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Abstract

Understanding the effect of media on disease spread can help improve epidemic forecasting

and uncover preventive measures to slow the spread of disease. Most previously introduced

models have approximated media effect through disease incidence, making media influence

dependent on the size of epidemic. We propose an alternative approach, which relies on

real data about disease coverage in the news, allowing us to model low incidence/high inter-

est diseases, such as SARS, Ebola or H1N1. We introduce a network-based model, in

which disease is transmitted through local interactions between individuals and the probabil-

ity of transmission is affected by media coverage. We assume that media attention

increases self-protection (e.g. hand washing and compliance with social distancing), which,

in turn, decreases disease model. We apply the model to the case of H1N1 transmission in

Mexico City in 2009 and show how media influence—measured by the time series of the

weekly count of news articles published on the outbreak—helps to explain the observed

transmission dynamics. We show that incorporating the media attention based on the

observed media coverage of the outbreak better estimates the disease dynamics from what

would be predicted by using media function that approximate the media impact using the

number of cases and rate of spread. Finally, we apply the model to a typical influenza sea-

son in Washington, DC and estimate how the transmission pattern would have changed

given different levels of media coverage.

Introduction

Disease transmission takes place in a dynamic social environment, wherein individual health

decisions are guided by cultural norms, peer influence, and media influence. Recognizing the

importance of individuals’ actions in preventing the spread of infection, researchers are begin-

ning to explore mathematical models that incorporate such actions [1, 2]. These models have

been used to inform strategies to control the spread of disease [3] and to quantify the role of

individual protective actions in controlling several outbreaks, including the 2014 Ebola out-

break in West Africa [4], the 2003 SARS outbreak in Hong Kong [5] and the 2009 H1N1 out-

break in Central Mexico [6].
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A number of models have linked media communication about a disease to protective action

[7–11]. These models postulate that media influence increases with the number of infected

people [7–9], or with both the number of infected people and the rate of change [10, 11]. Mod-

els typically assume that media influence reduces the effective transmission rate, slowing the

spread of disease. The susceptible-infected-recovered (SIR) framework used to evaluate the

effect of media on disease transmission can be described by the following set of equations:

_S ¼ � f I;
dI
dt
; p1; . . . ; pk

� �

bSI ð1Þ

_I ¼ f I;
dI
dt
; p1; . . . ; pk

� �

bSI � gI ð2Þ

_R ¼ gI ð3Þ

N ¼ Sþ I þ R ð4Þ

In effect, the population (of size N) is divided into three groups: those susceptible to infection

(S), those currently infected (I), and those who have recovered from infection (R). The effect of

media, f, is an increasing function of the number of infected individuals and/or the rate of

change in the number of infected, controlled by a set of parameters, p1. . .pk. The media func-

tion slows the rate of transmission of the disease when the number of cases is high or when the

prevalence of disease is increasing rapidly, creating interesting disease spread dynamics, such

as multi-wave outbreaks [8, 9]. It is not clear, however, that the media function formalization

suggested by the models adequately reflects actual media influence [12]. The choice of media

function critically influences the shape of the disease spread [12], making accurate parameteri-

zation of media crucial. Models are just beginning to consider ways to incorporate data on

actual media coverage [13].

Here, we introduce a network-based model, in which disease spread is transmitted through

local interactions between individuals, and the probability of transmission is affected by media

coverage. We assume that media attention to the outbreak increases self-protection (e.g. hand

washing, face mask usage, and compliance with social distancing), which, in turn, decreases

disease spread. We model media signal as a function of the actual number of articles published

about the disease. Therefore, the media signal in our model is independent of the size of the

outbreak. The proposed model is an extension of our previous model, ALARM [14], which

attempted to quantify the level of social reaction to disease, but which did not take the role of

media into account in the disease transmission process. The key observation that drove the

formulation of the ALARM model was that public reaction to a disease is frequently dispropor-

tionate to the number of cases. Some outbreaks with very few cases trigger outsized public

alarm—for example, the handful of cases of Ebola in the US—while larger and more deadly

outbreaks—such as the annual outbreaks of seasonal influenza—generate little interest. Factors

such as the novelty of the disease in the area and its clinical severity play a role in shaping the

public reaction. By incorporating actual media data into models of disease transmission, we

can begin to account for those factors in the transmission dynamics and evaluate their signifi-

cance in the disease transmission process.

