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Abstract

Understanding the mechanisms involved in the activation of an immune response is essential to 

many fields in human health, including vaccine development and personalized cancer 

immunotherapy. A central step in the activation of the adaptive immune response is the 

recognition, by T-cell lymphocytes, of peptides displayed by a special type of receptor known as 

Major Histocompatibility Complex (MHC). Considering the key role of MHC receptors in T-cell 

activation, the computational prediction of peptide binding to MHC has been an important goal for 

many immunological applications. Sequence-based methods have become the gold standard for 

peptide-MHC binding affinity prediction, but structure-based methods are expected to provide 

more general predictions (i.e., predictions applicable to all types of MHC receptors). In addition, 

structural modeling of peptide-MHC complexes has the potential to uncover yet unknown drivers 

of T-cell activation, thus allowing for the development of better and safer therapies. In this review, 

we discuss the use of computational methods for the structural modeling of peptide-MHC 

complexes (i.e., binding mode prediction) and for the structure-based prediction of binding 

affinity.

INTRODUCTION

Although often imagined as a defense system waiting for an infection, our immune system is 

also constantly engaged in surveillance and maintenance of a complex microbiome (1, 2). 

While effective responses must be triggered against cancer cells and dangerous bacteria, 

harmful responses against healthy cells and gut bacteria must be avoided (3). Other 

potentially harmful impacts of immune responses that are undesirable include autoimmune 

reactions (4), as well as reactions to therapeutic products (5, 6) or tissue transplantation (7). 

For all these reasons, the ability to predict what triggers an immune response is of great 

biomedical interest.

The ability of a given substance to trigger an immune response is referred to as 

immunogenicity (6, 8). In a broader sense, immunogenicity refers to the activation of both 

*Address correspondence to these authors at the Computer Science Department, Rice University, Houston, Texas, USA; 
dinler@rice.edu, kavraki@rice.edu. 

HHS Public Access
Author manuscript
Curr Top Med Chem. Author manuscript; available in PMC 2019 February 04.

Published in final edited form as:
Curr Top Med Chem. 2018 ; 18(26): 2239–2255. doi:10.2174/1568026619666181224101744.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sides of adaptive immunity: cellular response (mediated by cytotoxic cells) and humoral 
response (mediated by antibodies). The activation of T-cells is a decisive step in both cases 

(8, 9), and it will also be referred to as immunogenicity here. T-cells are a special type of 

lymphocyte that undergo a complex maturation and selection process, which makes them 

capable of recognizing “non-self” peptides (10). Note that we are referring to T-cells in 

general; different subtypes of T-cells are involved on each side of adaptive immunity (Fig. 

1).

T-cells only recognize peptides displayed by Major Histocompatibility Complex (MHC) 

receptors (8, 11). Specifically, the T-cell receptors (TCRs) of cytotoxic T-cells can only 

recognize peptides displayed by class I MHC receptors (MHC-I), while the TCRs of helper 
T-cells can only recognize peptides displayed by class II MHC receptors (MHC-II) (Fig. 1). 

Given their central role in both types of responses, MHC receptors have long been the focus 

of many studies in computational biology (12–16).

Binding to MHC receptors is a prerequisite for peptide immunogenicity (9, 17, 18). In turn, 

immunogenic peptides are needed for peptide-based vaccine design and cancer 

immunotherapy. Additional information on this topic can be found in reviews on epitope 

discovery (19, 20) and reverse vaccinology (21, 22). In this context, sequence motifs (14) 

and scoring matrices (23, 24) were among the first computational methods used to perform 

sequence-based binding affinity prediction. They were quickly overpowered by statistical 

learning algorithms (25–27), which remain the gold standard in the field (28–30).

Despite their unquestionable usefulness, sequence-based methods have known limitations. 

For instance, statistical learning methods require an experimental dataset for training, and 

predictions can be biased by the composition of this training dataset (22, 31). Therefore, 

predictions for MHC variants (i.e., allotypes) with larger datasets available for training tend 

to be more reliable than predictions for less studied allotypes. These gaps in the training data 

can be a limitation for some of the most interesting medical applications, such as 

personalized cancer immunotherapy. One of the goals in cancer immunotherapy is to find 

tumor-derived peptides that can bind to the MHC-I receptors of the patient, flagging cancer 

cells for destruction by the patient’s own immune system (32, 33). The MHC-I genes, 

however, are the most variable genes in the human genome. In humans, the three “classical” 

MHC-I genes are referred to as human leukocyte antigens (HLA-A, HLA-B and HLA-C), 

and combined together encode nearly 10,000 allotypes. Most of these MHC-I allotypes have 

very low prevalence in the population, and have limited or no experimental data available for 

training statistical learning methods. In spite of that, more recent sequence-based methods 

have aimed for generalizations based on available data (30).

An alternative approach, that is expected to be more general, is underpinned by structure-

based methods (22). As discussed in pioneer studies in the 90’s (12, 34, 35), structure-based 

prediction relies on the biochemical properties of the amino acids involved in the peptide-

MHC (pMHC) interaction, and do not require allotype-specific training datasets (22). In 

addition, access to structural information about pMHC complexes can be used to explore 

many other questions that cannot be addressed by sequence analysis alone. For instance, it 

can be used to analyze the impact of post-translational amino acid modifications, such as 
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phosphorylation (36), citrullination (37), and glycosylation (38), which are known to affect 

both the binding affinity and immunogenicity of MHC-binding peptides. It can also be used 

to detail the structural basis of TCR/pMHC interactions, which can guide the production of 

alternative peptide ligands (39), allow for TCR-engineering (40), and even explain 

dangerous side-effects of T-cell-based immunotherapy (41, 42).

