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Abstract

The molecular mechanisms underlying various types of synaptic plasticity are historically 

regarded as separate processes involved in independent cellular events. However, recent progress 

in our molecular understanding of Hebbian and homeostatic synaptic plasticity supports the 

observation that these two types of plasticity share common cellular events, and are often altered 

together in neurological diseases. Here, we discuss the emerging concept of homeostatic synaptic 

plasticity as a metaplasticity mechanism with a focus on cellular signaling processes that enables a 

direct interaction between Hebbian and homeostatic plasticity. We also identify distinct and shared 

molecular players involved in these cellular processes that may be explored experimentally in 

future studies to test the hypothesis that homeostatic synaptic plasticity serves as a metaplasticity 

mechanism to integrate changes in neuronal activity and support optimal Hebbian learning.

Introduction

One of the defining features of the nervous systems in both invertebrate and vertebrate 

animals is that they are plastic – changes in the activity and connectivity of the various 

circuits within the nervous system enable learning, encode memory, and drive behavior. 

Hebbian and non-Hebbian types of synaptic plasticity have been described as two major 

mechanisms driving synaptic connectivity changes as a result of synaptic activity 

experience. Hebbian plasticity, referred to here as input-specific synaptic modifications in 

the forms of long-term potentiation (LTP) and long-term depression (LTD), is thought to 

underlie associative learning through bidirectional modification of synaptic strength [1]. The 

direction of modification is determined by the levels of the postsynaptic responses relative to 

a “modification threshold” (θm), which itself is subject to modification (the sliding threshold 

model or BCM model) [2,3]. Hebbian plasticity is thought to be self-reinforcing with a 

tendency to run away if left unchecked (e.g. LTP leads to synaptic strengthening and more 

correlated pre- and post-synaptic activity, which facilitates additional LTP). The non-
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Hebbian (sometimes also called anti-Hebbian) plasticity was brought into the picture as a 

“corrective” mechanism to prevent runaway Hebbian plasticity.

Significant progress has been made in the past two decades toward a molecular 

understanding of the mechanisms underlying Hebbian plasticity. It becomes clear that 

although synaptic strengthening (LTP) and weakening (LTD) push synaptic weight changes 

toward opposite directions by primarily up- or down-regulating presynaptic release 

probability and moving postsynaptic neurotransmitter receptors in or out of the synaptic 

membranes, the molecular signaling pathways leading to these changes are quite distinct – 

instead of sliding on the scale of activation of the same signaling pathway (one end of the 

scale being LTP and the other LTD), different molecular players are recruited to support 

opposite changes at synapses. What are the possible mechanisms that mediate the crosstalk 

between these distinct LTP- and LTD-driving signaling mechanisms in such a manner that 

they can be engaged in a coordinated fashion to achieve the “sliding” of the θm (i.e. 

metaplasticity)?

Homeostatic synaptic plasticity, as a major form of non-Hebbian plasticity, has been studied 

historically in a slightly different context. It is thought to stabilize neural networks through 

negative feedback-based modifications, thus countering the self-reinforcing nature of 

Hebbian plasticity [4]. Although Hebbian and homeostatic plasticity are believed to achieve 

distinct purposes (associative learning versus network stability), the biological parameters 

they modify are often the same. These parameters include, but are not limited to, neuronal 

excitability [5,6], synaptic strength [7–9], and – on a longer time scale – changes in the 

number of synaptic contacts [10,11]. A recent review on a similar topic did an excellent job 

covering in vivo evidence supporting the interactions between synaptic homeostatic and 

Hebbian mechanisms [12]. We have previously proposed the idea that local homeostatic 

synaptic plasticity, which potentially maintains activity stability in a neuronal 

subcompartment (e.g. a segment of dendrite or even single synapses) instead of the entire 

neuron [13–17], may function as a type of metaplasticity to modulate Hebbian plasticity 

