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Summary box

►► The Middle East respiratory syndrome-coronavirus 
is a high-priority pathogen identified by the WHO 
R&D Blueprint because of its high fatality rate, large 
geographical range of the dromedary camel reser-
voir and lack of medical interventions.

►► Accurate and accessible diagnostic tests are essen-
tial to outbreak containment and case management, 
as well as surveillance in both humans and animals, 
but available diagnostic tests are limited by incon-
sistent quality assessment, specimen acquisition 
issues and infrastructure requirements.

►► Diagnostic research and development (R&D) needs 
to include point-of-care testing options, syndromic 
panels for differential diagnosis, a greater under-
standing of viral and antibody kinetics, improved 
access to clinical specimens, and establishment of 
international reference standards.

Abstract
Diagnostics play a central role in the early detection and 
control of outbreaks and can enable a more nuanced 
understanding of the disease kinetics and risk factors for 
the Middle East respiratory syndrome-coronavirus (MERS-
CoV), one of the high-priority pathogens identified by the 
WHO. In this review we identified sources for molecular 
and serological diagnostic tests used in MERS-CoV 
detection, case management and outbreak investigations, 
as well as surveillance for humans and animals (camels), 
and summarised the performance of currently available 
tests, diagnostic needs, and associated challenges for 
diagnostic test development and implementation. A 
more detailed understanding of the kinetics of infection 
of MERS-CoV is needed in order to optimise the use 
of existing assays. Notably, MERS-CoV point-of-care 
tests are needed in order to optimise supportive care 
and to minimise transmission risk. However, for new 
test development, sourcing clinical material continues 
to be a major challenge to achieving assay validation. 
Harmonisation and standardisation of laboratory methods 
are essential for surveillance and for a rapid and effective 
international response to emerging diseases. Routine 
external quality assessment, along with well-characterised 
and up-to-date proficiency panels, would provide insight 
into MERS-CoV diagnostic performance worldwide. 
A defined set of Target Product Profiles for diagnostic 
technologies will be developed by WHO to address these 
gaps in MERS-CoV outbreak management.

Introduction
The Middle East respiratory syndrome-coro-
navirus (MERS-CoV) is an emerging virus 
associated with severe respiratory illness, first 
detected in 2012 in Saudi Arabia.1 As of 30 
October 2018, the WHO has been notified 
of more than 2254 laboratory-confirmed 
cases of MERS-CoV infection from 27 coun-
tries, including 800 deaths (figures  1 and 
2).2 MERS-CoV is one of the high-priority 
pathogens identified by the WHO R&D 
Blueprint because of its high fatality rate 
(~35%) for severe cases, large geographical 
range of the reservoir and lack of medical 

countermeasures, with critical knowledge 
gaps in veterinary and human epidemiology, 
immunity and pathogenesis.3 4 Currently, 
there are no licensed vaccines or therapies 
specific to MERS-CoV.

The WHO R&D Blueprint for Action to 
Prevent Epidemics is a global strategy and 
preparedness plan to strengthen the emer-
gency response to highly infectious diseases, 
including MERS-CoV, by fast-tracking the 
development of effective medical technolo-
gies that can be brought to patients during 
epidemics.4 This landscape analysis, comple-
mentary to the recent Food and Agriculture 
Organization (FAO)-Office International des 
Epizooties (OIE)-WHO MERS Global Tech-
nical Meeting report,5 provides an overview 
to the current status of MERS-CoV diagnos-
tics, including feedback from subject matter 
expert and developer interviews on the 
common challenges with test development 
and implementation, and identifies gaps for 
further research and development (R&D).
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Figure 1  MERS-CoV transmission and geographical range. Reprinted from emergencies preparedness, response—Middle 
East respiratory syndrome-coronavirus (MERS-CoV), WHO, MERS-CoV transmission and geographical range. Copyright 
(2018).