Three-dimensional structural data, however, is harder to obtain and process than sequential 

data. First, experimental methods for determining the structure of protein-ligand complexes 

are too expensive and time-consuming to be considered in the context of personalized 

medicine. Therefore, computational methods for structural prediction (or molecular 

modeling) are a prerequisite for conducting personalized structure-based analyses. However, 

the size and flexibility of the ligands involved make pMHC modeling and structure-based 

binding affinity prediction a challenging problem from a computational perspective (43).

To overcome these challenges and perform structural analyses in an efficient way, the 

solution has been to rely on adhoc constraints based on expert knowledge or available 

experimental data (12, 22, 43). Unfortunately, this has been done at the expense of the so-

desired generality. In this review, we report previously proposed strategies for the efficient 

modeling of pMHC complexes (i.e., binding mode prediction) and for structure-based 

binding affinity prediction. We also discuss the main assumptions and trade-offs of the 

different approaches, and how the recent advances in high performance computing might 

finally allow for general and reliable methods.

SAMPLING, SCORING AND SCREENING

Molecular modeling has been an active field in computational chemistry since the 60’s (44), 

producing several approaches for structural prediction, analysis, and refinement (45, 46). A 

particular domain of molecular modeling relates to the prediction of the bound structure of 

protein-ligand complexes; a problem usually addressed with computational methods known 

as molecular docking tools (47–50). There are two main applications of molecular docking: 

binding mode prediction, also known as geometry optimization, and virtual screening (51, 

52). The first application focuses on accurately predicting the 3D conformation of the 

ligand, upon binding to the target receptor. The second one focuses on checking a large 

number of potential ligands and selecting the ones that can bind to the target receptor.

Both applications share a central challenge: accounting for ligand flexibility. The greater the 

number of flexible bonds in a ligand, the greater the number of “shapes” (i.e., 

conformations) it can adopt. To determine the best possible binding mode, a docking method 

must consider these alternative conformations, in addition to the position and orientation of 

the ligand inside the receptor’s binding cleft. This search process is referred to as sampling 
(48).

As discussed in previous publications, sampling algorithms can be divided into three general 

categories: shape matching, systematic search and stochastic search (48, 53, 54). Briefly, 

matching algorithms perform geometric-based evaluations on how much the shape of the 

ligand fits the shape of the receptor’s binding cleft (47), often using a graph-based 
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representation of the ligand’s structure (47, 55). These methods are usually applied to 

perform a fast exploration of the ligand’s rotational and translational degrees of freedom, 

without exploring its conformational flexibility (which is known as rigid docking) (55). On 

the other hand, systematic search algorithms explore all the degrees of freedom of the ligand 

(e.g., through exhaustive search, fragment-based search, or conformational ensemble search) 

(48, 53, 54). These methods are much more accurate than matching algorithms, but their 

computational cost prevents them from being used for larger ligands. Finally, stochastic 

search algorithms randomly explore the degrees of freedom of the ligand, using different 

heuristics to guide the exploration (e.g., Monte Carlo, genetic algorithms, tabu search or 

swarm optimization) (48, 53). As further discussed in the following sections, the size and 

flexibility of MHC-binding peptides represents a challenge that could not be efficiently 

handled even by stochastic algorithms, thus requiring additional strategies to make the 

sampling problem computationally tractable.

Regardless of the sampling method, some kind of ranking of the sampled conformations is 

needed to guide the sampling and select the best binding mode. This ranking is based on a 

“quality” assessment of the ligand conformations, which is referred to as scoring. Note that 

the scores used to rank conformations do not necessarily correspond to accurate binding 

affinity estimates. In fact, as the number of evaluated poses can be extremely large, scoring 

functions usually favor computational efficiency over accuracy (56). To achieve that, 

numerous scoring methods depart from explicitly calculating all relevant interactions 

between ligand and receptor at the atomic level.

Besides allowing for the assessment and comparison of different conformations of a given 

ligand to a given protein, a scoring method can also be used for screening (i.e., to assess how 

strongly different ligands might bind to a given protein). First, scoring methods can help 

distinguish between ligands that bind and ligands that do not bind the protein, in a purely 

qualitative manner. This requires performing a binary classification to separate so-called 

binders from non-binders, based on their respective scores. In this case, ligand scores do not 

have to correspond to actual binding affinities, as only relative differences between these 

scores are evaluated. Second, when using scoring methods that are biophysically accurate, 

one can quantitatively predict actual binding affinities. The capability of a scoring method to 

do that is usually assessed by evaluating the correlation between these predicted binding 

affinities and experimental binding affinities, and not by evaluating whether they match 

exactly. The differences between the qualitative and quantitative applications of scoring 

functions are clearly illustrated in Figure 3 of (57).

Note that the main assumption underlying a docking-based binding affinity prediction is that 

the binding free energy of the complex can be approximated by the minimum internal 

energy of the system (58). In turn, the internal energy of the system is estimated by the 

scoring function, for each sampled conformation of the complex. Therefore, the accuracy of 

the binding affinity predicted by a molecular docking tool depends on the quality of both the 

sampling and the scoring. First, the sampling algorithm have to succeed in generating a 

conformation of the complex that presents the native set of stable interactions between 

ligand and receptor. Then, these key interactions must be identified by the scoring function, 

and properly summarized into an approximated binding affinity. In other words, insufficient 
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sampling can hinder the docking prediction as much as an inaccurate scoring function. 