[18]. In this article, we will first focus on the regulation of postsynaptic AMPA receptor 

(AMPAR) abundance as an example of a major converging point between Hebbian and 

homeostatic plasticity. We will discuss the cellular processes and the molecular players 

involved in each process to identify potential cellular ‘nodes’ through which homeostatic 

synaptic plasticity may act to impact Hebbian plasticity. In addition, we discuss possibilities 

that homeostatic plasticity deficit may contribute to impaired cognitive functions through 

changes that drive synaptic excitation/inhibition (E/I) imbalance in animal models of 

neuropsychiatric disorders

Synaptic retinoic acid (RA) signaling, homeostatic synaptic plasticity and 

their interaction with Hebbian plasticity

The discovery of RA’s involvement in homeostatic synaptic plasticity was a bit 

serendipitous. Acute RA treatment in cultured hippocampal neurons increases excitatory 

synaptic transmission with a mechanism that does not require its genomic action [19]. The 

search for RA synthesis mechanism revealed that it is suppressed by intracellular Ca2+ and 
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thus de-repression occurs during prolonged blockade of synaptic activity [19,20]. Putting the 

two findings together allowed us to uncover the central role of RA and its action on the RA 

receptor RARα [21] in synaptic silencing-induced homeostatic upregulation of excitatory 

synaptic strength (Figure 1). RA signaling also modulates inhibitory synapses in the 

opposite direction [22], thus acting as a master organizer to coordinate synaptic E/I balance 

in the context of homeostatic synaptic plasticity.

Aside from RA-dependent homeostatic synaptic plasticity, synaptic strength can also be 

modified homeostatically by RA-independent mechanisms. For example, Homeostatic 

synaptic plasticity induced by prolonged blockade of neuronal firing alone (e.g. tetrodotoxin 

(TTX) treatment to block voltage-gated sodium channels) does not require RA or local 

protein synthesis and therefore is not affected by RA synthesis blockers [20,23]. Synaptic 

activity blockade with co-treatment of glutamate receptor antagonists and TTX reduces 

dendritic Ca2+ concentration further below a critical level, triggers RA synthesis, and 

induces rapid compensation of synaptic strength by engaging local protein synthesis 

[13,19,20,24,25] (Figure 1). Thus, an important distinction between RA-dependent and RA-

independent homeostatic plasticity is that local protein synthesis activated by RA in 

neuronal dendrites allows homeostatic modulation of synaptic strength in potentially discrete 

subcellular compartments. As we discuss below, these different forms of homeostatic 

plasticity have differential impacts on subsequent Hebbian plasticity.

In the case of RA-dependent homeostatic plasticity, although synaptic RA signaling is not 

directly involved in Hebbian plasticity, altering synaptic strength with RA suppresses 

subsequent LTP expression [26] (Figure 1). RA-induced impairment of LTP can be rescued 

by protein synthesis inhibitors or RARα deletion, indicating RARα signaling and local 

protein synthesis play significant roles in the interaction between LTP and RA-dependent 

homeostatic plasticity [26]. Interestingly, chronic TTX treatment, which induces 

homeostatic upregulation of mEPSC amplitude in an RA-independent manner, has the 

opposite effect on LTP – it promotes greater LTP [27]. This is because in addition to 

upregulating strength of existing synapses, TTX treatment also increases the relative 

proportion of silent synapses by significantly increasing the formation of a number of new 

synapses that are functionally silent (e.g. AMPAR-lacking). LTP induction in TTX-treated 

slices leads to AMPAR insertion into and functional activation of these silent synapses, thus 

generating greater LTP than control slices [27]. A similar study using a longer (3–4 days) 

TTX treatment conducted in slightly older rat organotypic hippocampal slices concluded 

that the effect of circuit inactivity on silent synapse formation and subsequent LTP induction 

is age-dependent, and that TTX treatment reduces fidelity of presynaptic release and thus 

compromises LTP [28]. Further study is needed to resolve the exact mechanisms underlying 

the opposite outcomes from these seemingly similar treatments. However, it is worth noting 

that although RA-treatment and TTX-treatment both induce homeostatic upregulation of the 

strength of existing excitatory synapses, their impact on subsequent LTP induction is diverse 

due to their differential effect on silent synapse formation and/or presynaptic release, 

revealing the complex nature of the interaction between Hebbian and homeostatic plasticity.