We apply the model to the case of 2009 influenza A(H1N1) transmission in Mexico City

and show how media influence—measured by the time series of weekly count of news articles

published on the outbreak—helps to explain the observed transmission dynamics. We show

that the observed media coverage of the outbreak differs substantially from what would be

Media-based infectious disease transmission model
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predicted by approximate media functions. Finally, we apply the model to a typical influenza

season in Washington, DC and estimate how the transmission pattern would have changed

given different levels of media coverage, showing that under typical conditions media has lim-

ited effect on the spread of disease.

Methods

We introduce a model of disease spread that incorporates media attention and influence in

disease spread dynamics. In the model, we explicitly quantify media influence, which leads to a

reduction in the per-contact probability of disease transmission.

SIR model formulation with media function incorporating media

coverage data

Our proposed SIR model incorporating media effects differs from earlier formulations [7–11]

in two primary ways. First, the media effect is formulated as a function of the actual number of

articles published about the disease and is therefore independent of the size of the outbreak.

Secondly, instead of the standard deterministic approach with homogenous mixing, we opt to

develop a network-based model that operates in discrete time. Since the number of media arti-

cles published is discontinuous with respect to time, the use of a discrete time approach is help-

ful for model parameterization.

Disease transmission. We implement a susceptible-infected-recovered (SIR) model [15],

adapted for network-based modeling [16, 17]. Each individual, i’s, disease state at time t is rep-

resented by Xi
t 2 fS; I;Rg, where S = susceptible, I = infected, and R = recovered. Infection is

transmitted through pair-wise contact with infected neighbors on the disease network. At time

t, an infected individual infects each of her susceptible neighbors, independently, with proba-

bility pt. Thus, if Xi
t ¼ I, Xj

t ¼ S, and i and j are neighbors on the disease network, then:

Xj
tþ1 ¼

(
I with probability pt
S with probability 1 � pt:

ð5Þ

Following infection, individuals recover after TR time periods. Therefore, if Xi
t� 1
¼ S and

Xi
t ¼ I, then:

Xi
t ¼ � � � ¼ Xi

tþTR � 1
¼ I and Xi

tþTR
¼ R: ð6Þ

When vaccine is available, we implement an imperfect vaccine, with a delay of d time units

before becoming effective. For influenza, the delay before full immunity is approximately two

weeks [18]. Vaccines are distributed randomly among the susceptible population, according to

the estimated number of vaccines administered during the week. Let η be the vaccine efficacy.

Then, if susceptible individual, i, is vaccinated at time t:

Xj
tþd ¼

(
R with probability Z

S with probability 1 � Z:
ð7Þ

It has been shown that formulating imperfect vaccination as an all-or-nothing effect with

probability of vaccination success equal to the vaccine efficacy correctly estimates the direct

effectiveness of the vaccine [19].

Media function. We assume that media attention to the outbreak increases self-protective

behavior (e.g. hand washing, face mask usage, and compliance with social distancing) [20–23],

which, in turn, decreases disease transmission [24, 25]. Specifically, we define the per-contact

Media-based infectious disease transmission model
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transmission probability at time t as the product of a baseline transmission probability, p0, and

the media function, g:

pt ¼ gðM0; . . . ;Mt; . . .MT; a;lÞp0; ð8Þ

where Mt is the number of news articles published at time t, and α and λ are parameters, con-

trolling the change in transmission probability resulting from media influence and the relative

weight of recent and prior information. The media function, g, decreases as the exponentially-

weighted moving average of the number of news articles increases, meaning that transmission

is most slowed when there have been many articles published about the disease in the recent

past. We used the exponentially-weighted moving average of news articles, assuming that arti-

cles published in the recent past would continue to have bearing on current behavior but that

the level of influence would decrease with time. Let θt be the exponentially-weighted moving

average of the number of news articles, with parameter λ 2 (0, 1], controlling the relative

weight of recent and prior information:

yt ¼ lðMt þ ð1 � lÞMt� 1 þ ð1 � lÞ
2Mt� 2 þ � � � þ ð1 � lÞ

tM0Þ: ð9Þ

Then we define the media function, g, as follows:

gðM0; . . . ;Mt; a;lÞ ¼ e� ayt : ð10Þ

The parameter α> 0 determines the degree to which media reduces the per-contact transmis-

sion rate.