Insufficient sampling becomes an even greater issue in the case of highly-flexible ligands or 

flexible binding sites, since the search space becomes even larger and there is less 

confidence that the best values of the scoring function can be reached. It is also important to 

note that these components (i.e., sampling and scoring) and applications of structural 

prediction methods (i.e., geometry optimization and virtual screening) can be explored 

separately, or in a combined manner. In the context of docking-based virtual screening, for 

instance, a given scoring function can be used to (i) rank different conformations of each 

ligand to guide the sampling, (ii) rank different ligands to identify strong binders, and (iii) 

estimate the binding affinity of selected ligands. Here, we will discuss how each one of these 

components/applications was explored in the context of pMHC structural analysis.

COMPUTATIONAL METHODS FOR BINDING MODE PREDICTION

In this section we review publications focused on describing and validating methods for 

accurate binding mode prediction of pMHC complexes. Note that many additional 

publications report ad-hoc approaches to predict the structure of pMHC complexes as part of 

larger pipelines for epitope discovery or rational vaccine design (59–63), without focusing 

on accurate and reproducible binding mode prediction.

Evaluation of sampling methods

The two standard experiments for validating a docking method are self-docking and cross-

docking (Fig. 2). Both methods rely on the use of experimentally-determined crystal 

structures of known complexes as controls. The accuracy of the method can be measured 

through the deviation (i.e., the “error”) between the predicted binding mode and the 

corresponding crystal structure. This error is usually assessed by calculating the Root Mean 

Square Deviation (RMSD) for the peptide only. An all-atom RMSD below 2Å is classically 

considered a successful reproduction of the native binding mode (64, 65).

Common strategies to make sampling tractable

Binding mode prediction for pMHC complexes is more challenging than most docking 

problems in drug discovery. Indeed, most drug-like ligands have less than 10 flexible bonds, 

while MHC-binding peptides usually have more than 30 flexible bonds (even more than 50 

for MHC-II). Interestingly, data from the first crystal structures of pMHC-I complexes 

suggested the existence of conserved structural patterns (12, 17), which were imposed by 

structural constraints in the binding cleft (Fig. 3). Aiming at leveraging these structural 

constraints and limiting the computational cost of sampling, three strategies have been 

devised to predict the binding modes of pMHC complexes: constrained backbone prediction, 

constrained termini prediction, and incremental prediction (Table 1).

Constrained backbone prediction—The binding cleft of MHC-I receptors is “closed” 

at both ends (Fig. 3A and3C), with deeper “pockets” allowing for key interactions with the 

“anchor” residues of peptides. Analysis of the first pMHC-I crystal structures suggested a 

conserved conformation of the peptide’s backbone, despite the diversity of amino acid 

sequences (i.e., the diversity of side chains) (34, 70). These observations justified the use of 
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a backbone template that is kept rigid or constrained during docking (Table 1). Although a 

backbone template simplifies the problem, the same template cannot be used for MHC-I and 

MHC-II (Fig. 3), or even for different MHC allotypes. The conformation of the peptide’s 

backbone is impacted by the composition of the different pockets inside the binding cleft, 

and the presence of alternative anchor residues. In addition, different templates are required 

for peptides of different lengths binding to a given MHC allotype (34, 70).

In this context, the work in (17) proposed using a library of crystallographic templates. They 

utilized the backbone of both the peptide and the MHC as a template, filling in the side-

chains of the target sequence using rotamer libraries and the MOIL package (101). The 

method of utilizing a “clean” backbone to which desired side-chains are added is known as 

threading (102). Note that the term threading is also used to refer to another molecular 

modeling method, applied by tools such as ITASSER (103). Despite promising results on the 

prediction of the buried side chains of the peptide, they noticed that a general rotamer library 

from PDB-deposited structures did not include some side-chain conformations observed in 

pMHC crystal structures (17). Therefore, the generality and accuracy of their predictions 

was to some extent limited by the small dataset of available pMHC crystal structures.

The growing number of pMHC crystal structures continued to reveal additional backbone 

variation. To try and reduce biases introduced by the template, other methods added steps of 

backbone sampling or refinement to the docking process. For instance, the work in (71) 

proposed pDOCK. This method combines homology modeling of the MHC receptor, 

positioning of the peptide based on crystal structures, and refinement of the binding site 

residues using the Internal Coordinate Mechanics (ICM) docking algorithm (104) and a 

biased Monte Carlo procedure. pDOCK was validated in a self-docking experiment with 186 

pMHC complexes (149 MHC-I and 37 MHC-II), reporting average backbone-atom RMSDs 

of only 0.32Å (computed for the 9-mer “core” residues). The accuracy of pDOCK in terms 

of all-atom RMSD was not reported.

Another method using a backbone template was proposed in (73). This approach was based 

on the Rosetta FlexPepDock refinement protocol (105) and validated through a series of 

cross-docking experiments using 30 selected crystal structures. Interestingly, the authors 

report good results even when the template is known to come from a peptide bound to a 

different MHC allotype (best all-atom RMSD of 1.8Å among the top 5 ranking 

conformations). However, the selected dataset was limited to 9-mers bound to MHC-I, and 

presented small backbone RMSD differences between template and target (the largest 

difference being 1.35 Å).

Most of these methods were not made available as software or webserver, which might have 

limited their use by other groups. The first webserver for the structural prediction of pMHC 

complexes was MHCSim (68). MHCSim relied on sequence alignment to find the closest 

template from a curated dataset of crystal structures, and side chains were mutated on both 

ligand and receptor. Rather than providing binding mode prediction, the goal of MHCSim is 

to generate initial pMHC structures for molecular dynamics (MD) simulations. More 

recently, the DockTope webserver was proposed in (65) (soon to be available at 

tools.iedb.org/docktope). DockTope relies on a template-based docking with AutoDock Vina 
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(106), and a refinement loop involving energy minimization followed by a new round of 

docking (65, 70). DockTope was validated through the cross-docking of 135 non-redundant 

pMHC-I structures, reporting an average all-atom RMSD of only 1.96 Å. These results 

present DockTope as a valuable tool for the geometry optimization of pMHC-I complexes. 

