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Abstract

Motivation: High throughput biomedical measurements normally capture multiple overlaid bio-

logically relevant signals and often also signals representing different types of technical artefacts

like e.g. batch effects. Signal identification and decomposition are accordingly main objectives in

statistical biomedical modeling and data analysis. Existing methods, aimed at signal reconstruction

and deconvolution, in general, are either supervised, contain parameters that need to be estimated

or present other types of ad hoc features. We here introduce SubMatrix Selection Singular Value

Decomposition (SMSSVD), a parameter-free unsupervised signal decomposition and dimension

reduction method, designed to reduce noise, adaptively for each low-rank-signal in a given data

matrix, and represent the signals in the data in a way that enable unbiased exploratory analysis

and reconstruction of multiple overlaid signals, including identifying groups of variables that drive

different signals.

Results: The SMSSVD method produces a denoised signal decomposition from a given data ma-

trix. It also guarantees orthogonality between signal components in a straightforward manner and

it is designed to make automation possible. We illustrate SMSSVD by applying it to several real

and synthetic datasets and compare its performance to golden standard methods like PCA

(Principal Component Analysis) and SPC (Sparse Principal Components, using Lasso constraints).

The SMSSVD is computationally efficient and despite being a parameter-free method, in general,

outperforms existing statistical learning methods.

Availability and implementation: A Julia implementation of SMSSVD is openly available on

GitHub (https://github.com/rasmushenningsson/SubMatrixSelectionSVD.jl).

Contact: fontes@maths.lth.se

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High throughput biomedical measurements, by design, normally

capture multiple overlaid biologically relevant signals, but often also

signals representing different types of biological and technical arte-

facts. The artefacts can arise due to random differences in types of

cells analyzed for different samples, synchronized cell cycles, sample

handling in the lab and biased measurement errors to name just a

few. Since these represent unknown properties of the samples, they

cannot be controlled for and thus are best seen as (structured) noise.

On top of this, there is in general white noise adding uncertainty to

the data.

There exist different methods aimed at signal reconstruction and

deconvolution of the resulting high dimensional and complex data-

sets, but these methods almost always contain parameters that need
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to be estimated or present other types of ad hoc features. Developed

specifically for Omics data and more particularly gene expression

data such methods include the gene shaving method (Hastie et al.,

2000), tree harvesting (Hastie et al., 2001), supervised principal

components (Bair and Tibshirani, 2004) and amplified marginal

eigenvector regression (Ding and McDonald, 2017). They employ

widely different strategies to deal with the ubiquitous P�N (many

more variables than samples) problem in omics data. Gene Shaving

uses the first principal component to iteratively guide variable selec-

tion towards progressively smaller nested subsets of correlated genes

with large variances. An optimal subset size is then chosen using the

‘gap statistic’, a measure of how much better the subset is than what

is expected by random chance. To find additional subsets (signals),

each gene is first projected onto the orthogonal complement of the

average gene in the current subset, and the whole process is

repeated.

We here introduce SubMatrix Selection Singular Value

Decomposition (SMSSVD), a parameter-free unsupervised dimen-

sion reduction technique primarily designed to reduce noise, adap-

tively for each low-rank-signal in a data matrix, and represent the

data in a way that enable unbiased exploratory analysis and recon-

struction of the multiple overlaid signals, including finding the varia-

bles that drive the different signals.

Our first observation for the theoretical foundation of SMSSVD

is that the SVD of a linear map restricted to a hyperplane (linear sub-

space) share many properties with the SVD of the corresponding un-

restricted linear map. Using this we show that, by iteratively

choosing orthogonal hyperplanes based on criteria for optimal vari-

able selection and concatenating the decompositions, we can con-

struct a denoised decomposition of the data matrix. The SMSSVD

method guarantees orthogonality between components in a straight-

forward manner and coincide with the SVD if no variable selection

is applied. We illustrate the SMSSVD by applying it to several real

and synthetic datasets and compare its performance to golden stand-

ard methods for unsupervised exploratory analysis: Classical PCA

(Principal Component Analysis) (Hotelling, 1933) and the lasso or

elastic net based methods like SPC (Sparse Principal Components)

(Witten et al., 2009). Just like PCA and SPC, SMSSVD is intended

for use in wide range of situations, and no assumptions specific to

gene expression analysis are made in the derivation of the method.

