogenesis and Alzheimer’s disease (AD) pathology (subventricular zone lining of the 

lateral ventricles and the dentate gyrus of the hippocampus), as well as in GABAergic and 

glutamatergic neurons [15]. Expression of ABCA2 has been detected in other tissues, 

including in descending order: lung, kidney, heart, liver, skeletal muscle, pancreas, testis, 

spleen and fetal liver. Cellular immunolocalization of ABCA2 revealed a distinct, punctate 

staining that vesicle-specific antibodies revealed to be a co-localization of ABCA2 with late 

endolysomes and trans-golgi organelles.

The ABCA2 gene is located at chromosome 9q34 within a genomic region of 21 kb [16]. 

The gene contains 48 exons with an open reading frame of 2436 amino acids [14,17]. The 

minimal promoter region has been mapped to 321 bp upstream of the translation start site 

[18]. Alternative splicing of the first exon to the second in ABCA2 results in two variants, 

1A and 1B [19]. The first exon of 1B contains the coding sequence for 52 amino acids and is 

located 699 bp upstream of 1A, which contains coding sequence for 22 amino acids. Both 

splice variants co-localize with lysosome-associated membrane proteins-1 and −2 (LAMP-1 

and −2) and share similar expression profiles [19]. The novel N-terminus of ABCA2 splice 

variants, while functionally redundant, may provide subtle gene regulatory differences to 

allow tissue-specific or temporal-specific protein expression during differentiation and/or 

development.
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ABCA2 shares homology with other A sub-family proteins, including ABCA1 (50%) 

ABCA7 (44%), ABCA3 (43%), ABCA4 (40%) and ABCA6 (32%) [20]. Promoter elements 

identified in ABCA1 include an E box, AP-1, liver X receptor (LXR) element and SP1 

motifs [21]. The proximal promoter of ABCA2 contains two GC-boxes and overlapping 

sites for the early growth response-1 (EGR-1) and Sp1 transcription factors [18]. While there 

are identical regions in ABCA1 and ABCA2 (e.g. two cytoplasmic ABCs, Walker domains, 

a conserved N-terminal sequence (LLLWKN) and a VFVNFA motif within the C-terminal 

domain [22]), their functional overlap may not be significant. The VFVNFA motif in 

ABCA1 is critical for apolipoprotein A-I binding and high density lipoproteins (HDL) 

cholesterol efflux at the plasma membrane [22]. Nevertheless, the ABCA2 sequence 

contains a lipocalin signature motif, implying a function in the transport of lipids, steroids 

and structurally similar molecules.

3. Cholesterol homeostasis and metabolism

Several of the ABC sub-family A members play a role in cholesterol homeostasis (Table 1). 

Specifically, ABCA1 and ABCA7, transporters that not only share the greatest homology 

with ABCA2, but are also sterol responsive genes functioning in cholesterol metabolism 

[20]. Cholesterol homeostasis is maintained by a feedback mechanism of de novo synthesis 

using acetyl CoA and by uptake of low-density lipoprotein (LDL)-cholesterol by receptor-

mediated endocytosis through the LDL receptor (LDLR) [23]. Functional studies using 

exogenous, labeled LDL cholesterol provided evidence for ABCA2 function in sterol 

trafficking [24]. Forced ABCA2 overexpression was used as a model system in Chinese 

hamster ovary cells (CHOA2) to test the effect on transport of LDL-cholesterol. CHOA2 

cells displayed a more intense staining of unesterified cholesterol using the fluorescent 

marker, filipin, in cytoplasmic and perinuclear vesicles, compared to the parental cell line 

(CHO). These vesicles were also positive for an endosome/lysosome acidic vesicle marker 

(Lysosensor green 189), with less intense filipin staining at the plasma membrane [24]. In 

addition to the sequestration of LDL-derived cholesterol into these vesicles, CHOA2 cells 

have also been shown to have elevated expression of the LDLR, sterol-response element 

binding protein-2 (SREBP2) and 3-hydroxy-3-methylglutaryl CoA synthase (HMGCoA S) 

and demonstrate reduced trafficking of LDL-derived cholesterol to the endoplasmic 

reticulum (ER) for esterification [24]. Since these cellular responses also occur when cells 

are grown under sterol-depleted conditions, these data suggest that ABCA2 up-regulation 

mimics sterol deprivation. LDLR (along with HMGCoA S and SREBP2) is regulated by the 

SREBP2 transcription factor [25]. The transcription of LDLR is reduced in CHOA2 cells 

with a mutant SREBP2 binding site within the LDLR promoter [18]. Taken together, these 

results show that ABCA2 over-expression causes a phenotype similar to cholesterol-depleted 

cells that sequester unesterified cholesterol into endolysosomal compartments.

