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Abstract

The progressive FastICA peel-off (PFP) is a recently developed blind source separation approach 

for high-density surface EMG decomposition. This study explores a novel application of PFP for 

automatic decomposition of multi-channel intramuscular electromyogram signals. The automatic 

PFP (APFP) was used to decompose an open access multichannel intramuscular EMG dataset, 

simultaneously collected from the brachioradialis muscle using 6 to 8 fine wire or needle 

electrodes. Given usually limited number of intramuscular electrodes compared with high-density 

surface EMG recording, a modification was made to the original APFP framework to dramatically 

increase the decomposition yield. A total of 131 motor units were automatically decomposed by 

the APFP framework from 10 multichannel intramuscular EMG signals, among which 128 motor 

units were also manually identified from the expert interactive EMGLAB decomposition. The 

average matching rate of discharge instants for all the common motor units was (98.71±1.73) %. 

The outcomes of this study indicate that the APFP framework can also be used to automatically 

decompose multichannel intramuscular EMG with high accuracies, even though the number of 

recording channels is relatively small compared with high-density surface EMG.
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I. Introduction

Electromyography (EMG) decomposition is the process of breaking down the multi-unit 

EMG signal into the contributions of the underlying motor unit action potential (MUAP) 

trains. It provides a unique approach to observing the behavior of spinal motor neurons in 

human subjects and the MUAP waveform information, thus playing a fundamental role for 

investigation of motor control and examination of neuromuscular diseases. EMG 

decomposition is usually performed using intramuscular (needle or fine wire) EMG signals. 

Various intramuscular EMG decomposition methods have been developed, among which 

template matching is most frequently used to sort out different motor units based on MUAP 

morphological features. Due to the invasive character of needle or fine wire electrode, most 

intramuscular EMG studies use single channel recording[1–4]

The strategy of template matching, however, is very difficult to apply to conventional surface 

EMG because of much higher levels of MUAP superposition and MUAP similarity (from 

different motor units), as well as lower SNRs, compared with intramuscular EMG. In recent 

decades, advances in amplification technology and manufacture of high-density surface 

electrode arrays make it feasible to simultaneously record dozens or even hundreds channels 

of surface EMG signals from a single muscle[5, 6]. The spatial information of an electrode 

array can supplement temporal information for EMG decomposition through 2-dimensional 

MUAP template matching [7], which allows extraction of a small number of motor units at 

low muscle contraction levels. More importantly, advanced blind source separation (BSS) 

techniques can be applied to perform high-density surface EMG decomposition. For 

example, two BSS approaches, the Convolution Kernel Compensation (CKC)[8, 9] and the 

Progressive FastICA Peel-off (PFP)[10, 11], have been proposed to decompose high-density 

surface EMG, which allow extraction of a relatively large number of motor units at higher 

muscle contraction levels.

Although BSS techniques have achieved great success in high-density surface EMG 

decomposition, they are not necessarily limited to surface EMG processing. In principle, 

BSS techniques can also be extended to multichannel intramuscular EMG decomposition 

[12]. In this study, we set to explore application of the PFP framework for automatic 

decomposition of multichannel intramuscular EMG signals. The PFP framework was 

proposed for high-density surface EMG decomposition, which combines FastICA[13] with a 

peel-off strategy for progressive identification of motor unit firing spike trains [10]. To 

facilitate its convenient and wide application, the automatic version of the PFP, i.e. the 

automatic PFP (APFP), has also been developed to automatically decompose high-density 

surface EMG[11]. The performance of the APFP has been validated with different 

approaches, including mathematical modeling of high-density surface EMG signals [10, 11], 

comparison of its decomposition yield with the CKC decomposition[14], two-source 

validation using simultaneous high-density surface EMG and intramuscular EMG 

recordings[15]. In addition, taking advantage of surface EMG characteristics of amyotrophic 

lateral sclerosis, we have developed a novel two-source approach for validating the 

performance of APFP[16].
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In this study, we present an application of the APFP framework for automatic decomposition 

of a set of multichannel intramuscular EMG signals. These signals were previously 

decomposed by EMGLAB, an interactive EMG decomposition program designed for 

intramuscular EMG[2]. In this novel APFP application, we have made a modification to the 

original framework to make it more suitable for decomposition of multichannel 

intramuscular EMG with relatively a small number of recording channels. To evaluate the 

decomposition performance, the automatic decomposition results of the APFP were 

compared with those from expert interactive decomposition using EMGLAB [2]. The 

findings indicate that the APFP framework can be applied to automatically decompose 

multichannel intramuscular EMG signals with high accuracy.