Unfortunately, it only provides predictions for key allotypes for which conserved backbone 

conformations of the peptide have been observed.

Constrained termini prediction—An alternative assumption that is potentially more 

general, is that the locations of termini residues are more conserved than the conformation of 

the backbone (12). Depending on their implementation, “constrained termini” approaches 

can generalize across MHC-I allotypes because MHC-I binding clefts all have 

approximately the same length, and termini residues will be constrained by the same 

pockets. That was the rationale behind the pioneer studies in (34) and (35). The work in (35) 

proposed a modeling method involving a multiple-copy algorithm (107) to dock the termini 

residues, followed by a loop closure algorithm to fill the middle residues (108). This general 

strategy was further explored and perfected by others (69, 75–78).

The most recent implementation of the “constrained termini” strategy is GradDock (79). 

GradDock combines a fast peptide binding simulator with a Rosetta-based ranking function 

specifically designed for pMHC-I, and it is available for download (bel.kaist.ac.kr/research/

GradDock). This method was tested through both self-docking (107 complexes) and cross-

docking (70 complexes), providing impressive results (average all-atom RMSD around 2.5 

Å). GradDock results suggest that fast virtual screening of pMHC complexes might be 

possible, and that the conserved termini assumption might be general enough to provide 

predictions across MHC-I allotypes. On the other hand, the greater all-atom RMSD 

observed in some cases suggest this might not be the best tool for geometry optimization.

The authors of GradDock also discuss the limitations imposed by the constrained termini 

strategy, having excluded from their analysis known cases of alternative binding modes. A 

notable example is that of a melanoma-derived 9-mer peptide bound to a highly prevalent 

human MHC (HLA-A*02:01), which uses an alternative anchor and has an unusual 

backbone conformation (PDB code 2GTW). Being an exception to observed patterns, this 

complex cannot be predicted by methods relying on constrained termini or constrained 

backbone strategies (65, 79). Since experimental data on alternative binding modes is still 

limited, especially considering the diversity of MHC allotypes, it is difficult to evaluate the 

actual impact of imposing such constraints.

Incremental prediction—As considering the entire conformational space of the peptide 

was impractical without constraints, another proposed strategy focused on incrementally 

exploring the flexibility of the ligand (e.g., one residue at a time). A fragment-based docking 

strategy was first proposed by (80) using the package CONGEN (109) and a similar 

approach was proposed by (81), using the BRUGEL package (110). This incremental 

strategy was later revisited with the publication of DynaPred (82). Instead of using a docking 

tool, DynaPred relies on a short MD simulation to sample each peptide residue inside the 

binding cleft. DynaPred uses a backbone template from crystal structures to help position 

amino acids in the binding cleft, but allows for the flexibility of this backbone during the 
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simulation. Conformations from independent residues are then “stitched” together, and a 

minimization protocol is used to generate the final conformation.

More recently, the work in (43) proposed the use of an incremental meta-docking approach 

called DINC. DINC is not a traditional fragment-based docking tool (111), and does not 

explore the residues independently. Instead, DINC involves incrementally docking 

overlapping fragments with a growing number of atoms, while maintaining the number of 

flexible bonds constant during this incremental process (43, 111, 112). DINC handles the 

fragment expansion and the parallelization of the search, while relying on a regular docking 

tool, such as AutoDock4 (113), to perform the sampling. DINC was developed as a general 

tool for docking large ligands, and is available as a webserver (http://dinc.kavrakilab.org/). 

In the context of pMHC structural prediction, a customized version of DINC was tested 

through self-docking of a diverse set of known structures. Despite being a small dataset (25 

structures), it included very different binding modes (e.g., 10 different human MHC-I 

allotypes and peptides of different lengths), and very challenging complexes (e.g., the 

unusual conformation under PDB code 2GTW). The reported average all-atom RMSD was 

1.92 Å, and the results were presented as a proof-of-concept for a prediction method that 

could generalize across MHC-I allotypes. However, broader benchmarking of DINC is 

needed to evaluate its performance and accuracy across known MHC-I and MHC-II 

allotypes.

Additional challenges for modeling pMHC-II complexes

Although some of the aforementioned methods were applied to both classes of MHCs, 

MHC-II complexes represent a more challenging problem for computational modeling. 

MHC-I and MHC-II receptors have analogous functions and share general structural 

features, such as having a peptide-binding cleft limited by two parallel α-helices and a floor 

of β-sheets. A closer look, however, reveals key structural differences (Fig. 3). For instance, 

while the MHC-I cleft is “closed” at both ends and the peptides are forced to adopt a bulged 

conformation to fit in, the MHC-II cleft is shallower and allows longer peptides to go 

beyond both ends of the cleft (Fig. 3B and 3D). As a consequence, a given MHC-II allotype 

can bind to different portions of the same peptide (i.e., have different binding registers) 

(114). The portion of the peptide binding to the MHC-II is usually 9 amino acids long (84), 

but MHC-II receptors can bind peptides with up to 25 amino acids (76).

Longer peptides have a greater number of possible registers, but not all possible registers can 

bind. Similar to MHC-I receptors, there are key “pockets” that are primarily responsible for 

the binding of “anchor” peptide residues (Fig. 3D). In MHC-II receptors, pockets 1, 4, 6 and 

9 appear to be the most crucial determinants for binding (115, 116). These pockets are 

hydrophobic cavities that favor hydrophobic side chains (116, 117). Nonetheless, the 

structural prediction of pMHCII complexes is a challenging task because it entails 

simultaneously predicting the binding register and the corresponding binding mode (69, 

114).