Significant insight into the importance of cholesterol homeostasis has been gleaned from 

pre-clinical studies of ABCA1. For example, ABCA1 deficient mice have a ~70% decrease 

in serum cholesterol, phospholipids and lack HDL [26], while transgenic overexpressing 

mice show an increase in cholesterol efflux [27]. Cholesterol lowering agents, such as 

statins, impact ABCA1 expression, resulting in a reduction in intracellular cholesterol [28]. 

The significance of ABCA1 and dysregulation of cholesterol metabolism is noted in the 
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mouse model for diabetes with associating cardiovascular disease. ABCA1 expression is 

decreased in diabetic mice with cardiovascular disease [29]. Although the generation of 

mouse models for other ABC A sub-family transporters began only recently [30–32], there 

will undoubtedly be increasing numbers of genetic models that should help to elucidate in 

vivo functions and genetic links with human disease.

3.1. ABCA2 and disease

ABCA2 expression is elevated in Niemann-Pick type C1 (NPC1) fibroblasts and in Familial 

Hypercholesterolemia (FHC) fibroblasts [24], as well as several cancer cell lines including 

an estramustine (EM)-resistant prostate cancer cell line, EM15. Although ABCA2 is 

expressed predominantly in normal and malignant central nervous system (CNS) tissues and 

cell lines, it is also abundant in several other cancer cell lines derived from non-CNS tissues. 

The expression of ABCA2 in oligodendrocytes is purported to be required for the generation 

of copious layers of phospholipid- and cholesterol-rich myelin sheath of white matter in the 

brain. The cell lines that express the highest levels are not derived from the CNS, suggesting 

a putative role for the deregulation of ABCA2 in tumorigenesis and/or cancer progression. 

However, the mounting evidence for a putative role of ABCA2 in the development of AD 

may lead to its use as a target for future therapeutic strategies.

AD is the most common neurological pathology associated with dementia and manifests 

itself by the accumulation of extracellular senile plaques in neurofibrillary tangles of the 

brain and cerebral blood vessels. These plaques are composed of both fibrillar and non-

fibrillar forms of β-amyloid peptide (Aβ) and result in the loss of neuronal function in 

limbic and association cortices of the brain [33]. The Aβ peptide is derived from sequential 

cleavage reactions of amyloid precursor protein (APP) by a β-secretase, followed by 

cleavage by a γ-secretase within the transmembrane domain of APP. Approximately 40% of 

early-onset AD cases (in individuals younger than 60 years) are linked to mutation in the β-

amyloid precursor protein (APP), presenilin1 (PSEN1), or presenilin2 (PSEN2) [34]. Late-

onset AD occurs in patients older than 60 and accounts for nearly 95% of all AD cases. 

Several genes have shown a slight, but inconsistent association with this disease [35], but the 

most common of these is the ε4 isoform of APOE [33,36]. There is mounting 

epidemiological and genetic research that has drawn a close link between AD pathology and 

cholesterol [37–40]. Mid-life individuals with elevated serum cholesterol have an increased 

risk of developing AD [41] and treatment with statins, cholesterol lowering agents, is 

associated with a decreased risk of AD development [42] and a decrease in Aβ levels [43].

As a cholesterol-responsive gene expressed predominantly in the brain, ABCA2 became an 

excellent candidate for an association with AD when it was recently shown to impact the 

production of Aβ. Not only did ABCA2 co-localize with Aβ and APP [44], its 

overexpression also caused an up-regulation of a number of genes associated with resistance 

to oxidative stress. Using amplified differential gene expression (ADGE) microarray, several 

clusters of genes were shown to be differentially regulated upon ABCA2 over-expression in 

HEK293 cells, including 22 genes related to transport, membrane homeostasis, cell 

metabolism and substrate binding. Six of the genes from this study, APP, LDLR-related 

protein, calcineurin, seladin-1, vimentin and Slc23a1, are commonly associated with AD and 
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response to oxidative stress. Overexpression was also shown to confer a slight resistance to 

oxidative stress rendered by the free radical initiator, 2,2′-azobis-(2-amidinopropane) 