The SMSSVD is computationally efficient and despite being a

parameter-free method, in general, it outperforms or equals the per-

formance of the golden standard methods. A Julia implementation

of SMSSVD is openly available on GitHub.

2 Materials and methods

SubMatrix Selection Singular Value Decomposition (SMSSVD), is

outlined in Figure 1. The basic idea is simple: when extracting a sig-

nal from a data matrix, we work only with a subset of the variables,

chosen such that variables that are non-informative (i.e. noisy) are

avoided. This is a common strategy. What makes SMSSVD stand

out is that the extracted signal is then expanded, in a straightfor-

ward and mathematically sound way, to the full set of variables.

That gives SMSSVD several desirable properties. 1. Interpretability

in terms of the of full set of variables. 2. Iterability—multiple signals

can be extracted by repeating the procedure, the variable selection

can be done separately for each signal, and it’s possible for variables

to contribute to multiple signals. 3. Orthogonality, meaning that dif-

ferent dimensions can be interpreted separately from each other. 4.

It is parameter-free, i.e. no tuning is required when applying

SMSSVD to a dataset.

Below, we will describe the mathematical foundation for

SMSSVD. Proofs and some technical details can be found in the

Supplementary Materials—the focus here will be on interpreting the

mathematics behind SMSSVD. Throughout the text, X will denote a

P�N data matrix, where P is the number of variables and N the

number of samples.

The variable selection step is critical for SMSSVD, as it provides

the basis for the adaptive noise reduction mechanism of SMSSVD.

(In fact, if variable selection is omitted, the SMSSVD of X will coin-

cide with the SVD of X.) The Projection Score (Fontes and Soneson,

2011) provides a natural optimality criterion for variable selection.

It is a measure of how informative a specific variable subset is, when

constructing a rank d approximation of a data matrix. As a rough

approximation, we can expect that variables with higher variance

are less influenced by noise, in high throughput biological data.

Given a variance filtering threshold, we can construct a subset of

variables by keeping precisely those variables that have variance

above the threshold. Thus, by optimizing the Projection Score jointly

over the variance filtering threshold and the dimension, we get both

an optimal variable subset and a simple dimension estimate d of the

signal that was captured.

Performing SVD on the post variable selection ~P �N matrix

(let’s call it ~X) provides a lot of information. If we keep only the d

largest singular values, we get a low-rank representation ~U ~R ~V
T

of
~X, where ~U 2 R

~P�d, ~R 2 R
d�d and ~V 2 R

N�d. The d columns of ~V

contain the (unscaled) sample coordinates used to create a PCA

(Principal Component Analysis) plot of ~X. The ~U matrix does how-

ever only contain the variable information of ~P out of the P varia-

bles. Interestingly, the matrices ~U and ~V are tightly connected. If we

know ~V , then it turns out that ~U can be recovered, since ~X ~V ¼ ~U ~R
(a well-known property of the SVD). In Theorem 2.1, we generalize

this idea and show how we can expand the ~V constructed from ~X to

a low-rank representation of X itself. The columns of the matrix ~V

defines a d-dimensional subspace P of the sample space R
N. The

variable expansion works by considering X (viewed as a linear map)

restricted to P. In this manner, we can move the sample representa-

tion created from the smaller matrix ~X to a variable representation

of the original matrix X.

Our first theorem will describe the relationship between the SVD

of X restricted to some subspace P and the matrix X. The second

theorem builds on the first and shows how the variable selection af-

fect the final result.