Another peculiarity is that MHC-II receptors are heterodimers formed by two analogous 

chains (α and β), each one encoded by a different gene. Despite not having as many 

allotypes as MHC-I genes, the binding cleft of MHC-II receptors can be formed by the 
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combination of α and β chains from different genes, which increases the diversity of MHC-

II receptors at the cell surface, each one with slightly different peptide-binding requirements.

Despite these additional levels of diversity, the existence of termini anchor residues and the 

more linear conformation of the core 9-mer allowed for some of the aforementioned 

modeling methods to be applied to pMHC-II complexes. Most notably, the validation 

datasets used by (71) and (76) included MHCII allotypes. In both cases, the validation was 

focused on the accuracy of the backbone prediction for the binding core (Table 1). Finally, 

(69) has discussed the potential generality of a docking-based binding mode prediction 

method for pMHCII complexes, reporting very good results in both self-docking and cross-

docking experiments (with 9-mer core mean all-atom RMSD of 0.73 Å and 1.37 Å, 

respectively).

COMPUTATIONAL METHODS FOR BINDING AFFINITY PREDICTION

In this section we review methods previously applied for structure-based binding affinity 

prediction for pMHC complexes. We discuss the differences between methods for qualitative 

ranking/classification, and methods for quantitative binding affinity prediction.

Qualitative ranking and ligand classification

Scoring methods used to guide sampling (i.e., rank conformations) are very general in 

nature: they are usually developed to score any protein-ligand complex. However, in order to 

improve accuracy, some scoring methods are intended for specific groups of ligands and 

receptors. For instance, a scoring method can be specific to peptides (as opposed to drug-like 

ligands), or designed specifically for pMHC complexes (Table 2).

Scoring functions for protein–peptide docking—Most protein–peptide docking tools 

involve energy-based scoring functions. These scoring functions have been previously 

classified into three main categories: Empirical, semi-empirical and knowledge-based (56).

Empirical scoring functions are inspired by the quantum mechanics / molecular mechanics 

(QM/MM) formalism, which allows calculating potential energies (118, 119). Such 

calculation relies on the definition of a force field as a sum of energy terms corresponding to 

both covalent and non-covalent interactions within and between molecules. Typical energy 

terms evaluate the bond stretching, angle bending and torsional angles of covalent 

interactions, as well as Van der Waals and electrostatic contributions of non-covalent 

interactions (120). Some studies have shown that the most important term is often the 

electro-static one (121). Empirical scoring functions have long been involved in popular 

docking tools, such as AutoDock, Glide and DOCK, as well as many others (122, 123). To 

achieve computational efficiency, energy terms assessing atomic interactions can be replaced 

by terms derived from coarse-grained potentials, such as the Go potential, that evaluate 

interactions between large pseudo-atoms representing entire amino acids (124). Also for the 

sake of computational efficiency, rather than considering explicit water molecules, one can 

implicitly evaluate solvent effects by using Poisson–Boltzmann surface area (PBSA) or 

generalized Born surface area (GBSA) energy terms (121). By adding an energy term 

evaluating entropic effects, for example using empirical conformational energy analysis 
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(CFEA) (125) or normal mode analysis (NMA) (121), a force field allows calculating free 

energies. One can also directly calculate free energies by using free energy perturbation 

techniques (126).

Semi-empirical scoring functions differ from purely empirical scoring functions in that they 

do not attempt to include all physical interactions of protein–peptide poses or to recapitulate 

biophysically-relevant energies (56). Nonetheless, they include biophysically-plausible 

energy terms that correspond to physical properties describing the protein–peptide interface. 

The physical properties that are typically considered correspond to non-covalent interactions 

between peptides and proteins, such as hydrogen bonds, electrostatic and van der Waal 

interactions, hydrophobic interactions (127), as well as solvation (128, 129) and entropic 

effects. These energy terms are then added together with multiplicative weights assigned to 

them. These weights are usually tuned to optimize binding affinity predictions given a 

dataset of protein-ligand complexes with known structure (130). Classical examples of semi-

empirical scoring functions are ChemScore and X-score, but others have been developed 

(122, 131).

Knowledge-based scoring functions calculate pseudo-energies that are not biophysically 

meaningful, but that reflect the likelihood for protein–peptide interface properties to be 

native or native-like (56). These functions are trained (i.e., calibrated) by performing a 

statistical analysis on available structural data contained in reported protein–peptide 

complexes (131). More precisely, an interaction potential is calculated by implicitly 

estimating the change in energy associated with a change in the distance between atoms of a 

specific type in a peptide and atoms of a specific type in a protein (123). Examples of 

popular knowledge-based scoring functions are DrugScore, PMF-score and SMoG (130). 

Note that this methodology can also be applied in a coarse-grained fashion, by considering 

distances between pairs of residues. Recently, going away from the classical linear 

regression approach, new scoring functions have been proposed, using a machine-learning 

approach based on nonlinear regression (132).

Instead of using scoring functions that are only based on energy calculations, attempts have 

been made to enhance them with additional information, such as co-evolutionary or muta-

genesis data (133). Other approaches complement the energetic analyses with structural 

clustering or sequence-based predictions. In addition, it has often been observed that 

combining several scoring functions can improve their accuracy (134).