In some of the studies discussed below probing molecular mechanisms of homeostatic 

synaptic plasticity downstream of RA synthesis, RA treatment was used as a proxy for 
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homeostatic synaptic plasticity induction, much similar to the use of DHPG to induce LTD 

in studies probing mechanisms of mGluR-dependent LTD. In this review, we will cover 

cellular events and molecular mechanisms involved in regulating excitatory synaptic strength 

in, but not limited to, RA-dependent homeostatic synaptic plasticity.

AMPA receptor trafficking – the final common pathway for excitatory 

postsynaptic modification

Similar to Hebbian plasticity, homeostatic synaptic plasticity is expressed post-synaptically 

as modulation of synaptic strength by up- or down-regulation of AMPA receptor (AMPAR) 

abundance in the postsynaptic density (PSD). Regulation of AMPAR-containing trafficking 

vesicles can occur at multiple stages of exocytosis and endocytosis.

Within the exocytosis process, the SNARE complex molecules for AMPAR-vesicle fusion 

has been studied in both LTP and RA-dependent homeostatic synaptic plasticity, and was 

shown that the SNARE components required for both types of plasticity are partially 

overlapping. Both processes require the R-SNARE synaptobrevin-2 (Syb-2) and the Q-

SNARE SNAP-47 [26,29]. However, the dependence on complexin and the other Q-SNARE 

syntaxins are different: LTP requires complexin and syntaxin-3 [29,30], while RA-induced 

AMPA receptor exocytosis requires syntaxin-4 and does not involve complexin [26]. 

Importantly, direct acute treatment with RA increases excitatory synaptic strength and 

blocks subsequent induction of LTP. The RA blockade of LTP can be reversed by syntaxin-4 

knockdown and prevention of RA-induced AMPA receptor insertion [26], indicating that the 

step of AMPA receptor exocytosis may act as a critical interaction point between some 

forms of Hebbian and homeostatic synaptic plasticity (Figure 1).

Another key step in regulated exocytosis is Ca2+-trigger vesicle fusion (e.g. Ca2+-dependent 

neurotransmitter release). Both RA- and LTP-mediated AMPAR exocytosis requires NMDA 

receptor (NMDAR) activation (we will come back to the specific point of NMDAR-

dependence later), suggesting that a Ca2+-triggered fusion process may be involved. Indeed, 

postsynaptic synaptotagmin-1 and synaptotagmin-7 act as redundant Ca2+-sensors for 

activity-regulated AMPAR exocytosis during LTP [31]. Curiously, RA-dependent AMPAR 

insertion is intact in synaptotagmin-1/7 double knockout neurons, indicating a yet-to-be-

identified Ca2+-sensor is involved for AMPAR exocytosis during homeostatic plasticity [31].

Down-regulation of excitatory synaptic strength in Hebbian (i.e. LTD) and homeostatic 

plasticity both involve endocytosis of AMPARs. The immediate early gene Arc/Arg3.1, 

upregulated by elevated synaptic activity [32], seems to be a central node in AMPAR 

endocytosis in both processes by recruiting clathrin-dependent endocytosis machinery to 

AMPARs and mediating their removal from the synapse [33–35]. Interestingly, aside from 

modulating AMPAR endocytosis, Arc also localizes to nucleus and suppresses GluA1 

transcription through expression of promyelocytic leukemia nuclear bodies [36], thus 

reinforcing the changes at synapse to weaken synaptic strength during homeostatic down 

scaling. Additionally, it was proposed that clathrin-independent constitutive endocytosis of 

AMPARs may be involved in homeostatic downscaling, which requires small GTPase Rac1 

and F-actin [37].
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In addition to components directly related to vesicular trafficking, posttranslational 

modification of AMPA receptors, in particular phosphorylation of AMPARs, also influence 

the trafficking pathways involved in synaptic plasticity. AMPAR synaptic targeting and 

channel properties are largely affected by phosphorylation of its C-terminal sequences [38]. 