II. METHODS

A. Data description

The multichannel intramuscular EMG dataset used in this study is an open access dataset, 

which can be freely downloaded for research purposes at http://www.emglab.net, a forum for 

sharing software, data, and information related to EMG decomposition, developed by 

McGill et al. [2]. The dataset was previously used to test an automatic multichannel 

intramuscular EMG decomposition method proposed by Florestal et.al [17]. (The data are 

available as dataset R008 at http://www.emglab.net). In this study, the same dataset was 

processed by the APFP framework to automatically extract motor unit activities from the 

multichannel intramuscular EMG.

The downloaded or processed multichannel intramuscular EMG signals were collected from 

the brachioradialis muscles of three male healthy subjects (age: 36, 27, 27). The signals were 

recorded simultaneously from three or four pairs of fine wire electrodes (custom, Jari 

Electrode Supply, Gilroy, CA) and a 27 gauge disposable monopolar needle electrode (EMG 

Wholesale Supply, Milford, OH) inserted at different locations (by distances ranging from 

10 to 100 mm to different wire pairs) along the proximodistal axis of the muscle during 20 

second low-level or moderate-level isometric contractions. The signals were recorded in a 

monopolar fashion, resulting in a total of 6 to 8 signals per contraction. Several contractions 

were recorded per subject, with the fine wire electrodes remaining in place and the needle 

electrode being moved between contractions. The signals were amplified and filtered (5 Hz 

to 5 kHz) (Viking, Nicolet Biomedical, Madison, WI), and digitized at a sampling rate of 10 

kHz per channel. A total of 10 multichannel intramuscular EMG signals were recorded from 

the three subjects and digitally high-pass filtered using a 500 Hz first-order filter. We were 

able to access all the 10 signals (data files) from the aforementioned website. For each of the 

10 data files, the relevant information (channel location, type of electrode) is indicated in the 

corresponding hea file.

Favorably, each multichannel intramuscular EMG data was also decomposed by EMGLAB, 

an interactive EMG decomposition program [2]. The decomposition results from this expert 

interactive or manual processing can also be found in the corresponding eaf file. For each 

decomposed motor unit, the most confident channel (for extracting this motor unit) is 

indicated in the eaf files, with a label from c1 to c8, representing channel 1 to channel 8, 

respectively. If an uncertain motor unit occurs which cannot be clearly identified from any of 
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the channels, the motor unit is labeled as c0. Those motor units with a label of c0 were, 

therefore, excluded from the analysis in this study. If a motor unit is an anomalous one that 

only fired a couple of times during the contraction, it was also excluded from further 

analysis.

B. APFP

The APFP framework can be viewed as a process of progressively expanding the set of 

motor unit spike trains [10, 11]. In the framework, the initial set of motor unit spike trains 

can be estimated by FastICA. Then, a peel-off procedure is employed to subtract the 

estimated MUAPs of the identified motor units from the original signal. Such a procedure 

mitigates the effect of the already identified motor units on the FastICA convergence, so 

more motor units can emerge when processing the residual signal again with FastICA. In 

order to ensure the reliability of the extracted motor unit spike trains, a series of automatic 

screening and revision steps can be performed before the peel-off procedure. For each output 

of FastICA, a valley-seeking clustering method is used to extract and cluster the spikes. 

Then, a constrained FastICA is applied to assess each clustered spike train and correct 

possible erroneous or missed spikes. Multiple constrain parameters are proposed for final 

screening of the spike trains according to motor unit firing behavior. The framework is 

iterative by repeatedly running the peel-off procedures until no additional new motor units 

can emerge. For more details about APFP framework, please refer to [11].