THEOREM 2.1 (Decomposition Theorem). Let Xj� : �! Xð�Þ be the

restriction of a linear map X : RN ! R
P to a d-dimensional

Fig. 1. Overview of the SMSSVD algorithm. It starts from a P�N data matrix

with P variables and N samples (the leftmost matrix in the figure). 1. A subset

of the variables are selected, creating a smaller data matrix. 2. A low-rank rep-

resentation of the new matrix is computed using SVD. 3. The representation

is expanded to the full set of variables, producing a low-rank representation

of the strongest signal in the dataset. 4. (Not depicted.) The signal is removed

from the original data matrix and the process is repeated to find more signals
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subspace � � R
N such that �? kerX. Furthermore, let U�VT

¼
Pd

i¼1 �iU�iV
T
�i be the singular value decomposition of Xj�. Then

1. V�i? ker X; 8i.
2. U�i? coker X; 8i.
3. XV ¼ U�.

4. UTX ¼ �VT þUTXðI � VVTÞ.
5. ðI �UUTÞXðI � VVTÞ ¼ ðI �UUTÞX.

6. rankðXÞ ¼ d þ rank
�
ðI �UUTÞX

�
.

Remark. In the statement of the theorem we consider all vectors to

belong to the full-dimensional spaces. In particular, we extend all

vectors in subspaces of the full spaces with zero in the orthogonal

complements.

Proof. See Supplementary Materials. h

Note that VVT is the orthogonal projection on P and UUT is the

orthogonal projection on X(P). If P is spanned by the right singular

vectors corresponding to the d largest singular values of X, then

URVT is the truncated SVD which by the Eckhart-Young Theorem

is the closest rank d matrix to X in Frobenius and Spectral norms.

Furthermore, if P ¼ ðkerXÞ? , then d ¼ rank X and URVT is the

SVD of X (without expanding U and V to orthonormal matrices).

That is, for some particular choices of P, URVT corresponds directly

to the SVD. But even when this is not the case, many important

properties that hold for the (truncated) SVD of X are retained re-

gardless of how the subspace P is chosen. Note however that for the

SVD, property 4 is symmetric to property 3, i.e. UTX ¼ RVT, but

the residual UTX(I– VVT) is nonzero in general.

To adaptively reduce noise, P must depend on X. By optimizing

over the Projection Score, we can select a subset of the variables that

are likely to be less influenced by noise. This is a special case of

choosing P after performing a linear transform of the variables.

THEOREM 2.2 (Selection-Expansion Theorem). Take a linear map S :

R
L ! R

P and an integer d such that rank STX � d and let ~U ~� ~V
T

be the rank d truncated SVD of STX. Furthermore let P be the sub-

space spanned by the columns of ~V and let URVT be the SVD of

Xj�. Then

1. �? ker X.

2. STU�VT ¼ ~U ~� ~V
T

.

3. fV�1;V�2; . . . ;V�dg and f ~V �1; ~V �2; . . . ; ~V �dg are orthonormal

bases of �.

4. fSTU�1; S
TU�2; . . . ; STU�dg and f ~U �1; ~U �2; . . . ; ~U �dg are bases of

STXð�Þ.
5. jj�jjF �

jj~� jjF
jjSjj2

.

6. UTX ¼ �VT þUTðI � SSTÞXðI �VVTÞ.
Proof. See Supplementary Materials. h

Corollary 2.1.If STS ¼ I, then jj�jjF � jj~�jjF.

The properties in Theorem 2.2 show that the Selection-

Expansion procedure works as expected. First, property 1 simply

states that Theorem 2.1 can be applied. Property 2 tells us that vari-

able selection is the inverse operation of variable expansion, in the

sense that if we apply variable selection to the low-rank P�N ma-

trix URVT, we retrieve the unexpanded low-rank ~P �N matrix
~U ~R ~V

T
. Thus, the variable expansion expands the representation the

full set of variables, while leaving the selected variables intact. From

property 3, it is clear that the sample representation is in essence the

same for expanded matrix as for the smaller one, they can only

differ by rotation/reflection. It follows that PCA-style biplots based

on the small or expanded matrices will look identical (up to rota-

tion/reflection of the whole plot)—apart from the obvious difference

that the biplot of the expanded matrix will show loadings of all vari-

ables and not only the selected ones. We also note that the residual

term UTðI � SSTÞXðI �VVTÞ in property 6 [cf. UTX(I – VVT) in

Theorem 2.1, property 4] is here shown to only depend on the non-

selected variables, again what we would expect. Finally, Corollary

2.1 explains that the singular values of the expanded matrix will al-

ways be greater than or equal to those of the smaller matrix (in

Frobenius norm).