Among the most studied, phosphorylation of the two serine residues in the C-terminal 

sequence of GluA1 (S831 and S845) appear to govern the conductance and trafficking of 

AMPARs in and out of synaptic membranes during LTP and LTD [39]. PKA-mediated 

phosphorylation of GluA1 S845 has been shown to promote plasma membrane insertion of 

GluA1 and synaptic retention, thereby facilitating LTP [40–43], whereas dephosphorylation 

of S845 by calcineurin (CaN) and other phosphatases has been correlated with AMPAR 

endocytosis and LTD [39,42,44]. Additionally, it has been suggested that regulation of 

GluA1 S845 phosphorylation by PKA and CaN is involved in AMPAR trafficking during 

bidirectional homeostatic synaptic plasticity in cortical neurons [45,46], but not in 

hippocampal neurons [47]. More recent evidence using GluA1 knockin mice lacking the two 

phosphorylation sites [48] further support the notion that the involvement of 

phosphorylation-dependent AMPAR trafficking in homeostatic synaptic plasticity may not 

be as universal but is brain region/neuronal type-specific [24].

Synaptic scaffold proteins – modulators of AMPAR trafficking

It is probably not surprising that many of the synaptic scaffold proteins are involved in 

synaptic plasticity as their roles in trafficking and synaptic stabilization of AMPARs are well 

established. PSD-95 and PSD-93 are membrane‐associated guanylate kinase (MAGUK) 

family proteins that have been shown to be involved in Hebbian and homeostatic synaptic 

plasticity [49–52]. MAGUK family proteins interact with many transmembrane proteins, 

including the transmembrane AMPAR regulatory proteins (TARPs) that are considered 

AMPAR auxiliary subunit instrumental for AMPAR surface and synaptic targeting [53,54]. 

TARPs are also known to participate in both Hebbian and homeostatic synaptic plasticity 

[55–58].

Given the significant roles of AMPAR C-terminal phosphorylation in its surface trafficking, 

scaffold proteins that anchor relevant kinases (e.g. PKA) and phosphatases (e.g. calcineurin) 

were also studied for their roles in synaptic plasticity. Indeed, non-MAGUK scaffold 

proteins such as PICK1, GRIP and AKAP150 contribute to Hebbian plasticity regulation 

[59–61] and homeostatic synaptic plasticity [62–65]. It is worth noting that in addition to 

posttranslational modification of AMPARs, kinases and phosphatases may also be recruited 

to dendrites and postsynaptic density to regulate other critical steps of homeostatic synaptic 

plasticity [24,66].

The Homer protein family is another class of postsynaptic density scaffold protein that 

supports postsynaptic structure and mediates postsynaptic signaling. Homer-1a, a short 

variant of homer-1 encoded by an immediate-early gene, was first identified as a mGluR-

binding protein [67]. Regulation of mGluR1/5 trafficking by Homer1a not only affects 

mGluR activation, but also has been shown to be involved in Hebbian plasticity [68,69] and 

homeostatic plasticity [70] in in vitro studies. A recent study further explored the Homer-1a-

mGluR1/5 interaction in an in vivo model of homeostatic synaptic plasticity, namely 
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excitatory synapse weakening during sleep. In this context, synaptic targeting of Homer-1a, 

which removes AMPARs from postsynaptic density by activating mGluR5 and downstream 

signaling pathways, is coupled to the state of arousal via wake- and sleep-promoting 

neuromodulators [71]. Thus, the same Homer1a/mGluR-mediated signaling cascade may be 

used in both Hebbian and homeostatic synaptic plasticity to regulate synaptic AMPAR 

removal.