C. Modification to APFP

When applying the APFP framework to the downloaded multichannel intramuscular EMG 

signals, we found that the decomposition yield was not as high as what we could usually 

achieve from high-density surface EMG signals. After careful analyses, we found that this 

performance degradation was attributed to the constrained FastICA procedure, which is the 

most important or featured step in the APFP framework. In the previous PFP/APFP 

framework used for high-density surface EMG decomposition, we recommended that 

constrained FastICA should be applied to the original surface EMG signals to avoid possible 

cumulative errors in the residual signals induced by the peel-off processing, thus facilitating 

identification and correction of any possible erroneous or missed spikes. However, although 

this approved to be effective for high-density surface EMG decomposition, we found it was 

difficult to achieve a similar effect when applying this strategy to the multichannel 

intramuscular EMG signals with only 6 to 8 recording channels. Based on the characteristics 

of multichannel intramuscular EMG signals, we modified to apply constrained FastICA to 

the residual signals instead of the original signals. The justification and benefits of this 

modification can be found in the discussion section. Note that when updating the residual 

signal, we used all the identified firing spike trains to estimate MUAP waveforms from the 

original signal, rather than using the new identified spike trains to perform estimation from 

the previous residual signal. The APFP decomposition program was terminated when no 

new motor units could be extracted from the iterative peel-off procedures.

D. Performance evaluation

In order to evaluate the automatic decomposition performance of the multichannel 

intramuscular EMG using the APFP framework, we compared its decomposition results with 
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those from the expert interactive decomposition using EMGLAB [2]. The two 

decompositions of the same signals were performed independently using two methods of 

different nature. It is expected that common motor units from the two decompositions can be 

found. Cross-checking of the agreement on the timing of the common motor units discharge 

can give an estimation of the decomposition accuracy. If the two independent 

decompositions of the same signals agree on the timing of a particular motor unit discharge, 

we judge they are both correct. Otherwise, they would both have to involve an error of 

exactly the same amount. The probability of this situation arising is very small. In this study, 

we calculated the matching rate (MR)[14], false negative rate (FNR)[18] and false discovery 

rate (FDR)[19] of common motor units as follows [14–16]:

M R =
2 ⋅ NC O M
NA + NM

⋅ 100%

F N R =
NM − NC O M

NM
⋅ 100%

F D R =
NA − NC O M

NA
⋅ 100%

where NA and NM are the total number of the spikes identified by APFP and manual 

decomposition using EMGLAB, respectively. NCOM stands for the number of the common 

spikes.

Considering the slight time shift of the estimated spike train by APFP, the cross-correlation 

function [10] was used to facilitate alignment of the two spike trains before calculating the 

parameters mentioned above. In this study, we accepted two spikes from different spike 

trains as corresponding spikes when they were located within ±0.1 ms (after alignment). 

Note that the matching rate measures the matching degree of two spike trains, and it can be 

used as an indicator to determine whether two spike trains are corresponding or common 

spike trains (from the same motor unit). We accepted that the two spike trains were 

corresponding spike trains when their matching rate was greater than 80% [15]. In addition 

to matching rate, the false negative rate and the false discovery rate of common motor units 

were used to measure the proportion of mismatches of the interactive EMGLAB 

decomposition and the APFP decomposition, respectively.

For a more comprehensive view of the consistency of two decompositions, we also 

calculated the mean discharge rate (MDR) and the coefficient of variation (COV) of the 

inter-spike intervals of each identified motor unit for both decompositions. For each of the 

two indexes, the difference between EMGLAB and APFP decompositions was measured by 

unpaired sample t-test. In addition, the signal-to-interference ratio (SIR), as defined in [20], 

was calculated for each of the decompositions:
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S I R (i) = 1 −
E xi(n) − ∑ j zi j(n) 2

E xi
2(n)

⋅ 100%

where xi (n) denotes the ith EMG channel and zij (n) is the MUAP train of the jth motor unit 

reconstructed form the ith channel. For motor units decomposed from EMGLAB, their 

MUAPs were also estimated by the peel-off method used in the APFP framework. Then, we 

compared SIR of the two decompositions by paired sample t-test to examine if there was a 

significant difference in the energy of residual signals.

Finally, in order to quantify the difficulty of the decomposition, we calculated the 

decomposability index (DI) for each common motor unit [17]:

D Iki =
min mki , mki − mk * i

Vi
RMS

where mki is the MUAP of the kth motor unit in the ith channel, mk*i is the MUAP most 

similar to mki among the other MUAPs in the ith channel. V i
R M S is the root mean square 

amplitude (RMS) of the ith channel, and ǁ ǁ stands for the Euclidean norm. The DI 

measures the separation between mki and the template nearest to it (or the baseline), 

normalized by the RMS of the EMG channel (interference plus baseline noise). The overall 

decomposability of the kth motor unit was measured by the composite DI (CDI), defined as 

the norm of the individual DIs [17].