Ranking of pMHC binding modes—For sake of simplicity, we will treat the ranking of 

conformations during sampling as being merely qualitative, and we will discuss quantitative 

binding affinity prediction of pMHC complexes in a separate section. One of the early 

approaches used to guide sampling of pMHC complexes was based on empirically-derived 

residue-contact matrices (83, 127, 135–137). These matrices, also known as statistical-pair 

potentials, encode how favorable the interaction is between two given residues (138, 139). In 

(127), it was found that the so-called MJ matrix (138) only worked for MHC allotypes with 

hydrophobic binding pockets. Therefore, in follow-up studies (83, 127), the parameters of 

the newer BT matrix (139) were tuned to improve performance across all allotypes. Through 

a webserver (137), one can use these matrices or one’s own scoring potentials.
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FRESNO (75, 140) was one of the first scoring functions specifically developed for pMHC 

complexes. This scoring function accounts for hydrogen bonding, lipophilic interactions, 

rotational entropy loss, buried polar-apolar contacts, and desolvation energies. FRESNO 

initially allowed making accurate predictions for the HLA-A*02:01 allotype. It was then re-

implemented with open-source software (86), and its weights were re-calculated, using a 

more diverse training set including class II HLAs. This allowed making accurate predictions 

for the class II HLA-DR15 allotype.

Some studies have used statistical learning methods to optimize the weights of the scoring 

functions considering specific subsets of complexes (e.g., pMHC-II structures) (69, 78, 141, 

142), or to predict the correct register of MHC-II-binders (69). For instance, the scoring 

function used in GradDock was optimized to guide the sampling of pMHC-I complexes 

(79). The authors improved a scoring function from the popular modeling library Rosetta, 

testing different combinations of terms and weight values while performing self-docking and 

cross-docking experiments.

Peptide classification (binders vs non-binders)—Structure-based methods have also 

been used to classify peptides into binders vs non-binders, considering specific MHC 

allotypes. For instance, the work in (84) reports high predictive power for HLA-DRB1*0402 

and HLA-DQB1*0503, while the study in (85) reports an AUC of 0.9 for HLA-DQ3.2β. In 

another study, AUC values in the range 0.632–0.821 are reported for MHC-II receptors (69).

In (143), AutoDock4 was used to predict the binding of every possible peptide from a given 

protein sequence. Despite using several approximations, the authors reported that a known 

immunogenic peptide had good rank (i.e., high predicted affinity). The work in (89) used 

docking to derive qualitative matrices to predict binding across 12 HLA-DRB1 proteins. 

Docking scores were normalized to assess the contribution of each amino acid in each 

pocket. A server was built that enables predictions across several HLA class II allotypes 

(144).

In (88), a search was performed on the space of sequences as well as conformations of the 

peptide. Using the Rosetta scoring function (145), several thousand simulations were 

performed for a given allotype, and the final peptide sequences across all simulations were 

pooled into a single position-specific frequency matrix (PFMs). Their computed PFMs 

showed impressive similarity to experimentally-derived PFMs across seven different HLA-

As and twelve HLA-Bs (88).

Another interesting way to predict MHC-binders involves a search for the peptide sequence 

minimizing affinity for a given scoring function. In (87), the PeptX framework is based on a 

genetic algorithm that explores the space of peptides for a sequence that binds the strongest 

to HLA-A*02:01. The fitness of a particular peptide sequence was evaluated using different 

scoring functions, including a variety of sequence-based methods and a structure-based 

scoring function, X-score (142). They found that different fitness definitions produced 

distinct preferences in the peptides predicted to bind, but common peptides were indeed 

found to bind experimentally (87).
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Quantitative binding affinity prediction

Going beyond qualitative ranking of conformations and classification of binders vs non-

binders, some methods aim at predicting realistic values of binding affinity. Two approaches 

for quantitative binding affinity prediction are discussed here (Table 2). First, we describe 

data-driven methods to derive binding affinity from a single pMHC conformation. Then, we 

describe simulation-based methods to derive binding affinity from an ensemble of 

conformations.

Data-driven predictions—Statistical learning methods mentioned in previous sections 

were applied to learn the weights of a given scoring function. In this section, statistical 

learning methods are used to predict binding affinities directly from structural features.

The two defining characteristics of data-driven methods are the representation of the dataset 

(through features or descriptors) and the type of statistical learning model. First, different 

types of structural features have been investigated: residue-residue contacts (91, 92, 94), 

general physical-chemical descriptors (90, 93, 146), energy terms from semi-empirical 

scoring functions (78), and features derived from molecular dynamics simulations (82). 

Second, several statistical learning models have been used: partial least squares (90, 91, 93), 

support vector machines (78, 82, 146), and random forests (94). All these methods report 

high prediction accuracies for their datasets which consist of one or several MHC allotypes.

A more recent structural data-driven approach is the method HLaffy (95). A statistical pair 

potential was constructed using the frequency of residue contacts present in the modeled 

structures of known binders. When the input is a sequence that was not explicitly modeled, a 

linear optimization problem allows maximizing the constructed statistical pair potential. 

Finally, a Gaussian process regression scheme is used to go from interaction profiles 

(encoded by the statistical pair potential) to predicted binding affinity values. HLaffy had an 

average prediction accuracy of 82.5% using 5-fold cross-validation.

Note that the limitations of statistical learning methods for sequence-based predictions, 

mentioned in section 1, also apply to structure-based data-driven predictions. In fact, biases 

are even greater given the small number of available pMHC structures. Despite the existence 

of nearly 10,000 MHC allotypes in humans, there are less than 650 pHLA structures in the 

PDB. In addition, more than one third of these structures relate to the same HLA allotype 

(HLA-A*02:01). Therefore, a scoring function using weights learned from all available 

pHLA structures would certainly overfit HLA-A*02:01, while lacking training on most 

other allotypes.