Metaplasticity – a mechanism that integrates homeostatic and Hebbian 

plasticity in health and disease?

As summarized above, various cellular processes activated during homeostatic synaptic 

plasticity adjust the state of the synapses (e.g. modification of synaptic AMPAR abundance) 

in response to activity experience. Multiple signaling pathways are altered in the process of 

achieving this new status quo, including the activation states of various kinases and 

phosphatases, the phosphorylation states of AMPARs, and the availability of synaptic slots 

through addition or removal of synaptic scaffolds, etc. Changes in one or a combination of 

these signaling pathways may impose a limitation/new constrains onto subsequent Hebbian 

plasticity (Figure 2). For example, it is conceivable that homeostatic upregulation of the 

strength of existing synapses through AMPAR insertion will constrain the ability of the 

affected synapses to undergo LTP but facilitate their ability for LTD within a certain time 

window – a process that may contribute mechanistically to the sliding threshold model. 

Meanwhile, the phosphorylation states of AMPARs, the availability of synaptic slots for 

AMPAR anchoring, and the abundance of silent synapses could also change as a result of 

homeostatic signaling pathway activation, adding additional complexity to the sliding 

threshold mechanisms. More importantly, numerous in vitro and in vivo studies show that 

homeostatic modifications occur at both excitatory and inhibitory synapses (reviewed in 

[72,73]). Synaptic inhibition is known to modulate Hebbian plasticity through regulating 

integration of dendritic excitatory inputs both temporally and spatially [74–79]. Homeostatic 

modulation of synaptic E/I balance in local dendrites may push the θm of a particular 

excitatory synapse in either directions depending on the state the synapse. In the case of 

increased E/I after homeostatic plasticity, for example, LTP may be facilitated at unsaturated 

synapses due to reduced local inhibition but may be constrained if synaptic excitation is 

already saturated. Thus, homeostatic modification of synaptic E/I ratio may be another 

metaplasticity mechanism through which sliding threshold for Hebbian plasticity may be 

achieved at individual synapses.

Given the accumulating knowledge on molecular players specifically involved in 

homeostatic plasticity, direct testing of the hypothesis that homeostatic plasticity acts as a 

metaplasticity mechanism for the sliding threshold model is becoming possible and will 

likely be a major future direction for the synaptic plasticity field. Currently, observations 

from studies investigating the pathophysiology of neurological diseases provided indirect 

support for this hypothesis. Among these observations, a disrupted synaptic E/I balance 

appears to be a common theme in many neurological disorders, including but not limited to 

autism spectrum disorders (ASDs), schizophrenia, epilepsy and neurodegenerative disorders 

such as Alzheimer’s disease and Huntington’s disease [80–84]. In extreme cases, E/I 
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imbalance leads to severe network instability, which is consistent with the fact that many 

neurological disorders have a comorbidity of epileptic activity in subsets of patients [85]. By 

contrast, intellectual disability is a much more common symptom affecting most patients 

with ASDs, Schizophrenia and degenerative disorders. How may impaired homeostatic 

plasticity and defective E/I balance contribute to cognitive dysfunctions?