Study design

We conducted several studies, including a sensitivity analysis of the model and several evalua-

tions of the model in real-world scenarios. The first study explored the sensitivity of the model

to variations in α and λ. We examined both the changes to the media function and to the

resulting epidemic curve. In the second study, we incorporated real media coverage data into a

model of 2009 A(H1N1) in Mexico City. We then compared the fitted media function with

proposed approximate media functions, showing that, for this outbreak, approximate media

functions cannot replicate the observed transmission dynamics. The final study demonstrated

how the model could be used for analysis of a more typical disease outbreak. Simulations were

fit to data from the 2014-2015 influenza season in Washington, DC. We compared the reduc-

tion in cases resulting from the observed level of media coverage with that expected from hav-

ing no media coverage or increasing it ten times.

Parameter sensitivity analysis. Simulations were conducted on a network of 500,000

individuals (scale-free network with mean degree of 4), with 10 initially infected individuals.

For baseline per-contact infection probability, p0 = 0.35, and time to recovery, TR = 1, we simu-

lated outbreaks varying the media parameters, α 2 {0.0, 0.005, 0.01} and λ 2 {0.1, 0.2, 1.0}. One

week was used as the value of TR, since influenza cases typically recover within a week. The

value of p0 was selected to generate an outbreak affecting a large portion of the population.

Varying the values of p0 and TR does not affect the interpretation of the roles of α and λ. Simu-

lations were conducted on a network of 500,000 individuals (scale-free network with mean

degree of 4), with 10 initially infected individuals. We then examined the effects of the parame-

ters, α and λ, on the shape of the media function and the disease spread. For these simulations,

there were five weeks without media, followed by five weeks with 100 articles each. The

remaining weeks had no news articles published.

Mexico City. In 2009, there were two major outbreaks of H1N1 in Mexico City. The first

began in mid-April [26]. The outbreak was relatively small and was controlled quickly via

Media-based infectious disease transmission model
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social distancing and a public information campaign [27]. The second outbreak began in

August and spread much more widely than the first outbreak. The spring outbreak was met

with intense media interest, while the fall outbreak received relatively little coverage. As there

is no reason to believe that there were meaningful changes in the infectivity of the H1N1 virus

or the social structure of Mexco City between the spring and fall outbreaks, the differences

between the outbreaks needed to be explained by differences in media coverage.

In the model, the spring and fall outbreaks were simulated with the same parameters (i.e.

p0, TR, α and λ) and the network structure was unchanged between simulations. Individuals

who were infected during the spring outbreak were transferred to the recovered state prior to

beginning the simulation of the fall outbreak, since they would have been immune to the virus.

To model Mexico City we used a scale-free network [28] with mean degree 2k and 885,108

nodes [29], each representing 10 people.

The quality of fit was determined by mean absolute error (MAE) between the observed

total number of cases and the median number of simulated cases per week taken over 1000

replications of the model, with the spring and fall outbreaks weighted equally. The MAE was

weighted in order to prevent the fall outbreak, which lasted much longer, from being fit at the

expense of the spring outbreak:

MAEweighted ¼ ðMAEspring þMAEfallÞ=2: ð11Þ

A greedy search of the parameter space, with random restarts, was implemented in order to

determine the parameters that minimized the MAE.

Washington, DC. We fit data from the 2014-2015 influenza season in Washington, DC in

order to evaluate the model on a typical seasonal disease outbreak. As with the Mexico City

simulations, the quality of fit was determined by mean absolute error (MAE) between the

observed total number of cases and the median number of simulated cases per week taken

over 1000 replications of the model. Using the best-fit parameters, we considered the effects of

having no media coverage or ten times more media coverage on the the spread of disease. By

doing so, we could obtain an estimate of the role of media in limiting the spread of the disease.

Simulations were to scale, with 658,893 individuals [30] reflecting the Washington, DC popu-

lation, and were conducted on a scale-free network [28] with mean degree 2k.

Data

For the Mexico City and Washington, DC studies, we collected data on the spread of disease,

as well as the volume of media coverage and the availability of vaccines.

Mexico City. Data on number of H1N1 influenza cases per week were collected by the

Mexican Social Security Institute [26]. H1N1 vaccines were not available until late November,

2009—too late to have had a large effect on the spread of disease in Mexico. Therefore, we did

not consider vaccination in our analysis.

For influenza, reported confirmed cases represent only a small fraction of total cases. There-

fore, it was necessary to scale the confirmed influenza cases. Seroprevalence studies, which

estimate the percentage of the population with antibodies against the disease, are rare, and

none is available for Mexico City. The best estimate of seroprevalence comes from a study con-

ducted in Monterrey, Mexico. The researchers found that 33% of the general population of

Monterrey had been infected [31]. We assumed that the disease prevalence in Mexico City was

also 33%, and scaled the confirmed cases appropriately. We note, however, that there is sub-

stantial uncertainty surrounding the true size of the outbreak.