Another way to interpret S is that SST defines a (possibly degen-

erate) inner product on the sample space, which is used to find P.

To see this, let d ¼ rank STX so that ~U ~R ~V
T ¼ STX and

K :¼ XTSSTX ¼ ~V ~R
2 ~V

T
, showing the well-known result that ~V ~R

2

~V
T

is an eigendecomposition of K, where Kij ¼ hxi;xji :¼ XT
�i SSTX�j

is the inner product of sample i and j. This naturally extends to ker-

nel PCA, where K is defined by taking scalar products after an (im-

plicit) mapping to a higher-dimensional space. Any method that

results in a low-dimensional sample space representation ~V can in-

deed be used, since P is spanned by the columns of ~V by definition.

We will not pursue these extensions here.

We are now ready to state the SMSSVD algorithm that was out-

lined in Figure 1. Let X1 :¼ X and repeat the following steps for

k ¼ 1; 2; . . .

1. Selection: Optimize over the Projection Score to find the optimal

variable selection matrix Sk and signal dimension dk for the ma-

trix Xk.

2. SVD: Let Pk be the subspace spanned by the columns of ~V k in

the rank dk truncated SVD of ST
k Xk.

3. Expansion: Compute UkRkVT
k from XkjPk

.

4. Signal Removal: Let Xkþ1 :¼ ðI �UkUT
k ÞXk.

The iterations can continue as long as Xk is nonzero or until

some other stopping criteria is met. Finally, the signals are

concatenated:

URVT :¼ U1 U2 . . . Unð Þ

R1

R2

. .
.

Rn

0
BBBBBBBBB@

1
CCCCCCCCCA

VT
1

VT
2

..

.

VT
n

0
BBBBBBBBB@

1
CCCCCCCCCA

¼
Xn

k¼1

UkRkVT
k ;

where URVT is the SMSSVD of X, a noise-reduced (and low-rank)

version of X.

SMSSVD is designed to keep as many properties of SVD as pos-

sible, while still reducing the influence from noise for datasets with

many variables. The representation itself, URVT, is strikingly similar

to the SVD, and the parts of the decomposition can be interpreted in

the same ways as for SVD, thus allowing for similar visualization

and downstream analysis.

One of the reasons that the SVD is ubiquitously used is that both

U and V have orthonormal columns, which greatly aids interpret-

ation since different effects can be separated from each other. This is

also true for the SMSSVD. First, orthonormality between columns

within each Uk and Vk follow immediately from the definition

(UkRkVT
k is the SVD of XkjPk

). Second, the ‘Signal Removal’ step

enforces orthogonality between signals. It makes sure that the
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columns of Uk are in coker Xl for all l>k, and orthogonality follows

since Ul is guaranteed to be orthogonal to coker Xl (Theorem 2.1,

property 3). Similarly, since Xkþ1 ¼ ðI �UkUT
k ÞXk ¼ ðI �UkUT

k Þ
XkðI �VkVT

k Þ, the same holds true for the Vk’s.

In SVD, the diagonal elements of R are ordered in descending

order. For SMSSVD, this is true within each Rk, but not necessarily

between signals. But, in practice we do not expect them to deviate

much from being in descending order, since the SMSSVD algorithm

is designed to pick the strongest signals from the data first.

The ‘Signal Removal’ step reduces the rank of the data matrix by

dk, which is the rank of signal k, by Theorem 2.1, property 6. This

implies that rankURVT ¼ rank X if the iterations are run all the

way until Xk ¼ 0, which is what we would expect. But, in contrast

to SVD, URVT 6¼ X in general, due to the noise removal.

3 Results

The performance of SMSSVD is evaluated in comparison to SVD

and SPC (Sparse Principal Components), a method similar to SVD,

but with an additional lasso (L1) constraint to achieve sparsity

(Witten et al., 2009). The methods are evaluated both for real data

using four gene expression datasets and for synthetic data where the

ground truth is known. All comparisons are done with the same

number of dimensions in the different models, i.e. SMSSVD and

SPC are run until the target dimension has been reached and the

SVD is truncated to use the top d singular values.