Homeostatic synaptic plasticity has been relatively more extensively studied in ASDs 

probably because as a form of neurodevelopmental disorders, ASDs provide an attractive 

model system for studying long-term functional consequences of defective synaptic 

plasticity and circuit remodeling without apparent synapse loss or neurodegeneration. For 

example, mutations in Mecp2 gene, which encodes the transcriptional regulator methyl-

CpG-binding protein 2 (MeCP2), leads to Rett syndrome and shows high co-morbidity with 

ASDs [86]. Mecp2 deletion not only leads to defective Hebbian plasticity and learning [87], 

but also causes impaired excitatory synaptic up-scaling in visual cortex [88] and down-

scaling in hippocampus [89]. Fragile X syndrome (FXS) is another neuropsychiatric 

disorder characterized by developmental problems including intellectual disability, deficits 

in communication and social interaction, and in some cases seizures. FXS, in most cases, is 

caused by silencing of the Fmr1 gene and a complete loss of expression of its protein 

product FMRP, an RNA-binding protein known to regulate protein synthesis of a subset of 

neuronal transcripts [90–92]. Hyperactivity of neural network [93] and altered Hebbian 

plasticity [94] have been described in FXS model mice. Moreover, a complete absence of 

RA-dependent homeostatic synaptic plasticity at both excitatory and inhibitory synapses 

have been reported in both FXS mouse [22,23] and human neurons differentiated from FXS 

patients [95].

Defective learning and memory in various disease models are often attributed to impaired 

Hebbian plasticity. Altered homeostatic synaptic plasticity found in these disease models is 

usually considered synaptic phenotypes independent of impaired Hebbian plasticity due to 

the multifaceted functions of the mutated genes. However, we would like to posit here that 

these disease phenotypes may be more connected than expected. Most in vivo homeostatic 

synaptic plasticity studies have been carried out in sensory cortices, which have the 

advantage of being easily accessible for activity perturbation via sensory modality-specific 

input manipulations [96–98]. The demonstration of homeostatic plasticity in various in vivo 
systems not only allows validation of molecular contributors to homeostatic mechanisms in 

intact circuits, but more importantly, permits further exploration of functional significance of 

homeostatic plasticity in intact circuits in vivo. In other words, if the signaling pathway 

known to be specific for homeostatic synaptic plasticity is disrupted, what would be the 

impact on subsequent Hebbian plasticity and behavior?

A recent study using conditional RARα knockout mice investigated the role of RA-

dependent synaptic signaling in whisker-based sensory processing in the barrel cortex [99]. 

Expression of RARα in layer 5 (L5) pyramidal neurons in the somatosensory cortex was 

found necessary for normal tactile sensory processing. Transcranial two-photon imaging 

revealed a significant increase in elimination of more mature-looking dendritic spines on 

apical dendrites of L5 pyramidal neurons in the absence of RARα. Consistent with RARα’s 

role in homeostatic plasticity, the enhancement of spine elimination was whisker experience-
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dependent as whisker trimming rescued the spine elimination phenotype [99]. Although 

mechanisms underlying whisker-dependent texture encoding remain largely unexplored, it is 

conceivable that RARα deletion in L5 pyramidal neurons impairs experience-dependent 

homeostatic synaptic plasticity that fine-tunes the strength of active synapses (i.e. a balance 

maintained through elimination of immature thin spines and maintenance of mature 

mushroom-type spines), and negatively impacts sensory information integration from L2/3 

neurons to L5 neurons. Future studies are required to investigate how impaired RA signaling 

and homeostatic plasticity affects whisker experience-dependent Hebbian plasticity, and 

more broadly speaking, any experience-dependent plasticity, in the context of local circuit 

wiring and behavioral output.

Although often studied separately, homeostatic synaptic plasticity-inducing sensory 

manipulations have been shown to affect Hebbian plasticity within the same circuit. 