News articles published online which specifically reference the H1N1 influenza outbreak in

Mexico City were collected by HealthMap, an Internet-based biosurveillance company [32].

Media-based infectious disease transmission model

PLOS ONE | https://doi.org/10.1371/journal.pone.0197646 February 4, 2019 5 / 13

https://doi.org/10.1371/journal.pone.0197646


The spring outbreak of H1N1 in Mexico City attracted intense media interest. There were 815

breaking news articles collected by HealthMap prior to June 1—about 20 articles per day from

April 22 to June 1. News coverage of the fall outbreak was much more limited. Between Sep-

tember 17 and December 6, 66 published articles were collected by HealthMap—less than 1

article per day.

Washington, DC. The number of new influenza type A hospitalizations per week for the

2014-2015 influenza season was obtained from the Washington, DC Department of Health

[33]. There were 615 hospitalizations during the season, which is typical for seasonal influenza

in Washington, DC. The Washington, DC hospitalized cases were scaled to reflect total cases,

assuming a hospitalization rate equal to the US hospitalization rate during the 2009-2010

H1N1 epidemic [34]. Data on the number of vaccinations per month was gathered from the

US CDC [35]. The number of vaccinations during each week was estimated by assuming that

all days within the month had the same number of vaccinations. The 2014-2015 influenza vac-

cine had low effectiveness, only 18% [36]. News articles about influenza in HHS Region 3—the

region containing Washington, DC—were collected by HealthMap. Coverage of the outbreak

was limited. The number of news articles per week peaked at the height of the influenza season,

with 25 articles collected for the week ending January 1, 2015.

Results

Parameter sensitivity analysis

In our proposed formulation, media exposure causes individuals to implement protective

behaviors, reducing the per-contact transmission probability. Two parameters, α and λ, deter-

mine how the media signal affects the rate of transmission. Specifically, λ determines the rela-

tive importance of recent and prior news coverage in determining individual behavior. As λ
increases, the relative weight of recent news articles increases, compared with prior news arti-

cles. The parameter α controls the degree to which media affects behavior. As α increases,

media exerts greater influence on behavior, leading to greater reduction in the per contact

transmission probability. The effects of λ and α on the number of cases and the media function

g are shown in Fig 1 for an outbreak in a population of size 500,000 with five weeks of constant

media coverage beginning five weeks after the beginning of the outbreak. As λ increases, the

effect of media becomes more prominent but for a shorter duration. As λ increases, peak

height of media function increases (for α greater than 0), indicating that the effect of media

gets stronger (lower transmission probability). On the other hand, the rate at which the media

function value goes back to one (no media effect) from the peak (maximum media effect) also

increases as λ increases, suggesting a shorter duration of media effect. This phenomenon is

explained by exponentially-weighted moving average function describing λ: smaller λ consid-

ers the media coverage from further back in the past, creating the lingering media effect as

observed in the long tail of the media function curve for λ = 1. High values of λ can produce

two wave outbreaks, if the value of α is high enough to dramatically slow transmission but not

high enough to altogether stop transmission for long enough for the outbreak to die out. As α
increases, media causes greater reductions in the rate of transmission.

Case study: Mexico City

Best fit simulations. We fit the simulated epidemic curve from our model to the spring

and fall outbreaks of H1N1 in Mexico City. An excellent overall fit was achieved, with a

weighted mean absolute error of 1243 cases. In particular, the protective action implemented

as a result of the media surge during the spring outbreak was sufficient to slow the outbreak.

Media-based infectious disease transmission model
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The fall outbreak, in contrast, spread nearly uninhibited, without generating extensive media

attention. Fig 2 shows the simulation fit to the observed weekly influenza cases in Mexico City.

The best-fit parameters are listed in Table 1. The best-fit value of λ = 0.15 indicates that

prior information about the disease decayed slowly. The largest value of θt was 92.5, and was

achieved during the week starting April 26. During the week of April 26, the baseline per-

contact infection probability was reduced by 89%. During the spring outbreak (April 5 through

July 5, 2009), the average reduction in the baseline per-contact infection probability, resulting

from media influence, was 62.4%. During the fall outbreak, the average reduction was 17.0%.