3.1 Gene expression data
A proof of concept of SMSSVD is shown in Figure 2, using gene ex-

pression data from TCGA (The Cancer Genome Atlas) (Weinstein

et al., 2013). The dataset was downloaded from recount2 (Fu et al.,

2018), the first 300 samples with the annotation ‘cgc_case_tumor_

status’ set to ‘WITH TUMOR’ were used and the samples were

labeled according to the ‘gdc_cases_tissue_source_site_project’ an-

notation, with 30 different tumor types. Normalization was done

using the Variance Stabilizing Transformation (VST) (Anders and

Huber, 2010; Love et al., 2014). Panel A displays the Projection

Score for the signals found by SMSSVD, as a function of the vari-

ance filtering threshold. The strongest signal (6d, 991 variables

selected) dominates the dataset with a high Projection Score for a

wide range of variance filtering values, but still with a clear peak,

showing that we get a more robust signal after variance filtering. In

panels B and C, we see how this signal captures gene expression dif-

ferences between tumor types in the dataset. In contrast, the second

signal (1d, 8 variables selected), has a more well-defined peak, but

cannot be found without variance filtering. As evident in panel D, it

corresponds to gender, a signal not captured by e.g. SVD. The abil-

ity to find both kinds of signals, in an unsupervised, unbiased, man-

ner, showcases SMSSVD. The third signal (5d, 161 variables

selected), is a bit harder to capture, but we do still see a single peak

in the projection score plot. It also corresponds to differences be-

tween tumor types. A more complete view can be seen in

Supplementary Figures S1 and S2, showing the first 12 dimensions

for SMSSVD and SVD respectively.

We also tried SMSSVD on three other gene expression datasets,

two openly available with microarray data and one based on RNA-

Seq available upon request from the original authors. Gene expres-

sion microarray profiles from a study of breast cancer (Chin et al.,

2006) was previously used to evaluate SPC (Witten et al., 2009), but

in contrast to their analysis, we use all 118 samples and all 22215

genes. Each sample was labeled as one of five breast cancer sub-

types: ‘basal-like’, ‘luminal A’, ‘luminal B’, ‘ERBB2’ and ‘normal

breast-like’. In a study of pediatric Acute Lymphoblastic Leukemia

(ALL), gene expression profiles were measured for 132 diagnostic

samples (Ross et al., 2003). The samples were labeled by prognostic

leukemia subtype [‘TEL-AML1’, ‘BCR-ABL’, ‘MLL’, ‘Hyperdiploid

(>50)’, ‘E2A-PBX1’, ‘T-ALL’ and ‘Other’]. Our final dataset is from

another pediatric ALL study, where gene expression profiling was

done from RNA-Seq data for 195 samples (Lilljebjörn et al., 2016).

The samples were aligned with Tophat2 (Kim et al., 2013) and gene

expression levels were normalized by TMM (Robinson and

Oshlack, 2010) and log-transformed. Only genes with a support of

at least 10 reads in at least 2 samples were kept. The annotated sub-

types in this dataset were ‘BCR-ABL1’, ‘ETV6-RUNX1’, ‘High

hyperdiploid’, ‘MLL’, ‘TCF3-PBX1’ and ‘Other’. Here, ‘Other’ is a

very diverse group containing everything that did not fit in first five

categories. We thus present results without this group included

(the results with ‘Other’ included can be found in Supplementary

Fig. S3).

The ability to extract relevant information from the gene expres-

sion datasets was evaluated for each model by how well they could

explain the (sub)types, using the Akaike Information Criterion

(AIC) for model scoring. Given the low-dimensional sample repre-

sentations from SMSSVD, SVD or SPC (for different values of the

sparsity parameter, c), a Gaussian Mixture Model was constructed

by fitting one Multivariate Gaussian per subtype. The class priors

were chosen proportional to the size of each subtype. The loglikeli-

hood l :¼ log Pðxjh;MÞ, where x are the subtype labels, M is the

model and h a vector of k fitted model parameters is used to com-

pute the AIC ¼ 2k – 2 l. Scoring models in this way is not a universal

method to determine a ‘best’ model. It relies on annotations that are

A B C D

Fig. 2. SMSSVD of the TCGA dataset. A. Projection Scores for each signal, with threshold for variable filtering on the x-axis, i.e. only variables with higher standard devi-