III. RESULTS

A total of 10 sets of multichannel intramuscular EMG signals were automatically 

decomposed using the APFP framework. Figure 1 shows an example of the raw 

intramuscular EMG signal of one channel (Dataset R0081310), the reconstructed signal 

using the decomposed motor units from the APFP, and the residual signal, respectively. For 

this multichannel intramuscular EMG signal, 16 motor units were automatically extracted 

using the APFP framework. By contrast, 25 motor units were manually extracted from this 

multichannel intramuscular EMG signal by the expert interaction decomposition using 

EMGLAB, including all the 16 motor units from the APFP decomposition.

Figure 2 shows the MUAP templates obtained from the two decompositions on 7 different 

channels (Dataset R0081310). The MUAP templates estimated from APFP are marked in 

red, and those from EMGLAB are marked in blue. We can observe that the MUAP templates 

of the 16 common motor units are very consistent, and the 9 additional motor units identified 

by EMGLAB but not by APFP have relatively small amplitude. Note that we did not align 

the spike trains before MUAP estimation (thus drifts between the corresponding MUAP 

waveforms of the two groups can be observed in the figure). For each of the 16 common 

motor units, a comparison of the discharge instants is shown in Figure 3. The motor unit 

discharge instants are represented by red bars for the automatic decomposition with APFP 
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and blue bars for the expert interactive decomposition with EMGLAB. The black dots in the 

figure indicate all the inconsistent discharge instants from the two decomposition methods 

(by visual observation). An interesting observation is that although the two motor unit spike 

trains (MU 8 and MU 12) appear identical in all the discharge instants, the calculation of 

their matching rate does not reach 100%. This implies that the calculated matching rate 

might be slightly lower than the actual matching rate. A discussion is provided (in the 

Discussion section) to better understand the origins of this phenomenon (slight 

underestimation of the matching rate).

Figure 4 plots the relationship between matching rate and composite decomposability index 

(CDI), which shows how the matching rates vary with SNR of the motor units. Note that 

there is an outlier in the bottom right corner. This motor unit has the highest CDI but the 

lowest matching rate. This is also an example showing the phenomenon of matching rate 

underestimation, which is discussed in the Discussion section.

Table I presents the decomposition results of all the 10 multichannel intramuscular EMG 

signals. For each signal, the number of identified motor units using the two different 

decomposition methods and the number of common motor units are illustrated. The signal-

to-interference ratio, mean discharge rate and coefficient of variance of inter-spike intervals 

are also presented in the table. For these three parameters, ‘*’ indicates that the two groups 

have a significant difference with p<0.05. For the common motor units of each signal, the 

calculated matching rates (including minimum, maximum, and average values) of the 

discharge instants can also be found in the table, together with the average false negative 

rate, and the average false discovery rate.

To summarize, from the 10 processed multichannel intramuscular EMG signals, a total of 

131 motor units were automatically decomposed by the APFP framework, while a total of 

187 motor units were manually identified from the expert interactive EMGLAB 

decomposition. There are a total of 128 common motor units identified from the two 

different decomposition methods (which indicates that almost all the identified motor units 

by the APFP can also be found from the EMGLAB decomposition). Calculated from all the 

common motor units, the average matching rate of discharge instants was (98.71±1.73)%, 

the average false negative rate was (1.05±1.67)%, and the average false discovery rate 

was(1.49±2.08) %.

IV. Discussion

A. Modification to original APFP

This study investigates automatic decomposition of multichannel intramuscular EMG using 

the APFP framework, which has previously been tested and validated in high-density surface 

EMG decomposition. In the APFP framework, the peel-off processing is crucial to 

decompose superimposed motor units. To overcome the cumulative errors induced by the 

peel-off processing, the constrained FastICA was designed to apply to the original high-

density surface signal to assess the reliability of the identified firing spike train from 