Fig 2. Simulation fit for 2009 A(H1N1) in Mexico City. Individuals took protective action after receiving a signal from the media that the disease was

spreading. This protective action alone was sufficient to control the disease spread in the spring outbreak, accurately replicating the overall dynamics of

the disease in Mexico City.

https://doi.org/10.1371/journal.pone.0197646.g002

Fig 1. The effects of media function parameters. The effects of the media parameters, λ and α, on (A) the median

number of cases per week and (B) the media function, g, are shown. As λ increases, the effect of media influence

becomes more prominent but for a shorter duration. As α increases, media causes greater reductions in the rate of

transmission.

https://doi.org/10.1371/journal.pone.0197646.g001

Media-based infectious disease transmission model
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Comparing model performance using different media functions and not using a media

function. The most common media function from the literature takes the form:

f I;
dI
dt
; a; b

� �

¼ e� max 0; aIþbdIdtf g : ð12Þ

In this formulation, the transition rate from the susceptible to infected disease states decreases

with f. When a = 0 and b> 0, increases in the rate of change of the infected population lead to

reductions in the transmission rate. When a> 0 and b = 0, increases in the size of the infected

population lead to reductions in the transmission rate. When a> 0 and b> 0, both the size of

the infected population and the rate of change affect the transmission rate. Fig 3A compares

the proposed media function, g, with the media function, f, each using its best-fit parameters

Table 1. Best-fit parameters for Mexico City 2009 A(H1N1). All parameters were fit to data.

Parameter Description Value

p0 Baseline per-contact infection probability 0.336

k 1

2
the mean degree of the network 2

α Effect of media on protective behavior 0.024

λ Relative weight of recent information compared with prior information 0.15

https://doi.org/10.1371/journal.pone.0197646.t001

Fig 3. Comparison of media functions and simulated best-fit curves for 2009 A(H1N1) in Mexico City. (A) The proposed media function, g, based

on the number of published news articles (red line with square markers) is compared with the media function, f, based on the number of infected

individuals and the change in the number of infected individuals (blue line with triangular markers). (B) The number of news articles per week is

depicted. (C) The best-fit curve using the proposed media function is compared with the best-fit curve using the media function f. The proposed media

function accurately captures both the large reduction in the spread of disease during the spring outbreak, due to social distancing, and the insignificant

reduction during the fall outbreak. Media functions based on the number of cases and rate of spread reduce the spread of disease more substantially

during the fall than during the spring, largely underestimating the fall outbreak.

https://doi.org/10.1371/journal.pone.0197646.g003

Media-based infectious disease transmission model
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for Mexico City. Function f was fit using the same implementation, the best-fit parameters val-

ues equal to p0 = 0.319, k = 2, a = 1.2 × 10−5, and b = 9.4 × 10−5. The actual number of news

articles per week and the observed number of new cases per week are shown in Fig 3B and 3C.

Fig 3C compares the best-fit curve obtained using the proposed media function with the best-

fit curve obtained using the media function f.
Since f is dependent upon the rate of change and size of the infected population, f results in

the greatest reduction in transmission during the fall outbreak, instead of the spring outbreak.

As depicted in Fig 3C, f overestimates the fall outbreak and underestimates the spring out-

break, resulting in much greater mean absolute error of 3733, three times the MAE obtained

using the proposed media function. We have also compared the best-fit curve obtained using

the proposed media function, g, with the best-fit curve obtained without using a media func-

tion to evaluate the effectiveness of the media function. The best-fit parameters were p0 =

0.289 and k = 2. The model without a media function overestimates both the spring and fall

outbreaks, resulting in MAE of 1865, fifty percent over the MAE obtained using the proposed

media function. During the spring outbreak where significant media coverage was observed,

the model overestimates the peak by over twice as much. In order to replicate the dynamics of

the two outbreaks of disease without considering additional control measures, consideration

of factors affecting behavior other than the number of infected cases or rate of change in the

number of infected cases is necessary. We found that use of actual media data fills the void,

allowing us to account for the heightened attention to the disease in the spring that led to the

extreme social distancing that eventually curtailed the outbreak.

The proposed model relies on volume of news coverage to estimate the media signal. We

have compared the results of modeling disease spread dynamics over time using real data on

news coverage as a proxy of media signal versus that utilizing the number of cases and their

temporal change and that not using any media signal. We have demonstrated a significantly

better model fit when utilizing the proposed media signal.