Simulation-based predictions—Other methods for binding affinity prediction are based 

on simulations, such as MD and Monte Carlo. MD simulations track the time evolution of a 

molecular system using a potential energy function, also known as a force field. MD-based 

methods hold a lot of promise in that they are completely model-based and do not require 

any experimental data for training. However, they are the most demanding computationally, 

and as such have most often been used to analyze important contacts in pMHC complexes 

with known affinity/immunogenicity (141, 147–154). We direct the interested reader to a 
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dedicated review on the use of MD for pMHC systems (155). Here we highlight some recent 

work not covered in that review.

By far, the most extensive use of MD for computing pMHC binding affinities has been 

through the protocol named ESMACS: enhanced sampling of molecular dynamics with the 

approximation of continuum solvent (99). This technique relies on calculating free energy 

with the MM/PB(GB)SA method, which was mentioned in section 4.1.1 (156). The free 

energy of binding is computed as the free energy of the complex minus the free energies of 

the peptide and receptor (121). Typically, these free energies are derived from conformations 

sampled from a single MD simulation of the whole complex. This is in contrast with the so-

called 3-trajectory variant, where the free energies are derived from three separate 

simulations: for the complex, the protein alone, and the peptide alone. Not performing the 3-

trajectory variant means assuming that using the conformations sampled from the peptide 

bound to the receptor allow computing the free energy of the peptide alone, which neglects 

important changes in entropy between the bound and unbound states of the peptide.

Large variations in computed free energies have been observed when sampling from single, 

long MD trajectories, as opposed to ensembles of short simulations (156). Therefore, the 

study in (99) aimed to produce precise estimates of binding free energies by performing the 

3-trajectory variant using ensembles of short MD simulations. For a given system (pMHC 

complex, MHC, or peptide), 50 replica MD simulations, 4 ns each, were ran using different 

initial velocities starting from a given crystal structure. For 12 diverse peptides bound to 

HLAA*02:01, computed binding affinities had a Pearson correlation coefficient of 0.80 with 

experimental binding (99).

Another interesting work features hierarchical natural move Monte Carlo simulations to 

explore pMHC detachment processes (100). The pMHC system is represented in a coarse-

grained manner: each amino acid is modeled by its alpha carbon, its carbonyl oxygen, and 

the center of its side chain. The study involves 32 peptides bound to HLA-A*02:01; 100 

independent simulations were performed for each peptide until detachment. The authors 

found that the average time it took for a simulation to completely sample the peptide 

detaching correlated with experimental binding affinity. Using these average simulation 

times and an appropriate cutoff, their method achieved an AUC of 0.85 when discriminating 

binders from non-binders.

Simulation-based predictions have also been applied to MHC-II systems. For instance, the 

work in (96) used simulated annealing of pMHC-II models and correlated the interaction 

terms from the AMBER force field with experimental affinity. The study in (97) compares 

three different ways of computing binding affinity for pMHC-IIs, including simulation, 

statistical pair potentials and contact analysis (97). However, the conclusion was that, while 

predictions made by these structure-based methods are significantly better than random, they 

are still not on par with the leading sequence-based methods. More recently, a computational 

suite for the optimization of protein and ligand conformations – Proteus – was proposed, 

featuring MM/PB(GB)SA calculations for pMHC-IIs and considering different pH values 

(98).
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FUTURE CHALLENGES IN THE SEARCH FOR IMMUNOGENICITY

A recent study described the use of an ensemble refinement approach to reveal hidden 

dynamics in crystal structures of pMHC and TCR/pMHC complexes (157). By generating 

an ensemble of conformations (Fig. 4), all compatible with data from a given X-ray 

crystallography experiment, the authors illustrated how differing interpretations can be made 

using a single conformation as opposed to the whole ensemble. In fact, the ensemble derived 

from some pMHC crystal structures contained not only alternative peptide side chain 

configurations, but even alternative binding modes, with significantly different backbone 

conformations and coordination networks. These results are compatible with findings from 

molecular dynamics studies and highlight the need to consider the whole ensemble of 

peptide conformations, rather than a single binding mode. This suggests the need for a new 

paradigm in structural predictions. Instead of trying to find a single top scoring conformation 

that matches the corresponding binding mode observed in a crystal structure (e.g., cross-

docking), a more reasonable goal would be to find an ensemble of peptide conformations 

that is “equivalent” to that of the crystal structure. This new goal would also require new 

metrics that could evaluate the accuracy of binding mode predictions in terms of the 

generated ensemble (157).

A paradigm shift from single binding modes to ensembles of conformations would also 

require new methods for ranking and binding affinity prediction, adding complexity to an 

already difficult problem. As discussed in previous sections, there is an inherent tradeoff 

between accuracy and scalability of binding prediction methods. Simulation-based affinity 

prediction tools can be more accurate and provide additional interpretability of molecular 

interactions, but cannot be used for peptide screening (97). On the other hand, docking-

related scoring functions and data-driven approaches may be scalable, but their accuracy is 

not yet at the level of sequence-based methods. For instance, scoring functions notoriously 

suffer from a strong lack of accuracy, which is only partially explained by their focus on 

computational efficiency. Several evaluation studies of docking tools (some involving 

datasets containing pMHC complexes) have shown that existing scoring functions often fail 

to identify near-native poses (52, 53, 64, 159). Scoring functions also show limitations in 

distinguishing binders from non-binders, recapitulating known rankings, and reproducing 

experimental binding affinities (160, 161).