ation than the threshold are included. B–D. Sample plots. B and C are colored by tumor type (see Supplementary Materials for details). Some examples are Liver hepato-

cellular carcinoma (orange, top of B), Brain Lower Grade Glioma (light blue, bottom left of B), Ovarian serous cystadenocarcinoma (light green, bottom of B), Rectum

adenocarcinoma (dark purple, top left of C) and Colon adenocarcinoma (brown, top left of C). In D, the samples are colored by gender, Female (yellow) and Male (blue)
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unlikely to capture all the structure in the data and in addition dif-

ferent subtypes cannot always be assumed to follow Gaussian distri-

butions, even though the approximation can be believed to be

reasonably accurate since the (sub)type characteristics are comprised

of many smaller effects. We do however believe that it is helpful

to have a rough measure of the biological relevance of the models,

even though it is impossible to provide a ground truth. Figure 3 dis-

plays the AIC scores for the different models as a function of the

model dimension. SMSSVD generally performs better than SVD.

Comparison with SPC is trickier, since the performance of SPC is

determined by the sparsity parameter c and there is no simple object-

ive way to choose c. However, SMSSVD compares well with SPC re-

gardless of the value of the parameter.

Scree plots are often used to delineate signal from noise, by

removing components after the ‘knee’ in the plot. Supplementary

Figure S4 displays scree plots of the four datasets in Figure 3. It is

non-trivial and subjective to determine where the knee is, for the

TCGA dataset, it can be argued to be at component 2, 4 or 6.

SMSSVD avoids these problems by instead automatically determin-

ing signal dimension by optimizing the Projection Score.

Furthermore, the components after the ‘knee’ can still contain im-

portant information. SMSSVD finds biologically relevant structure

in all later components (7–12), relating samples either to gender or

tumor type, see Supplementary Figure S1. This is also true to some

extent for SVD (Supplementary Fig. S2).

3.2 Synthetic data
SMSSVD decomposes a matrix observed in noisy conditions as a ser-

ies of orthogonal low-rank signals. The aim is to get a stable represen-

tation of the samples and then recover as much as possible of the

variables, even for signals that are heavily corrupted by noise. To

evaluate SMSSVD, we synthetically create a series of low-rank signals

Yk that are orthogonal (i.e. YT
i Yj ¼ 0 and YiY

T
j ¼ 0 for i 6¼ j) and that

has a chosen level of sparsity on the variable side and try to recover

the individual Yk’s from the observed matrix X :¼
P

k Yk þ e where e
is a matrix and eij � Nð0; rijÞ. To measure how well SMSSVD recov-

ers the signals from the data, we look at each signal separately, consid-

ering only variables where the signal has support. Let err(k) be the

reconstruction error of signal k,

errðkÞ :¼ jjRT
k ðYk � bY kÞjjF;

where bY k is the reconstructed signal and Rk is defined such that mul-

tiplying with RT
k from the left selects the variables (rows) where Yk

is nonzero.

While SMSSVD is designed to find d-dimensional signals

( bY k :¼ UkRkVT
k ), the same is not true for SVD and SPC. To test the

ability to find the signals, rather than the ability to find them in the

right order, the components are reordered using a algorithm that

tries to minimize the total error by greedily matching the rank 1

matrices from the decomposition to signals Yk, always picking the

match that lowers the total error the most. The number of rank 1

matrices matched to each signal Yk is equal to rank Yk. Note that

with no noise present, SVD is guaranteed to always find the optimal

decomposition.

The biplots in Figure 4 illustrate how SMSSVD works and how

the signal reconstructions compare to other methods. If there is no

noise, perfect decompositions are achieved by all methods apart

from SPC with a high degree of sparsity. An artificial example where

the noise is only added to the non-signal variables highlights that

SMSSVD can still perfectly reconstruct both samples and signal vari-

ables, whereas the other methods display significant defects. Finally,

when all variables are affected by noise, SMSSVD still get the best

results.