(AAPH). ABCA2 levels were shown to be elevated in the temporal and frontal regions of the 

brain, areas frequently associated with AD pathology. Recently, a synonymous SNP in exon 

14 of ABCA2 (rs908832) was determined to have a significant linkage with early-onset AD 

[45]. Taken together, these studies reflect the importance of determining a mechanistic role 

for ABCA2 in AD pathogenesis and/or progression. However, because cholesterol transport 

is critical to a number of important phenotypes, the ABCA2 protein may impact other 

diseases such as cancer.

Hormone therapy of cancer patients has been shown to influence cholesterol metabolism 

[46,47]. Cholesterol also has critical functions in cell signaling, survival and differentiation 

[48] and may provide a novel target for cancer therapeutic agents [49] since cholesterol 

levels may be a limiting factor in membrane maintenance in rapidly dividing cancer cells. 

Although many cellular factors influence tumor cell proliferation, the role of the availability 

of growth-promoting metabolites is an important area of investigation. The potential role of 

ABCA2 in regulating availability of cholesterol as a critical metabolite for tumor cell 

proliferation may validate it as a target for pharmacological intervention. Overall, 

accumulating evidence has indicated that ABCA2 expression and subsequent endolysosomal 

compartmentalization of sterols is directly linked to cancer drug resistance [14,19,50] and 

may be an important regulator to maintain homeostatic levels of cholesterol for cellular 

function, growth and membrane integrity [14,51]. Recently, the specific properties of 

lysosomes within cancer cells were considered to provide a novel strategy for targeting of 

cancer chemotherapeutic agents [52]. Perhaps a plausible role for ABC transporters as 

functional members of dynamic protein complexes (rather than simple substrate 

transporters) in the processes of cell growth, differentiation and death has, thus far, been 

overlooked.

3.2. Cancer drug resistance

Adaptation of cancer cells to a single drug can render pleiotropic cellular effects and result 

in specific or general acquired resistance. The latter is appropriately termed multidrug 

resistance (MDR). The current strategy for cancer chemotherapy involves cocktails of 

pharmacological agents and MDR may be a cause of treatment failure. A number of ABC 

transporters have been implicated in cellular drug resistance [53]. In particular, members of 

the MDR and MRP transporter sub-families have been linked to simultaneous resistance to 

multiple cytotoxic drugs in cancer cells. MDR1 confers resistance to a variety of 

hydrophobic, amphipathic natural product drugs [11] whereas members of the MRP-sub-

family are associated with resistance to anionic and neutral drugs frequently conjugated to 

acidic ligands [54]. Although several mechanisms can contribute to MDR, alterations in 

drug accumulation appears to be common both in cell culture and in model organisms [55]. 

The initial discovery linking membrane transporters with drug resistance came from an 

observation that MDR1 decreased the accumulation and toxic effects of various and 

structurally unrelated anti-neoplastic drugs in CHO cells [56,57]. Although the crystal 

structure of a human ABC transporter has yet to be resolved, the insights into putative 

structure and function of ABC transporters has been deduced from similarity with E. coli 
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homologs, MsbA and BtuCD [58,59]. The function of MDR1 in drug efflux is generally 

ATP-dependent, similar to homologous bacterial ABC transporters. However, the 

mechanism(s) of ATP hydrolysis-coupled substrate transport remains theoretical [60].

Extending the drug resistance paradigm to the A sub-family, an ovarian carcinoma cell line 

(SKEM) with acquired resistance to the estradiol-based agent, EM, was found to have a gene 

amplification at 9q34 and contain an ABCA2 amplicon [51]. EM is a synthetic conjugate of 

nitrogen mustard and estradiol with an antimitotic activity [61]. A homogenously staining 

region, typical for gene amplification, was found in chromosome 9q34, and in situ 

hybridization with a specific probe indicated a approximately sixfold amplification of the 

ABCA2 gene. The approximately fivefold increase in gene expression in SKEM cells was 

accompanied by an increased rate of dansylated EM efflux and, hence, drug resistance. Cells 

were sensitized to EM upon treatment with antisense ABCA2 RNA [51]. Similarly, ABCA2 

overexpressing HEK293 cells (HEK293-ABCA2) were also shown to be EM-resistant [14]. 