MERS-CoV reservoir
MERS-CoV is a zoonotic virus, and dromedary camels 
(Camelus dromedarius) are the reservoir host and the 
source of zoonotic transmission to humans.6–8 Drome-
daries appear to be only mildly symptomatic following 
infection and present a significant reservoir risk for spill-
over events.2 6 9 MERS-CoV RNA has been detected in 
dromedary camels in a number of countries, including 
Egypt, Oman, Qatar and Saudi Arabia, with evidence 
suggesting that MERS-CoV is also widespread in the 
Middle East, Africa and South Asia.5 8 10–35 Infection in 
camels is notifiable to the OIE.36 Individuals with close 
and frequent contact with dromedaries are at a higher 
risk for MERS-CoV infection than the general popula-
tion.37 38

Clinical indications and management
Coronaviruses are a family of viruses that can cause 
diseases in humans, ranging from the common cold to 
severe acute respiratory syndrome (SARS). The clin-
ical spectrum of MERS ranges from no symptoms (or 
asymptomatic infection), mild symptoms including fever, 
cough, gastrointestinal illness and shortness of breath, to 
severe disease including pneumonia, acute respiratory 

distress syndrome and death.2 39 Severe cases of MERS can 
result in respiratory failure, requiring mechanical ventila-
tion and support in intensive care. Risk factors for severe 
disease include a weakened immune system, older age 
(>60 years), and comorbidities such as diabetes, cancer, 
renal disease and chronic lung disease.40 41 Human-to-
human transmission spreads through close and unpro-
tected human contact, and more than half of reported 
MERS cases have occurred through nosocomial transmis-
sion.42–45 To prevent nosocomial infections, WHO and 
others recommend using standard infection and preven-
tion control measures when caring for patients.46–48 WHO 
also recommends that contact tracing of all symptomatic 
and asymptomatic close contacts of the primary patient 
should be conducted routinely.49

Molecular epidemiology
The molecular epidemiology for MERS-CoV has not 
changed significantly since the initial human cases 
were detected in 2012. The current virus remains 99% 
identical to the sequences seen in the first human cases 
from 2012 as well as archived camel sera from 1983, with 
no increase in pathogenicity observed in the animal 
host.50–52 As genetic mutations could impact detection, 
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Figure 2  Confirmed global cases of MERS-CoV as of 18 September 2018. Reprinted from emergencies preparedness, 
response—Middle East respiratory syndrome-coronavirus (MERS-CoV), WHO, MERS-CoV transmission and geographical 
range. Copyright (2018).

immunotherapy and vaccine development efforts,53 
sequencing of MERS-CoV strains from camels and 
humans (after a zoonotic spillover) is important and is 
regularly being conducted in affected member states 
(WHO, personal communication, 2018).

Therapeutic and vaccine efforts
There are currently no prophylactic or therapeutic inter-
ventions of proven efficacy for any coronavirus infec-
tions. Without a specific therapy for MERS, treatment 
is supportive.5 54 55 Effective MERS therapeutics are still 
in the early stages of research and evaluation. Several 
broad-spectrum antiviral agents including nitazoxanide,56 
viral methyltransferase inhibition57 and nucleotide prod-
rugs58 have shown in vitro activity against MERS-CoV. 
Early results for novel MERS-specific therapeutics that 
inhibit viral replication or have specific neutralising 
activity are promising.47 59 60

The WHO R&D Blueprint for MERS has called for 
three types of vaccines: (1) dromedary camel vaccine 
to prevent zoonotic transmission, (2) human vaccine 
for long-term protection of persons at high exposure 
risk and (3) human vaccine for reactive use in outbreak 
settings.55 61 MERS-CoV vaccines are in the early stages of 
development,55 62 63 with one candidate vaccine in phase I 
clinical trials (NCT02670187).64 Neutralising monoclonal 
antibodies have been designed to target the MERS-CoV 
spike protein,53 65 with ChAdOx1 and modified vaccinia 
Ankara vectors also strong vaccine candidates,60 66 but 
none have yet advanced to clinical trials. To accelerate 

the process, the Coalition for Epidemic Preparedness 
Innovation has recently launched a call for proposals for 
the development of a human MERS-CoV vaccine in order 
to engage with developers interested in supporting these 
efforts.67

MERS-CoV diagnostics
Specimens and sampling
The WHO laboratory guidelines recommend nucleic 
acid amplification tests (NAAT) for diagnosis, using 
serology for diagnosis only when NAAT is not avail-
able.68 In suspected patients, a single negative test result 
does not exclude diagnosis. Repeat sequential sampling 
and testing is strongly recommended. The kinetics of 
MERS-CoV infection has been shown to vary widely across 
cases,40 69–72 prompting a more detailed investigation of 
viral and antibody dynamics across the broad range of 
sample types, disease states and host factors.73 74