Next, we created several datasets for a variety of conditions

based on the parameters N¼100: Number of samples, P: Number

of variables, L: Number of variables in the support of each signal,

K¼8: number of signals and d: the rank of each signal. For each sig-

nal, we randomize matrices Uk and Vk, choose a diagonal matrix Rk

and let Yk :¼ UkRkVT
k . For both Vk and Uk, each new column is cre-

ated by sampling a vector of i.i.d. Gaussian random variables and

Fig. 3. Evaluation of SMSSVD on different datasets, based on AIC scores

when fitting a Gaussian Mixture Model to the (sub)types. From top to bottom:

TCGA dataset, Breast Cancer, Acute Lymphoblastic Leukemia (Microarray),

Acute Lymphoblastic Leukemia (RNA-Seq)
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No noise

Noise added to non-signal variables only

Noise added to all variables

Fig. 4. Two 2d signals with non-overlapping support for the variables are shown for no noise (Upper two rows), noise added to non-signal variables only (Middle

two rows) and for noise added to all variables (Lower two rows). The reconstruction of the first signal is shown in the upper row and for the second signal in the

lower row in each set. Different columns correspond to different methods, where SPC ‘1’, ‘2’ and ‘3’ have regularization penalties of c¼2, 8 and 32 respectively,

controlling the degree of sparsity. Samples are black, variables where the signal has support are red and other variables are blue. The variables in the support

are connected with dashed lines, only to make it easier to spot how the variables are influenced by noise. For SMSSVD, variables selected by optimal variance fil-

tering are shown in full color and other variables are shown in a whiter tone. Samples and variables are both scaled to fill the axes in each biplot. 32 samples and

5000 variables were used, of which each signal had support in 64 variables and the rest had noise only
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projecting onto the orthogonal complement of the subspace spanned

by previous columns (in current and previous signals). For Uk, we

only consider the subspace spanned by L randomly selected varia-

bles. The result is then expanded by inserting zeros for the other

P – L variables. To complete the signal, let the i’th diagonal element

of Rk, ðRkÞii :¼ 0:6k�10:9i�1, such that there is a decline in the power

between signals and within components of each signal. Finally, i.i.d.

Gaussian noise is added to the data matrix. Figures 5, 6 and

Supplementary Figure S5 show test results for datasets randomized

in this way for different sets of parameters. SMSSVD is the only

method that performs well over the whole set of parameters. The

only situation where SMSSVD is consistently outperformed is by

SVD for large L, and it is by a narrow margin. SMSSVD performs

particularly well, in comparison to the other methods, in the diffi-

cult cases when the signal to noise ratio is low. SPC performance

clearly depends on the regularization parameter which must be

chosen differently in different situations. However, despite being a

parameter-free method, SMSSVD outperforms SPC in most cases.

3.3 Computation time
SMSSVD is more computationally intensive than SVD or SPC, since

it relies on bootstrapping to compute the Projection Score.

However, very few bootstrap iterations are required in general since

the variances of the eigenvalues of the randomized matrices tend to

be very small. Furthermore, since no parameter tuning is needed, it

is often sufficient to run SMSSVD only once. Execution times for

the datasets in Figure 3 are shown in Table 1.

4 Discussion

We have presented SMSSVD, a dimension reduction technique

designed for complex datasets with multiple overlaid signals

observed in noisy conditions. When compared to other methods,

over a wide range of conditions, SMSSVD performs equally well or

better. SMSSVD excels in situations where P�N (many more varia-

bles than samples) and most of the variables just contribute noise, a

very common situation for high throughput biological data. As a

parameter-free method, SMSSVD requires no assumptions to be

made of the level of sparsity. Indeed, SMSSVD can handle different

signals within the same dataset that exhibit very different levels of

sparsity. Being parameter-free also makes SMSSVD suitable for

automated pipelines, where few assumptions can be made about the

data.

A common strategy when analyzing high dimensional data is to

first apply PCA (SVD) to reduce the dimension to an intermediate

number, high enough to give an accurate representation of the data-

set, but low enough to get rid of some noise and to speed up down-

stream computations [see e.g. (Maaten and Hinton, 2008)]. We

argue that since SMSSVD can recover multiple overlaid signals and

adaptively reduce the noise affecting each signal so that even signals

with a lower signal to noise ratio can be found, it is very useful in

this situation.