FastICA output, and fix possible erroneous or missing spikes. This strategy approved to be 

effective for high-density surface EMG decomposition. However, for the multichannel 
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intramuscular EMG signals processed in this study, we found that although applying the 

constrained FastICA to the original signal could extract large amplitude motor units, this 

processing sometimes had a difficulty in automatically extracting small amplitude motor 

units. More specifically, during the peel-off procedures, even we can visually identify a clear 

spike train from the FastICA output of a residual signal (indicating a new motor unit), it is 

likely that the output of applying constrained FastICA to the original signal may still be a 

mix of several spike trains. This is mainly due to insufficient number of intramuscular EMG 

channels. For the to-be-assessed small amplitude motor units (by constrained FastICA), 

applying the constrained FastICA to the original signal can maximize the amplitude at their 

corresponding discharge instants. However, with the information provided by only 6 to 8 

intramuscular EMG channels (or actually even less number of channels for a specific motor 

unit given the selectivity of the electrode), the constrained FastICA output of the discharge 

instants of the relatively large amplitude motor units in the original signal cannot be 

sufficiently suppressed. As a result, the small amplitude motor units will be discarded by the 

automatic judgement criteria of APFP, thus affecting the decomposition yield (but not the 

accuracy of the identified motor units).

Given the above, we adjusted to apply constrained FastICA directly to the residual signals 

rather than the original signal in this multichannel intramuscular EMG decomposition task. 

The rationale for this is that compared with surface EMG signal, intramuscular EMG signal 

usually has considerably higher SNRs and less MUAP superposition levels, thus the 

estimation of motor unit spike trains and MUAP waveforms tends to be more reliable than 

surface EMG. As a result, the residual signal can be considered as an alternative to the 

original signal to apply the constrained FastICA. For the small amplitude motor units, we 

found this modification can smoothly pass the constrained FastICA validation, thus 

significantly increasing the decomposition yield. In this study, we were able to automatically 

identify an average of 7 motor units from each multichannel intramuscular EMG by 

applying the constrained FastICA to the original signal. In contrast, an average of 13 motor 

units can be automatically extracted if applying the constrained FastICA to the residual 

signals. It should be noted that this modification is a compromised solution to overcome 

insufficient number of intramuscular EMG channels. If there are sufficient channels, we still 

recommend to apply constrained FastICA to the original signal.

B. Firing instants drift

During APFP, only those spike trains extracted from clear output of FastICA or constrained 

FastICA can be accepted as reliable motor unit firing spike trains. One interesting 

observation in this study is that even two firing spike trains look exactly the same, the 

calculated matching rate does not reach 100% (Figure 2). This is due to the phenomenon of 

firing instants drift. A similar phenomenon can be suggested by the outlier motor unit (in the 

bottom right corner) of Figure 4, which has the highest CDI but the lowest matching rate. 

After carefully examining the two spike trains of this motor unit, we found that in fact they 

are very consistent. This motor unit discharged sparsely and lasted approximately 10 

seconds. However, a small amount of spike drift beyond the preset time tolerance (0.1 ms) 

resulted in a lower match rate. When extracting the firing spike train from the output of 

FastICA or constrained FastICA, we set the positions with maximal amplitude as spike 
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firing instants. However, due to noise, superposition and the MUAP waveform instability, 

there might be a small amount of firing instants with imposed drift that exceeds the preset 

time tolerance, thus being excluded from common firing instants. In addition, different pre-

processing filters may also influence identification of the MUAP peak positions. Given 

these, one should note that the firing instants estimated by EMGLAB or APFP (both having 

the firing instants drift phenomenon) are not necessarily the gold standard representing the 

true firing instants, and as a result, the spike drifts between the two decomposition methods 

are not necessarily the true drifts from the real firing instants. Therefore, the time tolerance 

requirement can be appropriately relaxed to avoid underestimation of the matching rate. For 

example, the matching rate of the outlier motor unit in Figure 4 will increase to 98.9% if the 

tolerance is increased to0.5 ms. Note that due to the sparsity of firing spike train, an 

appropriate tolerance increase will hardly introduce fake-matched firing instants.

Although the slight firing instant drifts do not necessarily affect the correct estimation of the 

firing analysis of motor unit spike train, they are among various factors that affect the 

accuracy of the MUAP waveform estimation during the peel-off procedures. The extraction 

of motor unit firing spike train and waveform estimation actually have a mutual effect, and 

therefore, affect each other. Once the motor unit firing spike trains are determined, the APFP 

provides an optimal solution of estimating MUAP waveforms in the sense of least-squares 

error. This is sufficient to fulfill the primary motivation of applying the peel-off strategy, i.e. 

mitigating the effect of the already identified motor units on the convergence of FastICA, 

thus facilitating extraction of more motor units.

C. APFP vs. EMGLAB

The performance of EMGLAB and APFP was compared in decomposing the same 

multichannel intramuscular EMG signals. It was found that for the dataset used in this study, 

the decomposition yield of the interactive EMGLAB program is usually higher than that 

from the automatic decomposition with the APFP framework. This is primarily due to the 

different signal processing strategies used by the two approaches. The APFP is essentially a 

BSS technique with automated serial peel-off procedures. It remains a challenge to extract 

those motor units in the residual signal that have small amplitude, comparable to background 

noise or accumulative errors induced by previous multiple peel-off procedures. In contrast, 

EMGLAB decomposition is a manually supervised method primarily based on template 

matching. It is possible to decompose the small amplitude motor units if their MUAP 

templates can be determined, although the decomposition accuracy of these small amplitude 

motor units is anticipated inferior to those large amplitude ones.

In addition, due to high selectivity of intramuscular EMG recording (especially given the 

large distance between the fine wire electrodes in this study), it is very likely that a specific 

motor unit may not be captured by all the intramuscular electrodes (Fig. 2). This can be 

viewed as an advantage for EMGLAB decomposition but will affect the performance of 

FastICA. Note that with random initial values we set to FastICA, the small amplitude motor 

units are difficult to emerge. To facilitate extraction of these motor units, one approach is to 

first search their samples at the firing instants and then accordingly set the FastICA’s initial 

values, which may help drive FastICA to converge to these small amplitude motor units. 
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This remains further investigation for improving the decomposition yield of the APFP 

framework.

In a previous study, Negro et.al. proposed a BSS method by essentially combining the CKC 

and PFP designs to decompose multichannel intramuscular EMG signals (recorded by a 

novel thin-film 16 to 32-channel electrode array) and high-density surface EMG signals 

(recorded by a 64-channel surface grid)[12]. The BSS decomposition results of 

intramuscular EMG were also compared with its expert interactive decomposition using 

EMGLAB. With a dramatically higher number of intramuscular EMG channels (than the 

current study), up to 8 to 24 motor units were decomposed using the BSS. However, the 

number is still lower than that extracted using EMGLAB. In addition, we note that the 

reported rate of agreement (ROA) [12, 20], which is an indicator measuring the matching 

degree of two decompositions, varied from 45% to 100%. By definition, ROA used in [12] 

and matching rate used in this study should be very close when the number of mismatches is 

much smaller than the number of matches. Therefore, a motor unit with ROA as low as 45% 

between BSS and EMGLAB (processing the same intramuscular EMG signal), or as low as 

70% between intramuscular and surface EMG signals (processed by the same BSS method), 

may indicate the decomposition performance of this motor unit is not reliable or stable. The 

occurrence of this phenomenon may be due to the low ROA threshold (30%) in judging 

whether two spike trains can be accepted as a common motor unit[12]. Similar to matching 

rate, ROA of random spike train pairs from two different decompositions should 

demonstrate a bimodal distribution [15]. Therefore, it is more reasonable to set the threshold 

relatively high, since a too low threshold is likely to overestimate the number of decomposed 

motor units and compromise the decomposition accuracy.

V. Conclusion

This study explored automatic decomposition of multichannel intramuscular EMG signals 

using the APFP framework, which was previously developed for high-density surface EMG 

decomposition [10, 11]. To facilitate the best performance of APFP for the limited number 

of intramuscular EMG channels, a modification was made to the original APFP framework. 

The automatic decomposition results of APFP were compared with those manually achieved 

from the interactive EMGLAB[2] decomposition. The outcomes indicate that APFP can be 

extended as a reliable approach for decomposition of multi-channel intramuscular EMG 

signals, even when the number of recording channels is relatively small compared with high-

density surface EMG.
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Fig. 1. 
An example of the original signal (one channel, after high-pass filtering), the reconstructed 

signal from the 16 motor units automatically extracted by APFP, and the residual signal 

(Dataset R0081310).

Chen et al. Page 12

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The estimated MUAP templates at 7 different channels from the two decompositions. The 

red MUAPs are estimated from APFP, and the blue ones are estimated from EMGLAB 

(Dataset R0081310).
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Fig. 3. 
A comparison of discharge instants of common motor units determined from APFP (red 

bars) and EMGLAB (blue bars) respectively. The black dots indicate (visually) inconsistent 

discharge instants. The calculated matching rate of each common motor unit is indicated on 

the right. (Dataset R0081310)

Chen et al. Page 14

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The relationship between matching rate and composite decomposability index.
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