The best NAAT test sensitivity is achieved using speci-
mens from the lower respiratory tract (sputum, tracheal 
aspirates or bronchoalveolar lavage), where MERS-CoV 
replication occurs at higher and more prolonged levels 
of MERS-CoV RNA, typically between 106 and 1010 
copies/mL.72 75 MERS-CoV viral load is generally higher 
for severe cases, with more prolonged viral shedding 
than mild cases. Viral load concentrations, which may be 
undetectable at early-stage infection, generally peak in 
the second week after symptom onset, and then drop to 
undetectable in survivors by the fourth week from onset.
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Table 1  Diagnostic capacity vs setting

Infrastructure 
requirements
(example)

Training 
requirements
(example)

Test 
process 
time

MERS-
CoV target 
population

MERS-CoV 
inhouse or 
LDTs (n)

MERS-CoV 
commercial 
tests (n)

Neutralisation High/BSL-3
(reference 
laboratory)

High
(advanced lab 
technician)

5 days Human, camel >3 0

NAAT reference High/BSL-3
(reference 
laboratory)

High
(advanced lab 
technician)

2–3 hours
(1–2 hours 
prep)

Human, camel >3 >15

NAAT POC Moderate/BSL-2
(district hospital)

Moderate 
(laboratory 
technician)

1–2 hours Human 1 0

ELISA, IIFT High to moderate
(regional lab, 
district hospital)

Moderate
(laboratory 
technician)

3–4 hours Human, camel >5 >5

RDTs Low
(clinic, health 
centre, field 
settings)

Low
(nurse, healthcare 
worker)

<30 min Human, camel 3 2

BSL, biosafety level; IIFT, indirect immunofluorescence test; LDT, lab-developed test; MERS-CoV, Middle East respiratory syndrome-
coronavirus ; NAAT, nucleic acid amplification test; POC, point of care; RDT, rapid diagnostic test.

Upper respiratory tract specimens (nasopharyngeal 
or oropharyngeal swabs) may also be used, but demon-
strate 100×-1000× lower viral load and can test negative 
for mild cases.76 77 If possible, both upper and lower respi-
ratory tract sampling are advised. Specimens outside the 
respiratory tract are not recommended for diagnosis, as 
they can test negative in both severe and mild presenta-
tion. Viral RNA has been detected in stool samples (104 
copies/mL), serum samples (103 copies/mL) and urine 
(102 copies/mL), more likely an indicator of severity as it 
typically precedes a poor clinical outcome.71 76 78

Serological diagnosis can be made using paired 
samples, more often used for research rather than 
diagnostic purposes, preferably with the initial sample 
collected in the first week of illness and the second 
collected 3–4 weeks later. If only a single serum sample 
can be collected, this should occur at least 3–4 weeks after 
onset of symptoms for determination of a probable case.

Table  1 presents an overview of the implementation 
requirements for MERS-CoV diagnostics (detailed commer-
cial product information is presented in online supplemen-
tary tables S1 and S2). Molecular diagnostics such as NAAT 
(eg, PCR) typically require sophisticated laboratory infra-
structure including biosafety cabinets,79 while most serolog-
ical tests (ELISA, indirect immunofluorescence test (IIFT)) 
can be run on the benchtop in a more modest laboratory 
environment, depending on sample preparation precau-
tions.80 81 Point-of-care (POC) tests are designed to be 
used outside of a traditional laboratory; near-POC tests are 
defined for rapid use in a laboratory near the patient, but 
are more automated and easy to use than the traditional 
laboratory test.72 75 POC tests such as low-complexity rapid 
diagnostic tests (RDTs) can be used at the bedside, typically 
with non-invasive samples after minimal training. Inhouse 

tests are described in sections below; commercial sources 
are listed in online supplementary tables S1 and S2.

Molecular diagnostics
NAATs are currently the standard for MERS-CoV diag-
nosis, as these tests (typically reverse transcriptase PCR 
(RT-PCR)) have the highest sensitivity at the earliest time 
point during the acute phase of infection. Following 
the WHO guidelines, two different targets on the 
MERS-CoV need to be detected by RT-PCR to confirm a 
case. MERS-CoV assays to detect the upstream envelope 
gene (upE) followed by confirmation of open reading 
frame 1A (orf1a), 1B (orf1b) genes or nucleocapsid (N) 
genes for confirmation have been developed.55 82 Most 
commercial PCR tests perform parallel screening for 
the upE gene with confirmation by the orf1a, orf1b or N 
genes (most commonly upE + orf1a).

Initial NAAT tests for MERS-CoV were developed as 
inhouse tests, following the first detection of MERS-CoV 
in the Middle East.83–86 Inhouse tests are not necessarily 
subject to quality control or regulation, and may not 
be rigorously validated; in some cases, inhouse tests are 
eventually developed into commercial products through 
collaboration and licensing efforts.50 83 84 87–89 Commercial 
assays may undergo an international and/or incountry 
regulatory process; once on the market they can be inde-
pendently evaluated for sensitivity, specificity and limit of 
detection.78 90 As of 2018, there are several commercial 
NAAT tests available for MERS-CoV, including duplex 
and multiplex panels (see online supplementary table 
S1).

Serological assays
Serology is not widely performed for diagnosing acute 
MERS-CoV infection; however, it has been a useful tool 

https://dx.doi.org/10.1136/bmjgh-2018-001105
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to determine the extent of infection around clusters and 
in seroepidemiological studies in animals and humans. 
Seroconversion typically occurs during the second and 
third week after symptom onset; data suggest that low 
antibody titre in the second week or delayed seroconver-
sion is more closely associated with mortality than high 
viral load.71 74 MERS-CoV seroconversion may not be 
observed for some patients, notably with mild or asymp-
tomatic infection, and can show cross-reactivity with anti-
bodies to other coronaviruses.42 69

Serological methods for the detection of antibodies 
against MERS-CoV include ELISA, IIFT and neutralisation 
tests. MERS-CoV serological assays can employ commer-
cial reagents or proprietary monoclonal antibodies as 
capture agents.87 91 92 Many MERS-CoV ELISA tests are 
labelled for research use only, with little or no clinical 
validation data available. Similar to the ELISA, IIFT is 
used when it is difficult to evaluate specific antigens indi-
vidually by enzyme immunoassays or there is a preference 
for broader analysis of an immobilised specimen. IIFT 
microscopy assay can probe the entire antigen spectrum 
of the specimen, and is often designed for simultaneous 
detection of antibodies against biochemically distinct 
antigens. Neutralisation is a method for detecting anti-
MERS-CoV antibody activity via inhibition of infection or 
replication,69 93 performed as plaque reduction neutral-
isation, microneutralisation (MN) and pseudoparticle 
neutralisation (ppNT). MN is labour-intensive and slow, 
requiring at least 3–5 days for results; neutralisation tech-
niques other than ppNT require biosafety level 3 contain-
ment as they involve live virus cultures.94

RDTs can leverage the same antibody/antigen capture 
agents as ELISA but in a lateral flow strip cartridge.95 This 
enables a fast 10–30 min time to result, but with a 100-fold 
lower detection sensitivity than ELISA.91 92 Follow-up 
confirmatory testing is therefore required. RDTs are 
typically paired with minimally invasive specimen collec-
tion (blood, oral fluid, nasal swabs) so that they can 
be used with minimal training outside of laboratory 
settings. Early prototypes for MERS-CoV RDTs have been 
developed,87 92 96 with commercial RDTs for detection 
of MERS-CoV in camels and humans available (online 
supplementary table S2). The human MERS-CoV RDT 
does not appear to be widely used, perhaps due to the 
more invasive processing required for lower respiratory 
specimens, as well as sensitivity issues for upper respira-
tory specimens. The camel MERS-CoV RDT is used with 
upper respiratory specimens; however, test sensitivity 
varies depending on specimen sampling and infection 
kinetics.97

Multiplex panels
At the early stages, the symptoms of MERS-CoV infection 
can mimic diseases such as influenza, pneumonia, SARS 
and other respiratory infections. A syndromic approach 
involves testing for pathogens based on a syndrome such 
as fever or acute respiratory distress; a shift from individual 
tests to multiplex panels can quickly identify or eliminate 

likely pathogens from a single specimen. For analysis 
of circulating reservoirs, multiplex microbead-based 
immunoassays have been used to detect IgG antibodies 
for multiple pathogens.98 99 Multiplex, syndromic panels 
that include MERS-CoV have been demonstrated using 
PCR-based panels including MERS-CoV, showing similar 
limits of detection to single assays.89 100 101 Commercial 
respiratory panel tests including MERS-CoV have also 
recently been developed (see online supplementary table 
S1).

Challenges for MERS-CoV diagnostics
Harmonisation and communication
There is a need for international consensus and adop-
tion of minimum standards for tests used in diagnosis, 
surveillance and research, following WHO’s recom-
mended algorithm for human cases82 and OIE recom-
mendation for animal health.36 Harmonisation of the 
testing process can be achieved by building consensus 
and capacity across international and incountry labora-
tories. In order to enable and sustain the capacity for a 
rapid outbreak response, laboratories must have access 
to high-quality reagents and instrumentation, along with 
technical support and cold-chain transport when neces-
sary. In addition, international reference panels would 
achieve a more standardised training for external quality 
assessment (EQA) and quality control. Building on 
mandatory case reporting,102 an international MERS-CoV 
data sharing platform that includes case exposure history 
and sequence data would greatly facilitate the knowledge 
base across the MERS-CoV community.103–106

Clinical validation
Understanding MERS-CoV viral dynamics across a broad 
range of specimen types is critical to establishing the limits 
of detection and timing of diagnostics in order to make 
the greatest impact for diagnosis, case management and 
surveillance. Ensuring a test has appropriate sensitivity 
and specificity is a major challenge in the development of 
diagnostics for novel and rare pathogens, as there is often 
a very limited supply of well-characterised clinical mate-
rial. Especially during the early stage of an outbreak, clin-
ical evaluation must often be performed in the affected 
countries by laboratories working closely with the Minis-
tries of Health. Typically only a small number of patient 
specimens are shared outside of the affected countries 
due to strict import and export regulations, particularly 
for ‘dual-use’ pathogens.107 108 Specifically, the provi-
sions of the Nagoya protocol have significant impact on 
the access to genetic materials for both commercial and 
non-commercial applications.109 110

In particular, the development and validation process 
for new diagnostics could be accelerated if well-char-
acterised specimens and reference standards could be 
more easily obtained. EQA can be useful for evaluation 
of test performance, as shown with evaluations of both 
inhouse and commercial assays for MERS-CoV,111–113 and 
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more recently a global proficiency testing programme 
used to assess laboratory detection of MERS-CoV.114 Even 
after validation, a substantial amount of reference mate-
rial is required for quality control; often manufacturers 
must develop their own calibration standards to maintain 
supply and to control lot-to-lot variability. International 
reference standards and qualified specimen panels can 
accelerate the development and validation of diagnostic 
tests. In particular, the WHO International Biological 
Reference Preparations (as provided by member states) 
serve as reference sources for ensuring the reliability of 
in vitro biological diagnostic procedures used for diag-
nosis of diseases and treatment monitoring, including 
MERS-CoV. Several international institutes also provide 
specimens for validation; these groups typically have a 
defined pathogen/disease focus with a corresponding 
archive of biological reference materials; however, the 
supplies may be limited (see online supplementary mate-
rial 1).

POC testing
Currently, MERS-CoV diagnosis by PCR requires a labo-
ratory with sophisticated facilities and biosafety cabi-
nets. The turnaround time to receive a test result can 
take days to weeks, depending on laboratory proximity, 
sample transport options and laboratory processing 
capacity,72 75 and infrastructure requirements place most 
PCR systems in reference laboratories, which may not be 
ideal for diseases like MERS-CoV that recommend imme-
diate isolation for infections detected across a variety 
of settings.81 115 116 A more nimble approach is needed 
for MERS-CoV case detection and triage,92 117 and at 
border crossings for animal surveillance, quarantine and 
targeted vaccination.11 21 87 118 The FAO-OIE-WHO MERS 
Technical Working Group has given a clear call for the 
development of an RDT to improve identification and 
isolation of primary human cases in healthcare facilities.5

Serological RDTs are ideal for low infrastructure 
settings such as a primary health clinic, home or field 
testing. However, specimen collection remains a key chal-
lenge for MERS-CoV, as the recommended lower respira-
tory specimens are difficult to obtain outside of a hospital 
setting. Upper respiratory specimens such as nasal swabs 
are easy to obtain and work well in conjunction with 
RDTs for camels, but these specimens generally have low 
virus titre in humans, thus limiting current use of RDTs 
to animal testing.87 92 96 Improvement of the current RDT 
detection chemistry, if feasible, may support the future 
use of these tests in humans, at least for rapid triage in 
highly infectious cases.