In a broader context, recent findings in drug discovery reveal that the binding kinetics is a 

decisive factor for drug efficacy and safety (162, 163). In this context, the dissociation rate 

constant (Koff) becomes a more important measure than binding affinity. However, this value 

is much harder to estimate computationally. It requires extensive sampling of transition 

states, derived from multiple paths from bound to unbound states (162). Considering that 

Koff is impacted by the residence time (i.e., the average time that the ligand stays in the 

binding site), and that the residence time is usually at the scale of minutes or hours, 

computing transition states becomes almost impossible with conventional MD simulations 

(with time scales of ns to μs). However, recent advances in the development of “optimized” 

MD sampling algorithms and the fast growing processing capacity of modern CPUs and 

GPUs are opening new avenues for Koff prediction (162, 163).
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In the context of pMHC complexes, there is also evidence that pMHC stability is a better 

predictor of immunogenicity than pMHC binding affinity (164). As expected, predicting the 

Koff of peptides is a much harder problem as compared to drug-like ligands. Peptides are 

bigger and have a more complex network of interactions, which results in a much longer 

unbinding process (100). However, the advances in sampling methods discussed in this 

review could allow for the fast generation of a meaningful ensemble of bound peptide 

conformations, despite the use of imperfect scoring functions. In turn, these conformations 

could be used as seeds for “optimized” MD sampling algorithms, such as adaptive sampling 

(165–167), allowing for a more efficient prediction of Koff rates for pMHC complexes.

CONCLUSION

Over the past decades, different sampling methods have been applied to the structural 

prediction of pMHC complexes (Table 1). These methods are very diverse, relying on a 

variety of tools and procedures. In addition, research groups have used different datasets and 

metrics to report their results (e.g., α-carbon RMSD or all-atom RMSD). Therefore, a fair 

comparison of all these approaches would be difficult and beyond the scope of this review. 

Instead, we have focused on highlighting the main assumptions and trade-offs behind these 

approaches. We have proposed a classification of these methods into three general strategies: 

constrained backbone prediction, constrained termini prediction and incremental prediction. 

Note that each strategy solves a different formulation of the pMHC structural prediction 

problem. For instance, using a backbone template dramatically reduces the conformational 

space that must be explored, as compared to docking the entire ligand with full flexibility. 

On the other hand, relying on a template reduces the generality of the proposed method. This 

is particularly relevant for peptides with unusual binding modes and for MHC allotypes 

lacking experimental data.

Despite all the challenges, the latest publications show impressive results and suggest that 

sampling is not anymore a limitation for pMHC binding mode prediction. It is also worth 

noting that different methods might be better suited for different docking applications (51). 

For instance, the efficient sampling of GradDock (79) combined with a pMHC-specific 

scoring function makes this tool potentially useful for large-scale virtual screening, while the 

higher accuracy of DockTope (65) and DINC (43) make them more suitable for geometry 

optimization.

On the other hand, the development of fast and accurate scoring functions represent an 

unmet need for both pMHC binding mode prediction and structure-based binding affinity 

prediction. Similar to what was discussed for binding mode prediction, different approaches 

for binding affinity prediction make different assumptions and trade-offs. Fortunately, recent 

advances in high performance computing are allowing for computation intensive 

applications, which are expected to have a huge impact on both binding mode and binding 

affinity prediction. Although no single tool is yet capable of solving all these problems, we 

are finally getting closer to the point where different structure-based methods can be used to 

address specific problems in medicinal chemistry. Hopefully, structural methods will soon 

be combined with sequence-based methods, providing general and accurate predictions that 
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will help researchers and physicians to tackle some of the most challenging health care 

problems of our time.
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Figure 1. Schematic view of the role of MHCs in T-cell activation.
Class I Major Histocompatibility Complexes (MHC-I) are present in almost every cell and 

involved in the surface presentation of peptides derived from intracellular proteins. On the 

other hand, class II MHCs are present only in “professional” antigen-presenting cells 

(phagocytes) and involved in the surface presentation of peptides derived from extracellular 

proteins. The recognition of displayed peptide-MHC complexes by the T-cell receptor 

(TCR) triggers T-cell activation, clonal expansion and immunological memory. While 

cytotoxic T-cells (CD8+) mediate cellular immunity, helper T-cells (CD4+) control the 

humoral response and have other regulatory roles. CD stands for cluster of differentiation.
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Figure 2. Validation experiments for binding mode prediction.
Self-docking, also known as re-docking, focuses solely on sampling the ligand. For each 

target complex, the structures of the ligand and of the receptor are separated, the 

conformation of the ligand is randomized, and the method under evaluation is used to predict 

the best binding mode of the ligand to the receptor from the same (self) co-crystallization. 

On the other hand, cross-docking consists of predicting the binding mode of the ligand to a 

different conformation of the receptor (e.g., a model or a structure from a different co-

crystallization). Therefore, cross-docking usually requires some type of relaxation or 

sampling of the receptor, in addition to that of the ligand.
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Figure 3. Molecular structures of class I and class II MHCs.
Molecular representation of a class I MHC (A, C) and a class II MHC (B, D). The upper 

panel shows a top view, while the bottom panel shows a cross section side-view of the 

binding clefts. Note that the binding cleft of a class I receptor is deeper, with “closed” 

extremities, while the class II cleft is shallower, with open extremities. The pockets involved 

in binding primary “anchor” residues are indicated. Together, structural differences in the 

shape of the cleft and the location of binding pockets have an impact on the overall 

conformation of bound ligands (e.g., peptides tend to adopt bulged conformations when 

bound to class I, and more linear conformations when bound to class II). Crystal structures 

of both complexes were downloaded from the PDB and superimposed to be in the same 

orientation. