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Abstract

Motivation: The correct identification of ligands in crystal structures of protein complexes is the

cornerstone of structure-guided drug design. However, cognitive bias can sometimes mislead

investigators into modeling fictitious compounds without solid support from the electron density

maps. Ligand identification can be aided by automatic methods, but existing approaches are based

on time-consuming iterative fitting.

Results: Here we report a new machine learning algorithm called CheckMyBlob that identifies

ligands from experimental electron density maps. In benchmark tests on portfolios of up to 219 931

ligand binding sites containing the 200 most popular ligands found in the Protein Data Bank,

CheckMyBlob markedly outperforms the existing automatic methods for ligand identification, in

some cases doubling the recognition rates, while requiring significantly less time. Our work shows

that machine learning can improve the automation of structure modeling and significantly acceler-

ate the drug screening process of macromolecule-ligand complexes.

Availability and implementation: Code and data are available on GitHub at https://github.com/

dabrze/CheckMyBlob.

Contact: wladek@iwonka.med.virginia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The interpretation of macromolecular electron density maps

generated by X-ray crystallography is a complicated process. Given

a 3D map of the experimental electron density, a chemist or biologist

has to model the structure of the crystallized molecules, usually to

extract important information about the protein’s function. This

process is applied not only to X-ray data, but also to similar electro-

static potential maps generated by high-resolution cryo-electron

microscopy. With existing model building software (Cowtan, 2006;

Perrakis et al., 1999; Terwilliger, 2003) integrated with multi-tasking

systems (Adams et al., 2002; Minor et al., 2006; Winn et al., 2011),

the regions of macromolecular structure corresponding to polypeptide

or polynucleotide chains can be built with high accuracy and speed.

On the other hand, small-molecule ligands are usually modeled manu-

ally, and their correct identification often requires good judgment and

expertise. This process is time-consuming and prone to human error,

as small ligands are often difficult to distinguish from one another on

the basis of electron density alone. The recognition process is particu-

larly challenging when the resolution of the diffraction data is not

very high (2.0 Å or worse), there is local disorder, or the ligand is

bound to only a fraction of the molecules. The often-questionable,

subjective assignment of ligands to electron density ‘blobs’ and the
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notorious problem of fictitious ligands modeled without support of

experimental evidence (Pozharski et al., 2013) show that improved

automatic methods for ligand recognition free from cognitive bias are

greatly needed (Adams et al., 2016).

Several approaches are used for automated fitting of known

ligands to electron density maps. They are typically based on ligand

core recognition followed by iterative element addition (Oldfield,

2001; Terwilliger et al., 2006), principal axes alignment and

Metropolis-type optimization (Debreczeni and Emsley, 2012), or

combinations of similar techniques (Evrard et al., 2007; Langer

et al., 2013; Zwart et al., 2004). Those methods can be adapted to

identify unknown ligands by iteratively fitting a moiety from a pre-

defined list of candidates to a given unmodeled electron density

blob. Indeed, Terwilliger et al. (2007) combined iterative fitting

with fingerprint correlations and achieved 48% accuracy in recog-

nizing instances of the 200 most frequently observed ligands in

structures stored in the Protein Data Bank (PDB) (Berman et al.,

2000). However, such an approach can be prohibitively slow

for large-scale experiments, as it necessitates fitting trials of all

candidate ligands.

Alternatives to time-consuming iterative fitting approaches focus

mainly on the use of mathematical descriptions of 3D electron dens-

ity map fragments. Methods from this group range from simple

comparisons of ligand bounding boxes (Langer et al., 2013) to the

use of more advanced shape descriptors, such as moment invariants

(Sommer et al., 2007), three-dimensional Zernike moments

(Gunasekaran et al., 2009), chirality indices (Hattne and Lamzin,

2011), pseudo-atomic graph representations (Aishima et al., 2005),

or their combinations (Carolan and Lamzin, 2014). However, the

best approaches from this group are capable of achieving only 30–

32% accuracy in identifying the correct ligand from a list of �100

popular ligand structures (Carolan and Lamzin, 2014; Gunasekaran

et al., 2009). Nevertheless, these methods are much faster than itera-

tive ligand fitting and perform fairly well when predicting the ten

most probable ligand candidates.

We designed an approach called CheckMyBlob that uses ma-

chine learning algorithms to identify ligands in electron density

maps. In contrast to existing methods, CheckMyBlob learns to gen-

eralize ligand descriptions from sets of moieties deposited in the

PDB, rather than comparing density maps to theoretical models,

graphs, or selected template structures. The ligand descriptors used

in our method can be rapidly calculated as they are based on fea-

tures that take into account the moiety’s shape, volume, chemical

environment and resolution of the data. Moreover, in contrast to

existing methods, we assume no human intervention during the lig-

and recognition process. Therefore, we present a method for a com-

pletely automatic initial interpretation of residual electron density

blobs after structure determination and preliminary biopolymer

(polypeptide or/and nucleic acid chains) refinement. We cross-

validated the proposed machine learning approach by applying it to

219 931 instances of the 200 ligands most frequently observed in

PDB structures and achieved significantly higher recognition rates

than current iterative fitting or description comparison methods.

2 Materials and methods

2.1 System overview
CheckMyBlob is a system that learns to generalize ligand descrip-

tions from electron density maps and uses that knowledge to detect

and identify ligands in previously unseen density (Fig. 1). In the

learning phase, uninterpreted blobs are first cut out from electron

density maps generated using the polymer-only portions of PDB

structures. Next, each blob is described by a set of numerical

features, which are fed to a machine learning algorithm (classifier).

The classifier automatically creates a function (classification

model) that predicts the best ligand based on the blob’s numerical

features. In the identification phase, this classification model is

used to recognize ligands in previously unseen electron density

maps.

2.2 Structure factors and electron density maps
We downloaded all PDB entries as of May 1, 2017 from rsync.ebi.a-

c.uk and converted entries with structure factors from mmCIF to

mtz format, using the cif2mtz program from the CCP4 suite version

7.0.039 (Winn et al., 2011). Out of the 105 726 converted files, 101

538 were successfully processed and standardized with zero cycles

of REFMAC, version 5.8.0158 (Murshudov et al., 2011). The

remaining files could not be processed with REFMAC due to various

data-related errors.