POC and near-POC microfluidic platforms enable 
a more flexible, but still highly sensitive approach for 
near-patient NAAT testing in decentralised settings. 
Near-POC NAAT platforms are compact and self-con-
tained, with automated sample preparation for processing 
in minimal laboratory settings, which most healthcare 
workers can be trained to operate within a day.119–121 
Recent publications describe MERS-CoV assays designed 

for POC PCR,89 loop-mediated isothermal amplification 
assay122 and paper-based sensor detection123; however, no 
MERS-CoV assays are currently available for the existing 
near-POC platforms. Given that PCR is now the standard 
for MERS-CoV diagnosis, it would be highly desirable to 
have an automated, self-contained NAAT assay that can 
be readily deployed in a field or clinic setting.

Syndromic approach
Syndromic testing can be valuable during the early stages 
of an outbreak, in order to distinguish MERS-CoV from 
other respiratory infections or identify cases of coinfec-
tion.100 124 A syndromic panel could be effective in expe-
diting pathogen and outbreak identification, especially 
with technologies that can screen for multiple pathogens 
simultaneously.125 Using the panel approach, a defini-
tive diagnosis could enable timely decisions about triage, 
treatment, infection control and contact tracing.126 While 
the per-test cost rises with test complexity, including addi-
tional reagents and more sophisticated instrumentation, 
a rapid and efficient diagnosis scheme can impact inter-
vention and infection control and can be cost-saving 
overall.127 128 As respiratory diseases are both regional 
and seasonal,129–131 region-specific panels may be more 
cost-effective.132 Multiplex panels offer the alternative for 
a ‘bundled’ testing paradigm; however, if not routinely 
used (if the market is small), then developers may be 
reluctant to support the test for diagnostic use, which 
requires additional investment for validation and regu-
lation.

Surveillance
Surveillance can be an effective method to identify the 
initial stages of outbreak, but it requires routine and 
effective sampling. The impact of surveillance testing 
depends on the test sensitivity and specificity, sampling 
rates, kinetics of the disease, and whether the target 
is animal or human populations. Most surveillance 
sampling is performed in the field, either through popu-
lation-based or ‘hot spot’ sampling. For MERS-CoV, it 
may be difficult and expensive to implement routine 
surveillance in dromedary camel stock, as they repre-
sent a significantly large reservoir but may suffer only 
mild effects from MERS-CoV infection, if any. The ideal 
surveillance tool would be a highly sensitive and field-ap-
propriate screening test. Per-test cost is also an important 
factor along with ease of implementation.

Conclusion
This review has identified diagnostics currently avail-
able for MERS-CoV and highlighted ongoing challenges 
caused by critical gaps in diagnostics to support outbreak 
management. RDTs offer the potential for rapid POC 
screening for MERS-CoV; however, there are practical 
limits to implementing lower respiratory sample acqui-
sition outside of a hospital setting, limiting feasibility. 
POC or near-POC NAAT platforms provide an oppor-
tunity for implementation of automated, self-contained 
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testing in hospitals and clinics with limited training in 
endemic-prone areas. Expansion of test menu options 
for existing POC or near-POC NAAT platforms will 
strengthen incountry response capacity to endemic 
diseases and simultaneously ensure countries are 
prepared for future pandemics. Syndromic multiplex 
panels may expedite differential diagnosis of MERS-CoV 
from other endemic respiratory diseases, but further 
analysis is needed to inform implementation and cost-ef-
fectiveness in the context of regional and seasonal detec-
tion. There is also a need for more sensitive serological 
assays with lower cost and minimum cross-reactivity that 
can be used as surveillance tools.

A more detailed understanding of MERS-CoV viral 
and antibody kinetics is needed across the broad range 
of sample types in order to optimise the use of existing 
assays and to address ongoing technical challenges in the 
detection of mild and asymptomatic infections. Surveil-
lance continues to be important for the detection of 
MERS-CoV spillover events; however, questions remain 
on the cost-effectiveness of routine screening of the large 
reservoir camel population. In addition, support towards 
sample biobanks with well-characterised specimens and 
reference standards will facilitate diagnostic develop-
ment and quality assurance for MERS-CoV diagnostics 
worldwide. In order to achieve the goals of the R&D 
Blueprint efforts, WHO is identifying key Target Product 
Profiles for diagnostics in order to mobilise funding and 
resources to support the development and implementa-
tion of the most critically needed tests.
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