Our unique contribution is that we first solve a more suitable di-

mension reduction problem for robustly finding signals in a dataset

corrupted by noise and then map the result back to the original vari-

ables. We also show how this combination of steps gives SMSSVD

Fig. 5. The reconstruction error, err(k), is shown for different conditions. The signal strength jjYk jjF (black) is shown for scale. The methods are: SVD (blue),

SMSSVD (red) and SPC (green, magenta, cyan) with decreasing degree of sparsity (regularization parameters c ¼ 0:04
ffiffiffiffi
P
p

; c ¼ 0:12
ffiffiffiffi
P
p

and c ¼ 0:36
ffiffiffiffi
P
p

respect-

ively). No errors larger than the signal strength are displayed as that indicates that a different signal has been found
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many desirable properties, related to the SVD of both the full data

matrix and of the smaller matrix from the variable selection step.

Orthogonality between components is one of the cornerstones of

SVD, but it is often difficult to satisfy the orthogonality conditions

when other factors are taken into account. SPC does for instance

give orthogonality for samples, but not for variables and the average

genes of each subset in gene shaving are ‘reasonably’ uncorrelated.

For SMSSVD, orthogonality follows immediately from the construc-

tion, simplifying interpretation and subsequent analysis steps.

Theorem 2.2, property 2 highlights that the variables retained in the

variable selection step are unaffected when the solution is expanded

to the full set of variables. Hence, we can naturally view each signal

from the point of view of the selected variables, or using all

variables.

The variable selection step in the SMSSVD algorithm can be

chosen freely. For exploratory analysis, optimizing the Projection

Score based on variance filtering is a natural and unbiased choice.

Another option is to use Projection Score for response related filter-

ing, e.g. ranking the variables by the absolute value of the t-statistic

when performing a t-test between two groups of samples. The algo-

rithm also has verbatim support for variable weighting, by choosing

the S matrix as a diagonal matrix with a weight for each variable.

Clearly this is a generalization of variable selection.

Kernel PCA, SPC and other methods that give low-dimensional

sample representations, but where the variable information is (par-

tially) lost, can also be extended by SMSSVD (relying on Theorem

2.1 only), if a linear representation in the original variables can be

considered meaningful. Apart from retrieving a variable-side repre-

sentation, the SMSSVD algorithm also makes it possible to find mul-

tiple overlapping signals, by applying the dimension reduction

method of interest as the first step of each SMSSVD iteration.

SMSSVD was evaluated on several gene expression and synthetic

datasets and performs very well in comparison to golden standard

methods for unsupervised exploratory analysis. The SMSSVD model

is not limited to gene expression datasets, but is intended for any

datasets where at least some of the signals can be expected to have

support in a limited number of variables, a very common situation

for high throughput biological data. We have in fact already applied

SMSSVD in the study of viral quasispecies, when modeling viral

populations as distributions over sequence space (Henningsson

et al., 2018).

Fig. 6. The reconstruction error, err(k), is shown for different conditions. The signal strength jjYk jjF (black) is shown for scale. The methods are: SVD (blue),

SMSSVD (red) and SPC (green, magenta, cyan) with decreasing degree of sparsity (regularization parameters c ¼ 0:04
ffiffiffiffi
P
p

; c ¼ 0:12
ffiffiffiffi
P
p

and c ¼ 0:36
ffiffiffiffi
P
p

respect-

ively). No errors larger than the signal strength are displayed as that indicates that a different signal has been found

Table 1. Execution times on an Intel Core i7-4720HQ CPU @ 2.6 GHz.

SVD SPCa (c¼) SMSSVD

Dataset 4 16 64 10 iter. 100 iter.

TCGA 1.61s 7.4s 8.5s 9.2s 75s 396s

Breast Cancer 0.28s 1.7s 1.8s 2.5s 13s 49s

ALL (Microarray) 0.35s 2.4s 2.6s 3.2s 21s 77s

ALL (RNA-Seq) 0.08s 0.6s 0.5s 0.5s 9s 30s

Note: 7 dimensions were computed in all cases.
aOur implementation of SPC.
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