Case study: Washington, DC

We fit our model to the epidemic curve from the 2014-2015 influenza season in Washington,

DC. The resulting fit had a MAE of 2818 cases. Our simulations indicate that media had lim-

ited effect on behavior during the 2014-2015 influenza season in Washington, DC, due to the

small number of news articles published. In the best-fit simulations, the effect of each news

article on protective behavior was moderate (α = 0.004, Table 2), but the overall effect of media

was small. Excluding the effects of media resulted in only a 3.5% increase in the median num-

ber of cases (Fig 4). When the number of news articles per week was increased ten-fold in our

simulations, media played a greater role, with a 33.5% decrease in the median number of cases.

Discussion

Previous models of infectious disease transmission that incorporate media influence have

modeled media as a function of the rate of transmission and the number of cases of a disease,

Table 2. Best-fit parameters for 2014-2015 influenza in Washington, DC. All parameters were fit to data.

Parameter Description Value

p0 Baseline per-contact infection probability 0.199

k 1

2
the mean degree of the network 2

α Effect of media on protective behavior 0.004

λ Relative weight of recent information compared with prior information 0.23

https://doi.org/10.1371/journal.pone.0197646.t002

Media-based infectious disease transmission model
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making it dependent upon the size of the outbreak. We have shown that media signal can be

successfully modeled using real data on news coverage, and that using actual news coverage

data better captures the disease dynamics compared to the estimation using the media function

that uses the number of cases and rate of change in the number of cases.

First, we demonstrated the theoretical properties of the proposed media function. The

media function is affected by the observed volume of media coverage, as well as two parame-

ters, λ and α, with λ controlling the relative weight of recent and prior information in deter-

mining behavior and α controlling the extent to which transmission is slowed by media

exposure. As λ increases, the effect of media is more prominent and has shorter duration. As α
increases, the spread of disease is slowed more quickly, though there can be multiple waves of

infection when the values of α and λ are both relatively high.

Secondly, we provided a real world example that illustrates where models incorporating

data on actual media coverage can be most useful. Although there were no significant differ-

ences in the per-contact transmission rate of the H1N1 virus or population structure, the

spring outbreak of H1N1 in Mexico City was quickly contained, while the fall outbreak grew

to epidemic proportions. Differences in social distancing help to explain the different dynam-

ics of the two outbreaks. The spring outbreak received extensive attention in the Mexican

press. By incorporating data on the volume of media coverage of the outbreak and by assuming

that media influence leads to increased protective practices and therefore reduction in the per-

contact transmission probability, we were able to account for the social distancing that took

place during the spring outbreak but which did not occur during the fall outbreak, achieving a

good overall fit to the epidemic curves for the spring and fall outbreaks using the same model

for both outbreaks. The Mexico City H1N1 example shows that there is not always a the direct

Fig 4. Simulated epidemic curves for 2014-2015 influenza season in Washington, DC. (A) The best-fit parameters achieved an excellent fit to the

observed cases, with a mean absolute error of 2818 cases. (B) Few news articles were published about influenza in HHS Region 3, during the 2014-2015

influenza season. (C) Using the best-fit parameters, we simulated outbreaks with varying levels of media coverage. The median number of cases in

simulations conducted with the observed level of media coverage was not substantially different than the median number in simulations conducted

assuming no media coverage. Increasing the number of news articles per week by ten times, resulted in a 33.5% decrease in the median number of cases,

compared with the simulations conducted with the observed number of news articles per week.

https://doi.org/10.1371/journal.pone.0197646.g004
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link between case counts and media attention. Therefore, it is important to quantify actual

media attention in infectious disease models.

Public reaction to common or seasonal diseases can be limited [14], even though such dis-

eases are often deadly. Using data from the 2014-2015 influenza season in Washington, DC,

we explored the role of media in a typical, seasonal outbreak and demonstrated that the low

level media interest exhibited during the influenza season was associated with only a small

reduction in the number of cases. Media may be a tool for public health officials to communi-

cate preventive measures to the public during disease outbreaks. Therefore, the effect of signifi-

cantly increasing the volume of media coverage was explored. It was found that a ten-fold

increase in the volume of media coverage resulted in a 33.5% decrease in the median number

of infections. Thus, media may be a moderately effective means to prevent disease

transmission.

In conclusion, we have proposed a data-driven approach to incorporating the effect of

media into models of infectious disease transmission, and have illustrated the effectiveness of

the approach by fitting data from recent disease outbreaks. We believe media reaction can

serve as a good proxy for the population reaction to disease outbreaks, and is substantially eas-

ier to measure accurately and quickly. Thus, as our study illustrates, incorporating media cov-

erage allows for more accurate modeling of infectious disease outbreaks during which there

are substantial changes in population behavior.
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