Somewhat lower levels of resistance (approximately threefold) were observed for the same 

cells upon exposure to a structurally similar compound, estradiol. Supporting the 

observation that ABCA2 contributes to EM and estradiol resistance was that cells 

transfected with a putative dominant-negative mutant of ABCA2 have virtually no 

differences in toxicity compared to mock-transfected cells [19]. This study also showed that 

HEK293-ABCA2 cells were not resistant to agents that are structurally dissimilar to EM 

(melphalan, mitoxantrone, cisplatinum, taxol, and vinblastine) with the exception of a slight 

doxorubicin resistance. Further studies showed that HEK293-ABCA2 cells are also resistant 

to a free radical initiator, AAPH [44]. Although AAPH is unrelated to other sterol-related 

substrates, free radical or reactive oxygen species (ROS) induced damage may damage 

sterols, lipids and lipoproteins where cell survival may be facilitated by sequesteration of 

damaged molecules into the endolysosomal compartment. Even though ABCA2 

overexpression did not confer mitoxantrone resistance in HEK293 cells, this transporter was 

shown to be up-regulated in a mitoxantrone-resistant small cell lung cancer cell line, GLC4-

MITO [50]. The same cell line was approximately twofold more resistant to EM compared 

to parental GLC4 cells. Exposure of GLC4-MITO cells to both EM and mitoxantrone 

increased cellular accumulation of the latter, indicating an ability of EM to block efflux of 

mitoxantrone. Taken together, these results indicate that molecules with steroid-like 

structures are putative substrates for transport by ABCA2 and may cause induced 

expression. It is not known, however, whether such compounds interact directly with 

ABCA2 for transport across intracellular membranes, or if they serve a signaling molecule 

to initiate some form of transport cascade.

4. Conclusions

Several factors serve to limit progress in elucidating protein function for membrane-bound 

ABC transporters. These include structural biology studies that use traditional crystallization 

methods. Determination of protein–protein interactions of full-length, native proteins is 

hampered by their multiple domain structures and high molecular weight. Also, because of 

possible functional redundancy the high degree of homology among ABC transporters 

makes loss-of function studies difficult to interpret.
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Although the structural and functional characterization of the ABCA2 transporter is in its 

infancy, there are several promising indications for future studies. The consequence of 

deregulated trafficking of cholesterol and sterol-related compounds at the cell and organism 

level, has effects on formation of arterial plaques and increases the risk for heart disease, AD 

and cancer. Links with the cellular response to ROS and elevated LDL cholesterol [62–65] 

make the fact that ABCA2 is abundantly expressed in macrophages [17], more pertinent to 

these pathologies. These connections and the identification of other cholesterol-responsive 

transporters from the same family (ABCA1 and ABCA7) may provide the platform for 

small molecule screening strategies for these novel targets. Impending studies could provide 

a wealth of information for the possibility of intercession in transport function as a conduit 

to pharmacological intervention in these diseases.

Abbreviations:

AAPH 2,2′-azobis-(2-amidinopropane)

Aβ β-amyloid peptide

ABC ATP-binding cassette

AD Alzheimer’s disease

ADGE amplified differential gene expression

ALD X-linked adrenoleukodystrophy

APP β-amyloid precursor protein

CF cystic fibrosis

CNS central nervous system

EGR-1 early growth response-1

EM estramustine

ER endoplasmic reticulum

FHC Familial Hypercholesterolemia

HDL high density lipoproteins

HMGCoA S 3-hydroxy-3-methylglutaryl CoA synthase

LA linoleic acid

LAMP lysosome-associated membrane proteins

LDL low-density lipoprotein

LDLR LDL receptor

LXR liver X receptor
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MDR1/Pgp1 multidrug transporter/P-glycoprotein

MRP1 multidrug resistance associated protein

NPC1 Niemann-Pick type C1

ROS reactive oxygen species

SNP single-nucleotide polymorphisms

SREBP2 sterol-response element binding protein-2
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Fig. 1. 
Alignment of ABCA transporters with homology to ABCA2; A: conserved motif at the 

beginning of the N-terminus with unknown function, B: high hydrophobic domain, C: highly 

conserved domain at the end of the C-terminus.
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