As input to the ligand identification pipeline, we calculated

Fo-Fc electron density maps, with 0.2 Å grid spacing, based on

data in the mtz files and on atomic coordinates of the main-chain

and side-chain atoms with explicit exclusion of all small-

molecule moieties and solvent molecules. To reduce the ‘mem-

ory’ of these small molecules in the calculated structure factors,

the partial models were refined with five cycles of REFMAC

using restrained maximum likelihood targets and the following

settings: hydrogen atoms included, individual isotropic B-factors,

simple anisotropic scaling, bulk solvent correction, no TLS, local

automatic NCS included and automatic restraint weights. We did

not use TLS or twinning refinement in order to process as many

files as possible automatically, i.e. we sacrificed model quality in

favor of robustness of the overall processing. Moreover, we

wanted to prepare a model that would be close to the initial stage

of a typical structure refinement protocol. As a result, out of the

101 538 input files, 99 983 passed the refinement and Fo-Fc elec-

tron density map generation. The remaining files could not be

processed due to errors in third party libraries. In 82 337 of the

successfully processed cases, at least one ligand was present.

Fig. 1. CheckMyBlob ligand recognition pipeline. In the training phase (upper arrows), CheckMyBlob uses ligands from structures deposited in the PDB to create

a classification model. After training, in the productive runs (lower arrows), CheckMyBlob is capable of automatically detecting and recognizing ligands from

unmodeled electron density blobs
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2.3 Ligand detection and label assignment
As CheckMyBlob is meant to work automatically on partially mod-

eled structures, it does not use model information to identify ligand

fragments in the electron density maps. Instead, CheckMyBlob finds

all positive electron density peaks within the Fo-Fc map and for each

peak calculates its volume limited by the 2.8r isosurface computed

with a 0.2 Å grid. The contour level is lower than the usual 3r since

water, ions and organic molecules are intentionally deleted from the

model in the training phase, thereby increasing the standard devi-

ation of the map with respect to that of a fully refined complete

model. Since any peak or fragment of the map that could be assigned

to an atom (even a disordered one) is vital in the ligand detection

phase, CheckMyBlob considers all residual electron density

peaks with a volume greater than Vmin¼0.25 Å3. We denote

unmodeled patches of density fulfilling this criterion as blob

candidates (Fig. 2A).

High resolution maps require special consideration. At �1.5 Å

resolutions, and particularly at the full atomic resolutions of

<1.2 Å (Sheldrick, 1990), electron density contoured at 2.8r is

often split into discrete atomic peaks, even for covalent moieties.

To mitigate this problem, we developed a method that detects local

maxima and skeletonizes the electron density within the isosurface

of each blob candidate in a way similar to that described by Zwart

et al. (2004). After skeletonization, adjacent blob candidates are

combined into one blob if the distance between the local maxima

or skeleton nodes is less than 2.15 Å (Fig. 2A). This distance was

chosen halfway between the length of a single C–C bond (1.54 Å)

and the distance of two hydrogen-bonded water molecules

(2.76 Å). Blobs with volumes smaller than Vsum¼2.14 Å3 are dis-

carded from further analysis, as density blobs this small are usually

not modeled, even as water molecules, in atomic resolution struc-

tures. The proposed Vsum was determined experimentally as a com-

promise between detection of all small molecules and reduction of

computational cost. Finally, any fragments of electron density in

the blob isosurface that overlap with the isosurface of the modeled

biopolymer atoms are cut out from the blob. In practice,

CheckMyBlob is capable of detecting ligands consisting of tens of

blob candidates (Fig. 2C).
Training a machine learning algorithm to recognize ligands in

electron density maps requires a set of labeled training examples. In

the case of CheckMyBlob, the examples are presented as electron

density blobs, and the labels are given in the form of ligand names

assigned to each blob. In theory, one could directly use the informa-

tion from the model structure to identify ligand names; however,

since CheckMyBlob does not use model information to extract the

blobs, they might not overlap exactly with the model ligands.

Moreover, due to the naming conventions used by the PDB, poly-

mers are stored as linked monomers. For example, a NAG-NAG

disaccharide is encoded in the PDB as two separate NAG (N-acetyl-

D-glucosamine) molecules.

Thus, to label the detected blobs we quantified the volume

shared by the blob and the residues modeled in the initial PDB entry.

For this purpose, we define (model) residue volume as the volume

within 1.05 Å of the residue atom centers. The more natural van der

Waals radii were not used to prevent single large atoms (usually

metal ions) from dominating the residue volume. The volume of the

intersection of the blob and residue volumes, divided by the blob

volume, defines blob coverage, while the intersection volume div-

ided by the residue volume defines residue coverage. These values

were used for ligand labeling and selection (Fig. 2B). Each blob was

labeled with the residue code (e.g. GOL, TRS, etc.) with significant

residue coverage. If the blob volume intersects with more than one

residue, the label assigned to the blob is an alphabetically sorted list

of all codes with residue coverage above 30%. As a result, unique

labels are given to common polymers, e.g. NAG-NAG, and moieties

whose electron densities are merged at low resolution, e.g. ADP-

MG. Although combinations such as ADP-MG do not represent a

covalently bonded unit, they do correspond to practical electron

density recognition cases. Using 82 337 structures containing in

total 608 467 ligands (�7.39 ligands per structure), the process of

blob detection resulted in 591 042 examples of moieties found in the

PDB.

2.4 The numerical feature descriptors
The detected and labeled ligands were initially described by 382 nu-

merical features (Supplementary Table S1). Although 382 is a feas-

ible number of descriptors for a machine learning algorithm to

process, a relatively high number of features compared to the num-

ber of training examples can impede generalization, a phenomenon

known in machine learning as the curse of dimensionality (Keogh

and Mueen, 2017). Therefore, an automatic feature selection algo-

rithm called recursive feature elimination (Guyon et al., 2002) was

run on a random subset of 10 000 ligand binding sites to reduce the

number of descriptors. After analyzing the results, 60 features were

Fig. 2. Blob Recognition. (A) Illustration of the blob detection procedure. Blob

candidates 1 and 2 are combined into a single blob, whereas candidate 3 is

rejected due to insufficient volume. (B) Blob labeling procedure. The volume

of the intersection of a detected blob and a modeled moiety determines the

ligand label used during the training phase. (C) Skeletonization (orange

spheres) of Fo-Fc map (green mesh, isosurface at 2.8r) and skeletonization

graph (red lines) of a NAG-NAG-NAG-NAG blob assigned to PDB structure

3WH1, chain A, residues 301–304 (Color version of this figure is available at

Bioinformatics online.)
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finally selected as blob descriptors in the machine learning process

(Fig. 3).

Map resolution is a feature that requires additional explanation.

It must be stressed that resolution is the only ‘global’ map attribute,

i.e. it has the same value for all blobs in a given PDB entry. When

using such global features, one runs into the risk of overfitting or in-

formation leak, which in this case means making the algorithm learn

or ‘remember’ irrelevant features of the pdb file that the ligand came

from, rather than learning the characteristics of the ligand itself. To

eliminate this risk, we applied discretization, i.e. we made the reso-

lution discrete by rounding it to the nearest 0.1 Å. After discret-

ization, the number of examples with the same value of the

parameter increases and the classifier is not able to recognize a pdb

file from the numerical value of its resolution.

2.5 Ligand datasets
The 591 042 examples were further filtered using various quality

criteria to produce three datasets: CMB (CheckMyBlob), TAMC

(Terwilliger, Adams, Moriarty, Cohn) and CL (Carolan, Lamzin).

The CMB dataset was designed for the present study to specifically

test CheckMyBlob, whereas the remaining two datasets attempt to

reproduce the setups used in previous automatic ligand recognition

studies (albeit with vastly expanded subsets of the PDB).

The CMB dataset consists of ligands with at least 2 non-H atoms

from X-ray diffraction experiments of at least 4.0 Å resolution. We

also eliminated all suspicious structures according to various quality

criteria, such as: RSCC<0.6, real space Zobs (RSZO)<1.0, real

space Zdiff (RSZD)�6.0, R factor>0.3, or occupancy<0.3. The

details of the filtering process are described in the Supplementary

Material. Connected PDB ligands were labeled as single,

alphabetically-ordered strings of residue codes, excluding unknown

species, water molecules, standard amino acids and nucleotides.

Finally, the dataset was limited to the 200 most frequently observed

ligands (Supplementary Table S2). The resulting dataset consisted of

219 931 examples of ligand binding sites, with individual ligand

counts ranging from 48 490 examples for SO4 (sulfate) to 105 for

BRU (5-bromo-20-deoxyuridine-50-monophosphate).

The TAMC dataset replicates the experimental set of Terwilliger

et al. (2007). It consists of ligands from X-ray diffraction experi-

ments with 6–150 non-H atoms. Connected PDB ligands were

labeled as single, alphabetically-ordered strings of residue codes,

excluding unknown species, water molecules, standard amino acids

and nucleotides. Finally, the dataset was limited to 200 most fre-

quently observed ligands (Supplementary Table S2). The resulting

dataset consisted of 161 758 examples with individual ligand counts

ranging from 36 535 examples for GOL (glycerol) to 114 for LMG

(1,2-distearoyl-monogalactosyl-diglyceride).

The CL dataset replicates the experimental set used by Carolan

and Lamzin (2014). It consists of ligands from X-ray diffraction

experiments with 1.0–2.5 Å resolution. Adjacent PDB ligands were

not connected. Ligands were labeled according to the PDB naming

conventions. Finally, the dataset was limited to the 82 ligand types

(Supplementary Table S2) listed by Carolan and Lamzin (2014). The

resulting dataset consisted of 121 360 examples with ligand counts

ranging from 42 622 examples for SO4 to 16 for SPO (spheroidene).

Links to the CMB, TAMC and CL datasets are available at https://

github.com/dabrze/CheckMyBlob.

2.6 Machine learning methods
Blobs described by numerical features were used as training exam-

ples for classification algorithms, with the assigned ligand residue

codes serving as class labels (Supplementary Fig. S1). It is worth not-

ing that, contrary to previous approaches, CheckMyBlob does not

use any predefined scores or distance measures that estimate which

ligand candidate is most similar to the analyzed blob. It is the task

of the learning algorithm to automatically find a complex function

of blob descriptors (classification model) that is best suited for lig-

and recognition.

To evaluate the recognition rate of the trained classification

models, the collected ligand datasets were divided into training and

testing sets. In an attempt to make full use of the processed PDB

data and to provide reliable estimates of the models’ recognition

rates and their standard deviations, we used stratified 10-fold cross-

validation (Supplementary Fig. S2). Stratification is of particular im-

portance in this study, as the collected datasets have a strongly

skewed ligand type distribution (Supplementary Fig. S3), and purely

random, non-stratified folds would produce unreliable error

estimates.

Considering the numerous reports warning of problematic inter-

pretations of ligand electron density in many PDB entries (Kleywegt,

2007; Pozharski et al., 2013), we decided to perform additional

Fig. 3. Feature importance ranking. Importance of numerical features used

by CheckMyBlob as computed by the GBM algorithm on the CMB dataset.
D, density mask; S, shape mask

Automatic recognition of ligands by machine learning 455

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty626#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty626#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty626#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty626#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty626#supplementary-data
https://github.com/dabrze/CheckMyBlob
https://github.com/dabrze/CheckMyBlob
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty626#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty626#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty626#supplementary-data


automatic outlier and noise removal on the training data using the

isolation forest algorithm (Liu et al., 2012) parameterized to remove

0.5% training examples, a value based on the proportion of the

smallest to the largest class in the CMB dataset. Moreover, ligands

with multiple conformations in the wwPDB validation reports were

removed from the training data to reduce the noise in ligand descrip-

tions. The discussed restrictions were only applied to the training

data and did not affect the testing folds. Additionally, to prevent

bias toward features with larger ranges of numerical values, all the

features were normalized using min-max [0-1] scaling (Tan et al.,

2005) calibrated on the training data.

We evaluated the performance of three popular classifiers

(Breiman, 2001; Fix and Hodges, 1951; Friedman, 2001): k-nearest

neighbors (k-NN), random forest (RF), and gradient boosting ma-

chine (GBM) (Table 1). These classifiers were selected because of

their ability to learn non-linear relationships among features and

their computational efficiency. Additionally, we evaluated the com-

bination of these three algorithms using stacked generalization

(Stacking) with five cross-validation folds (Wolpert, 1992). Stacking

involves training a learning algorithm (called a combiner) to aggre-

gate the predictions of several component classifiers. In our stacking

implementation, we used k-NN, RF and GBM as components, and

GBM as a combiner trained to make a final prediction based on lig-

and probabilities from the components.

To preprocess the data, remove outliers and generate k-NN, ran-

dom forest and Stacking classifiers, we used scikit-learn v.0.18.1

(Pedregosa, 2011). For GBM we used Microsoft’s LightGBM pack-

age. The classifiers’ parameters were tuned only on the training folds

using two shuffled repetitions of stratified 5-fold cross validation

(2x5 CV). Repeated cross-validation was used, as it was shown to

provide more reliable results for parameter selection than standard

cross-validation (Dietterich, 1998). Employing cross-validation for

both parameter tuning and model evaluation is a rigorous machine

learning procedure called nested cross-validation (Japkowicz and

Shah, 2011). The parameter values considered during classifier tun-

ing are listed at https://github.com/dabrze/CheckMyBlob.

The classifiers were evaluated using the following metrics: classi-

fication accuracy, top-5/10/20 accuracy, Cohen’s kappa, and macro-

averaged recall. Classification accuracy is the proportion of correct-

ly recognized ligands to all testing examples. Top-n accuracy is the

proportion of cases where the correct ligand was among the n

highest-ranked hits in the classifier’s prediction. Cohen’s kappa is a

measure that corrects accuracy for chance predictions. Macro-

averaged recall is the (unweighted) arithmetic mean of the recogni-

tion rates for each class. Accuracy and top-n accuracy were chosen

because they were also reported by Terwilliger et al. (2007) as well

as by Carolan and Lamzin (2014). The remaining metrics are

measures commonly used in machine learning to evaluate classifiers

on datasets with skewed class distributions (Japkowicz and Shah,

2011). The evaluation was conducted on an Amazon EC2

r4.8xlarge virtual machine equipped with 32 vCPUs and 244 GB of

RAM.

3 Results

3.1 Importance of novel ligand description attributes
Apart from popular 3D shape descriptors used in previous studies

(Carolan and Lamzin, 2014; Novotni and Klein, 2003; Sommer

et al., 2007), such as geometric, chiral and Zernike moment invari-

ants, CheckMyBlob uses novel attributes to describe ligands. The

new attributes include, in particular, blob volume and number of

electrons, map statistics, principal component analysis (PCA) eigen-

values based on positive peaks from Fo-Fc maps, and differences be-

tween these features at several contour levels (2.8r, 3.3r and 3.8r)

(Supplementary Table S1). Additionally, CheckMyBlob utilizes

chemical information, such as the number of adjacent biopolymer

atoms and the degree of biopolymer-blob overlap. Several of the

descriptors are calculated for both what we call the blob shape mask

and the density mask. The blob shape mask is the blob fragment of

the electron density where values above the cutoff threshold are set

to 1 or set to 0 otherwise. The density mask is similar, but with ac-

tual electron density values instead of 1, and 0 otherwise.

The results of automatic importance analysis performed on fea-

tures used by CheckMyBlob (Fig. 3) emphasize the influence of the

new ligand descriptors introduced in this study. In particular, fea-

tures based on PCA eigenvalues provide a means of encoding the

relationships between the principal blob dimensions and give a

rotation-invariant description of a ligand. Moreover, features that

report the differences (deltas) between the estimated number of

Table 1. Cross-validation results

Algorithm Testing

examples

Accuracy

(recognition rate)

Top-5

accuracy

Top-10

accuracy

Top-20

accuracy

Macro-averaged

recall

Cohen’s

Kappa

CMB CheckMyBlob: k-NN 0.523 (13) 0.816 (8) 0.874 (6) 0.901 (4) 0.261 (12) 0.462 (14)

CheckMyBlob: RF 219 931 0.563 (12) 0.836 (8) 0.896 (5) 0.933 (3) 0.327 (11) 0.511 (14)

CheckMyBlob: GBM 0.572 (12) 0.849 (7) 0.910 (5) 0.949 (3) 0.366 (14) 0.523 (13)

CheckMyBlob: Stacking 0.575 (11) 0.852 (8) 0.913 (5) 0.950 (3) 0.391 (13) 0.526 (12)

TAMC Terwilliger et al. (15) 200 0.485 0.780 0.870 0.925 – –

CheckMyBlob: k-NN 0.500 (10) 0.751 (8) 0.814 (6) 0.856 (5) 0.226 (13) 0.430 (11)

CheckMyBlob: RF 161 758 0.551 (9) 0.778 (7) 0.842 (5) 0.892 (5) 0.287 (17) 0.496 (10)

CheckMyBlob: GBM 0.560 (7) 0.790 (7) 0.857 (6) 0.910 (4) 0.320 (17) 0.508 (9)

CheckMyBlob: Stacking 0.563 (8) 0.796 (7) 0.861 (6) 0.912 (5) 0.346 (19) 0.513 (9)

CL Carolan et al. (21) 1100 0.320 – 0.840 0.940 – –

CheckMyBlob: k-NN 0.686 (12) 0.901 (4) 0.932 (2) 0.947 (3) 0.339 (19) 0.589 (15)

CheckMyBlob: RF 121 360 0.715 (13) 0.913 (4) 0.945 (2) 0.966 (1) 0.415 (20) 0.628 (17)

CheckMyBlob: GBM 0.722 (11) 0.920 (4) 0.953 (2) 0.975 (1) 0.440 (18) 0.639 (15)

CheckMyBlob: Stacking 0.725 (12) 0.921 (4) 0.954 (3) 0.976 (2) 0.483 (20) 0.645 (16)

The best values in each test group are highlighted in bold.