Arguably the best examples come from studies in the visual system where prolonged visual 

deprivation, which is known to induce homeostatic plasticity in the V1 cortical synapses, 

shifts the modification threshold θm of the Hebbian plasticity BCM curve (reviewed in 

[100]). Most strikingly, in adult animals, prolonged visual deprivation through dark rearing 

reopens visual cortical critical period and restores ocular dominance plasticity [101]. These 

modifications of Hebbian plasticity is thought to be achieved through experience-dependent 

GluN2A/GluN2B ratio shift [102–104]. Dark rearing, a widely used visual deprivation 

approach to study visual cortical plasticity, is known to upregulate GluN2B expression and 

shifts GluN2A/GluN2B ratio [105] toward favoring LTP by lowering LTP threshold 

[103,106]. Increases in miniature excitatory postsynaptic current (mEPSC) amplitude after 

dark rearing has been characterized as a typical homeostatic upregulation of excitatory 

synapses [107]. Intriguingly, a recent study demonstrated that mEPSC amplitude is actually 

potentiated through a Hebbian mechanism mediated by increased GluN2B-containing 

NMDAR at synapses, not by a synaptic scaling mechanism (i.e. lowering spontaneous 

firing) although NMDAR-independent synaptic scaling may still be induced by extreme 

reduction of activity [108]. This seemingly blurry distinction between ‘true’ homeostatic 

mechanisms and Hebbian mechanisms may reflect our incomplete understanding of 

biological processes involved in these different forms of plasticity, it also serves as a 

reminder that Hebbian and homeostatic plasticity are not two separate entities co-exist 

within the same system, but are intertwined and even coupled to adjust synaptic and network 

activity for optimal function.

Conclusions

In this short article, we summarized cellular processes and signaling molecules involved in 

these processes that are shared between Hebbian and homeostatic synaptic plasticity, and 

outlined synaptic modifications and behavioral outcomes that are likely the consequence of 

the interaction between these two forms of synaptic plasticity. Behavioral experiences in an 

animal drive network activity that may lead to Hebbian or homeostatic plasticity, or both. 

The latter, through its impact on synaptic excitation and inhibition, alters the modification 

threshold of Hebbian plasticity and its subsequent involvement in future behavior (Figure 2). 

The synaptic plasticity field is at an exciting time when we are equipped with rapidly 

growing insight on the molecular basis of plasticity processes, in conjunction with cutting-
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edge technologies allowing sophisticated genetic and circuit manipulations. Future 

experiments will be possible to systematically explore how homeostatic synaptic plasticity, 

as a mechanism of metaplasticity, impacts Hebbian plasticity and cognitive function.
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Highlights

• Hebbian and homeostatic synaptic plasticity converge on shared cellular 

processes

• Homeostatic plasticity adjusts the state of synapses to impact Hebbian 

plasticity

• Homeostatic plasticity alters synaptic E/I and drives the Hebbian sliding 

threshold

• Impaired homeostatic plasticity may be linked to cognitive deficits in ASDs
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Figure 1. Molecular pathways involved in RA-dependent homeostatic synaptic plasticity and its 
interaction with Hebbian plasticity.
Left: Molecular pathways involved in RA-dependent homeostatic synaptic plasticity (HSP). 

A reduction in postsynaptic Ca2+ levels resulted from synaptic inactivity triggers RA 

synthesis, which disinhibits local protein synthesis and promotes synaptic insertion of 

AMPARs. CaN: calcineurin; RALDH: retinal dehydrogenase. Right: Exocytosis of 

AMPAR-containing vesicles into synaptic membranes during LTP and HSP is mediated by 

partially overlapping SNARE components. Postsynaptic deletion of Q-SNARE syntaxin-4 

(Stx-4), which is uniquely required for HSP, prevents the impairment of LTP following RA 

treatment by blocking RA-induced HSP.
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Figure 2. A schematic diagram depicting the relationship between Hebbian and homeostatic 
plasticity.
It is traditionally believed that network activity drifts as a result of Hebbian plasticity, which 

drives homeostatic synaptic plasticity (①). Here we propose the possibility that an animal’s 

behavioral experience may directly lead to homeostatic plasticity at both excitatory and 

inhibitory synapses that results in a shift in synaptic E/I balance and modification of the 

BCM curve. In this context, homeostatic plasticity plays the role of a metaplasticity 

mechanism, which in turn affects Hebbian plasticity (②).
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