Note: Average performance metrics and standard deviations (in parentheses, in the unit of the last significant digit of the mean value) for different algorithms

on three ligand datasets: CMB, TAMC and CL.
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electrons for consecutive contour levels are also highly relevant, as

they capture the dynamics of changing contour levels and, indirectly,

encode information about a blob surface. Finally, the number of

modeled biopolymer atoms (O, N, C) in the proximity of a blob

adds chemical information to the blob description.

3.2 Experimental comparison with existing approaches
CheckMyBlob showed high classification accuracy on a dataset

selected for this study (CMB), and outperformed existing

approaches on two datasets (TAMC, CL) that replicate experimen-

tal setups from previous studies (Table 1). While analyzing the

results, it must be noted that the methods that CheckMyBlob was

compared against do not detect ligands automatically and were

tested on electron density fragments labeled by human experts as

ligands in the PDB deposits. Moreover, the iterative fitting ap-

proach of Terwilliger et al. (2007) was tested on electron densities

of fully modeled structures, as opposed to the method of Carolan

and Lamzin (2014) and our own approach, which use electron

density generated by re-refinement of macromolecular models with

all small molecule components stripped out. Our automatic ligand

detection and erasure of model ‘memory’ through re-refinement

correspond to a much more challenging, yet more realistic, evalu-

ation scenario.

All four classifiers used with CheckMyBlob [k-nearest neighbors

(k-NN), random forest (RF), gradient boosting machine (GBM) and

stacked generalization (Stacking)] achieved much higher recognition

rates than those recorded by previous studies (Table 1). The im-

provement is particularly substantial on the CL dataset, where

CheckMyBlob reaches 72% accuracy compared to 32% reported by

Carolan and Lamzin (2014). Moreover, experiments conducted in

this study involved over a hundred times more testing examples than

previous analyses (Table 1), making the performance estimates more

reliable. Apart from achieving better recognition rates on larger test-

ing sets, CheckMyBlob was also found to be significantly faster than

the competing algorithms (Table 2, Supplementary Material).

The analysis of recognition rates for different density map reso-

lutions, real-space correlations (RSCC) and ligand sizes (Fig. 4A–C)

underlines the value of well-defined, high resolution structures.

Moreover, CheckMyBlob’s classification is well calibrated, i.e. the

prediction probability corresponds linearly with the recognition rate

(Fig. 4D). In contrast to scores outputted by template-based meth-

ods (Carolan and Lamzin, 2014; Terwilliger et al., 2007), the pre-

diction probability can be interpreted on its own without looking at

the second-best prediction. If a ligand is predicted to be glycerol

with 80%, it means that in 80% of such cases it will be indeed

GOL, regardless of whether the second best prediction has 15 or 5%

Table 2. Single-core execution time for identifying one ligand, aver-

aged over 30 PDB deposits in parentheses, standard deviations in

the unit of the last significant digit of the mean value; >3600

denotes consistent timeouts after 1 hour; differences between

CheckMyBlob (k-NN, RF, GBM, Stacking) and the competing algo-

rithms are statistically significant at a¼ 0.01 according to the

Friedman and Nemenyi tests (Supplementary Material)

Algorithm Running time [s]

CheckMyBlob: k-NN 103 (64)

CheckMyBlob: RF 118 (68)

CheckMyBlob: GBM 106 (65)

CheckMyBlob: Stacking 121 (66)

Terwilliger et al. >3600

Carolan et al. 252 (132)

The best performance is highlighted in bold.

Fig. 4. Recognition rates. CheckMyBlob ligand recognition rates (accuracy, shown as points) and ligand distributions (number of examples, shown as histograms)

versus (A) real-space correlation coefficient (RSCC); (B) ligand size; (C) resolution; (D) prediction probability. The tests were run on three datasets, CMB, TAMC

and CL, as explained in the text
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probability. This shows that the CheckMyBlob methodology can be

applied in user-oriented tools, where the probability can be inter-

preted as the prediction’s reliability or used to set an acceptable rate

of false identifications.

3.3 Ligand validation
To additionally verify its performance (Table 1), we analyzed the

ability of CheckMyBlob to recognize ligands in a set of example

structures including the PDB entries: 1OGV, which was examined

by Terwilliger et al. (2007); 3MB5 and 4IUN, which were used by

Carolan and Lamzin (2014); 5N0H, which illustrates the recogni-

tion of buffer components; 4Y1U, which highlights the problem

of missing density; and 2PDT, 1FPX, 4RK3 and 1KWN, which

showcase correct prediction of ligands that were misidentified in the

original PDB deposits.

CheckMyBlob was able to recognize large, distinctive molecules

such as bacteriochlorophyll A (1OGV; BCL M 1303; resolution

2.35 Å) (Fig. 5A), as well as medium-size moieties such as SAM

(S-adenosyl-L-methionine) (3MB5; SAM A 301; resolution 1.6 Å)

and thymidine-30,50-diphosphate (4IUN; THP A 202; resolution

1.6 Å) (Fig. 5B and C). Moreover, the system recognizes common

buffer or cryo-protectant components, such as glycerol (5N0H;

GOL B 303, resolution 1.9 Å) (Fig. 5D).

As expected, CheckMyBlob works best when the resolution is

better than 2 Å and the electron density is well defined, i.e. there is

no missing density and the noise level is low. CheckMyBlob may not

recognize a ligand if the electron density is poorly defined, as in

4Y1U (GAL B 201; resolution 1.76 Å), where the blob that was

labeled as b-D-galactose (GAL) was misidentified by CheckMyBlob

as glycerol (GOL; Fig. 5E). The system recognized glycerol

because the highest Fo-Fc peak is similar to a glycerol isosurface and

missing electron density prevented the connection of adjacent blob

candidates.

However, there are also cases where CheckMyBlob most prob-

ably identified the ligand correctly, but the original authors of the

PDB deposit either mislabeled a molecule or simply modeled it in-

correctly. An example of the former case can be seen in the PDB

Fig. 5. Examples of ligand identification in PDB deposits using CheckMyBlob.

(A) 1OGV, bacteriochlorophyll A (BCL M 1303). (B) 3MB5, S-adenosyl-L-

methionine (SAM A 301). (C) 4IUN, thymidine-30 ,50-diphosphate (THP A 202).

(D) 5N0H, glycerol (GOL B 303). (E) 4Y1U, b-D-galactose (GAL B 201), misclas-

sified by Check MyBlob as GOL (black frame). For each example, shown in

green mesh are the isosurfaces of Fo-Fc maps contoured at 2.8r, calculated

after removal of solvent and other small molecules (including the ligand)

from the model and five cycles of REFMAC5 (Murshudov et al., 2011) refine-

ment. Atomic coordinates were taken from the PDB deposits (Color version

of this figure is available at Bioinformatics online.)

Fig. 6. Examples of misidentified ligands detected in the PDB (left panels) with CheckMyBlob-assigned labels (right). (A) 2PDT (FAD D 204), flavin-adenine di-

nucleotide, reinterpreted by CheckMyBlob as flavin mononucleotide; the missing adenine fragment is shown in dark gray. (B) 1KWN (TAR A 501), the modeled

atoms have the configuration of L(þ)-tartaric acid (TLA) as identified by CheckMyBlob, whereas the deposition authors labeled this moiety (inconsistently with

the real configuration of the ligand coordinates) as D(�)-tartaric acid (TAR), whose correct chirality is visualized in dark gray. (C) 1FPX (SAM A 1699), modeled as

S-adenosyl-L-methionine (SAM), reinterpreted as S-adenosyl-L-homocysteine (SAH); the crystalized protein is an isoflavone O-methyltransferase, therefore, both

the substrate and product may be present in the ligand binding site; however, there is a negative peak of Fo-Fc electron density (shown in red at -2.8r) near the CE

methyl carbon atom, making SAH much more probable. (D) 4RK3 (GOL A 401), electron density modeled as disordered glycerol and the same electron density

interpreted as TRIS buffer. For each example, shown in this figure, the green mesh represents the isosurfaces of Fo-Fc maps contoured at 2.8r, calculated after

the removal of solvent molecules and other small-molecule moieties (including the ligand) from the model, followed by five cycles of REFMAC5 (Murshudov

et al., 2011) refinement. Ligands identified by CheckMyBlob have been manually fitted using COOT (Debreczeni and Emsley, 2012) (Color version of this figure is

available at Bioinformatics online.)

458 M.Kowiel et al.



entry 2PDT (FAD D 204; resolution 2.20 Å) (Fig. 6A), where

the authors labeled a ligand as flavin-adenine dinucleotide (FAD)

without modeling the adenine moiety. In reality, the electron density

corresponds to flavin mononucleotide (FMN), which is the

label identified by CheckMyBlob. The primary citation of 2PDT

(Zoltowski et al., 2007) mentions that the sample was treated with

phosphodiesterase, which would be expected to hydrolyze FAD to

FMN. CheckMyBlob also detected incorrect chirality for 1KWN

(TAR A 501; resolution 1.20 Å). The modeled atoms have the con-

figuration of L(þ)-tartaric acid (TLA) as identified by

CheckMyBlob, whereas the deposition authors labeled this moiety

as D(�)-tartaric acid (TAR) (Fig. 6B). An example of incorrect mod-

eling was found in 1FPX (SAM A 1699; resolution 1.65 Å), where

the authors modeled S-adenosyl-L-methionine instead of S-adenosyl-

L-homocysteine (SAH) (Fig. 6C). Another example of incorrect mod-

eling was found in 4RK3 (GOL A 401; resolution 1.80 Å), where the

authors modeled disordered glycerol molecules in electron density,

most likely corresponding to tris(hydroxymethyl)aminomethane

(TRS) (Fig. 6D) which was also present in the crystallization buffer.

The above cases can be viewed as interactive visualizations in

Molstack (Porebski et al., 2018) at: http://molstack.bioreproducibil

ity.org/collection/view/YskIjr2eiLoQelKrwnIG/.

We have re-refined the above four sample structures and dis-

cussed the changes with the original authors, who welcomed the

improvements in all four cases. Jointly with the original authors, we

deposited all four corrected structures in the PDB to replace the ori-

ginal entries. As the re-deposition summary in Table 3 shows, some-

times improvements of model quality were quite dramatic (e.g. 5%

improvement of Rfree or drop of clashscore by 20 points). This dem-

onstrates that CheckMyBlob can correctly identify ligands, even in

sub-optimally modeled structures. Moreover, it is worth noting that

structure-remediation servers, such as PDB_REDO (Joosten et al.,

2009), do not handle ligand misinterpretation; therefore, for all

these four cases they produced ‘corrected’ structures with incorrect

ligands.

4 Discussion

CheckMyBlob is a machine learning approach to ligand identifica-

tion that requires minimal human intervention and autonomously

detects ligands in partially modeled structures based on experimen-

tal electron density maps. Our study shows that the abundance of

structures deposited in the PDB makes it possible to automatically

learn ligand representations and that this knowledge can be used to

recognize small molecules during determination of novel crystallo-

graphic structures and to validate the existing PDB deposits. Current

approaches to ligand identification rely on fitting, template match-

ing, or graph comparisons, which are all based on measuring simi-

larity between pairs of ligands. Our approach shows that machine

learning algorithms offer better recognition rates than template-

based methods, in a fraction of the computational time. From the

recognition rates of our method (Fig. 4A–C), it is also apparent that

high-resolution structures with well-defined density are of signifi-

cant value not only to human experts, but also to automatic recogni-

tion systems.

However, the performance of machine learning systems also

relies on the number of available training examples. Indeed,

CheckMyBlob requires training data in the form of previous obser-

vations of any particular target ligand. Therefore, in order to detect

ligands with limited or no examples in the training data, using the

proposed pipeline one can only predict moieties that are structurally

similar to the target ligand. Such an approach was suggested also for

template-based methods where the authors proposed to cluster

ligands and predict ligand groups rather than individual compounds

(Terwilliger et al., 2007). In practice, this approach requires human

supervision or explicit information about compounds in the crystal-

lization cocktail. An alternative to predicting ligand groups could be

offered by methods from the field of one-shot learning (Fei-Fei et al.,

2006).

Evaluating CheckMyBlob on different ligand complexes raises

the question of quality criteria which should be used to select the

ligands for such studies. In the dataset chosen for this study (CMB),

we concentrated on selecting examples with decent resolution

(dmin�4.0 Å), RSCC�0.6, real space Zobs (RSZO)�1.0, real space

Zdiff (RSZD)<6.0, R factor�0.3 and occupancy�0.3. These cut-

offs were chosen to ensure sufficient quality of the training examples

and to minimize the risk of using incorrectly labeled examples for

evaluation, while still maintaining a very large pool of examples. It

must be noted that the main challenge in predicting ligands in elec-

tron density maps lies in the variance of the training data. Since

X-ray electron density maps are noisy by nature, eliminating all

noisy examples would remove most of the training data and, in con-

sequence, would impede the machine learning process. In the future,

it will be possible to tighten these relatively generous selection crite-

ria as the number of examples in the PDB grows, and retrain

CheckMyBlob only on the highest quality examples. Indeed, an im-

portant aspect of learning systems is that the performance will be

dramatically improved with more training examples. The rapidly

growing number of PDB deposits (Berman et al., 2013) and the sim-

ultaneous elimination of ‘bad apples’, by efforts such as the re-

refinements in this study (Table 3), ensure that machine learning

approaches to ligand identification will significantly improve with

time.

The case of flexible ligands—those capable of assuming several

conformations—needs special comment. In the training set, all

rotamers of a flexible ligand are tagged with the same label. In the

predictive mode, this labeling ‘ambiguity’ is no weakness at all, be-

cause precise rotamer fit is not our objective; a given ligand, once

Table 3. Summary of refinement and structure quality statistics for original and re-refined structures

Pdb

codeO

Wrong

ligand

ResolutionO

[Å]

R/Rfree
O ClashscoreO RMSD

bonds O [Å]

Pdb

codeR

Correct

ligand

ResolutionR

[Å]

R/Rfree
R ClashscoreR RMSD

bondsR [Å]

2PDT FAD 2.20 0.234/0.266 21.4 0.008 6CNY FMN 2.10 0.163/0.204 1.5 0.014

1KWN TAR 1.20 0.127/0.145 4.7 0.016 6COA TLA 1.20 0.103/0.117 0.6 0.011

1FPX SAM 1.65 0.218/0.235 8.3 0.021 6CIG SAH 1.65 0.146/0.174 4.2 0.013

4RK3 GOL 1.80 0.157/0.200 1.4 0.019 6CHK TRS 1.80 0.140/0.190 0.7 0.014

Note: All four re-refined structures were re-deposited in the PDB to supersede the original entries.
OOriginal deposit.
RAfter re-refinement.
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correctly recognized, would be optimized (refined) in its electron

density by appropriate tools, such as COOT (Debreczeni and

Emsley, 2012). Also, the existence of rotamers indistinguishable in

their training electron density is not a concern. It would produce

somewhat noisier, but also more populous, clusters of examples.

However, if the flexibility significantly affects the overall shape of

the ligand, it would be beneficial for the predictive performance of

classifiers to subdivide ligands with large conformational variability

to stereochemically more consistent subclasses.

Finally, in contrast to manual identification of possible ligands,

automatic machine learning procedures are not biased by ‘wishful

thinking’ on the part of an experimenter often convinced that soak-

ing a crystal in a particular solution must result in the presence of

that particular, ordered ligand in the structure. Thus, the use of

CheckMyBlob should produce fewer fictitious ligands modeled

according to wish rather than electron density.

CheckMyBlob can be further advanced by designing new ligand

descriptors, including graph features (Aishima et al., 2005), pseudo-

atomic representations (Carolan and Lamzin, 2014) and deep learn-

ing (LeCun et al., 2015) on 3D electron density data. As our ongoing

work, we are designing an online tool that will employ the

CheckMyBlob methodology to help users detect and validate ligands.

To achieve this goal, challenges concerning the predicted ligands’ tax-

onomy, result visualization and user interaction must be addressed.

The methodology presented here can be directly applied to drug

screening protocols by training CheckMyBlob on ligand sets corre-

sponding to drug screening cocktails. In this context, ligand identifi-

cation probabilities returned by the classification model will

facilitate and prioritize further work by telling human experts which

ligands are most likely to fit into a set of structures of interest. As

this study shows, machine learning methods can provide such sug-

gestions significantly faster than the existing approaches. Moreover,

by providing a method for autonomous detection of blobs corre-

sponding to small moieties and buffer molecules, CheckMyBlob is

also a step toward fully automated model building and refinement,

with applications not only in protein crystallography but also in

high-resolution cryo-electron microscopy.

Funding

This work was supported in part by NIH grants HG008424, GM117325 and

GM117080, funds from the National Institute of Allergy and Infectious

Diseases, National Institutes of Health and the Department of Health and

Human Services under contract nos. HHSN272201200026C and

HHSN272201700060C, as well as PUT Institute of Computing Science

Statutory Funds.

Conflict of Interest: none declared.

References

Adams,P.D. et al. (2002) PHENIX: building new software for automated crys-

tallographic structure determination. Acta Crystallogr. D Biol. Crystallogr.,

58, 1948–1954.

Adams,P.D. et al. (2016) Outcome of the first wwPDB/CCDC/D3R ligand val-

idation workshop. Structure, 24, 502–508. (2016)

Aishima,J. et al. (2005) Automated crystallographic ligand building using the

medial axis transform of an electron-density isosurface. Acta Crystallogr. D

Biol. Crystallogr., 61, 1354–1363.

Berman,H.M. et al. (2000) The protein data bank. Nucleic Acids Res., 28,

235–242.

Berman,H.M. et al. (2013) Trendspotting in the Protein Data Bank. FEBS

Lett., 587, 1036–1045.

Breiman,L. (2001) Random forests. Mach. Learn., 45, 5–32.

Carolan,C.G. and Lamzin,V.S. (2014) Automated identification of crystallo-

graphic ligands using sparse-density representations. Acta Crystallogr. D

Biol. Crystallogr., 70, 1844–1853.

Cowtan,K. (2006) The Buccaneer software for automated model building. 1.

Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr., 62,

1002–1011.

Debreczeni,J.É. and Emsley,P. (2012) Handling ligands with Coot. Acta

Crystallogr. D Biol. Crystallogr., 68, 425–430.

Dietterich,T.G. (1998) Approximate statistical tests for comparing supervised

classification learning algorithms. Neural Comput., 10, 1895–1923.

Evrard,G.X. et al. (2007) Assessment of automatic ligand building in

ARP/wARP. Acta Crystallogr. D Biol. Crystallogr., 63, 108–117.

Fei-Fei,L. et al. (2006) One-shot learning of object categories. IEEE Trans.

Pattern Anal. Mach. Intell., 28, 594–611.

Fix,E. and Hodges,J.L. (1951) Discriminatory analysis, nonparametric dis-

crimination: consistency properties. In: US Air Force School of Aviation

Medicine Technical Report 4, p. 477.

Friedman,J. (2001) Greedy function approximation: a gradient boosting ma-

chine. Ann. Stat., 29, 1189–1232.

Gunasekaran,P. et al. (2009) Ligand electron density shape recognition using 3D

zernike descriptors. In: Pattern Recognition in Bioinformatics, pp. 125–136.

Guyon,I. et al. (2002) Gene selection for cancer classification using support

vector machines. Mach. Learn., 46, 389–422.

Hattne,J. and Lamzin,V.S. (2011) A moment invariant for evaluating the chir-

ality of three-dimensional objects. J. R. Soc. Interface, 8, 144–151.

Joosten,R.P. et al. (2009) PDB_REDO: automated re-refinement of X-ray

structure models in the PDB. J. Appl. Crystallogr., 42, 376–384.

Japkowicz,N. and Shah,M. (2011) Evaluating Learning Algorithms: A

Classification Perspective. Cambridge University Press, New York, NY,

USA.

Keogh,E. and Mueen,A. (2017) Curse of dimensionality. In: Sammut,C. and

Webb,G.I. (eds.) Encyclopedia of Machine Learning and Data Mining.

Springer, Boston, MA, USA, pp. 314–315.

Kleywegt,G.J. (2007) Crystallographic refinement of ligand complexes. Acta

Crystallogr. D Biol. Crystallogr., 63, 94–100.

Langer,G.G. et al. (2013) Visual automated macromolecular model building.

Acta Crystallogr. D Biol. Crystallogr., 69, 635–641.

LeCun,Y. et al. (2015) Deep learning. Nature, 521, 436–444.

Liu,F.T. et al. (2012) Isolation-based anomaly detection. ACM Trans. Knowl.

Discov. Data, 6, 3:1–3:39.

Minor,W. et al. (2006) HKL-3000: the integration of data reduction and struc-

ture solution - from diffraction images to an initial model in minutes. Acta

Crystallogr. D Biol. Crystallogr, 62, 859–866.

Murshudov,G.N. et al. (2011) REFMAC5 for the refinement of macromolecu-

lar crystal structures. Acta Crystallogr. D Biol. Crystallogr., 67, 355–367.

Novotni,M. and Klein,R. (2003) 3D zernike descriptors for content based shape

retrieval. In: Proc. Eighth ACM Symp. Solid Model. Appl., pp. 216–225.

Oldfield,T.J. (2001) X-LIGAND: an application for the automated addition of

flexible ligands into electron density. Acta Crystallogr. D Biol. Crystallogr.,

57, 696–705.

Pedregosa,F. et al. (2011) Scikit-learn: machine learning in Python. J. Mach.

Learn. Res., 12, 2825–2830.

Perrakis,A. et al. (1999) Automated protein model building combined with it-

erative structure refinement. Nat. Struct. Biol., 6, 458–463.

Porebski,P.J. et al. (2018) Molstack-interactive visualization tool for presenta-

tion, interpretation, and validation of macromolecules and electron density

maps. Protein Sci., 27, 86–94.

Pozharski,E. et al. (2013) Techniques, tools and best practices for ligand

electron-density analysis and results from their application to deposited

crystal structures. Acta Crystallogr. D Biol. Crystallogr., 69, 150–167.

Sheldrick,G.M. (1990) Phase annealing in SHELX-90: direct methods for

larger structures. Acta Crystallogr. A Found. Crystallogr., 46,

467–473.

Sommer,I. et al. (2007) Moment invariants as shape recognition technique for

comparing protein binding sites. Bioinformatics, 23, 3139–3146.

Tan,P.N. et al. (2005) Introduction to Data Mining. Addison Wesley, Boston,

MA, USA.

460 M.Kowiel et al.



Terwilliger,T.C. (2003) Solve and resolve: automated structure solution and

density modification. Methods Enzymol., 374, 22–37.

Terwilliger,T.C. et al. (2006) Automated ligand fitting by core-fragment fit-

ting and extension into density. Acta Crystallogr. D Biol. Crystallogr., 62,

915–922.

Terwilliger,T.C. et al. (2007) Ligand identification using electron-density map

correlations. Acta Crystallogr. D Biol. Crystallogr., 63, 101–107.

Winn,M.D. et al. (2011) Overview of the CCP4 suite and current develop-

ments. Acta Crystallogr. D Biol. Crystallogr., 67, 235–242.

Wolpert,D.H. (1992) Stacked generalization. Neural Netw., 5, 241–260.

Zoltowski,B.D. et al. (2007) Conformational switching in the fungal light sen-

sor vivid. Science, 316, 1054–1057.

Zwart,P.H. et al. (2004) Modelling bound ligands in protein crystal structures.

Acta Crystallogr. D Biol. Crystallogr., 60, 2230–2239.

Automatic recognition of ligands by machine learning 461


	bty626-TF1
	bty626-TF2
	bty626-TF3
	bty626-TF4
	bty626-TF5

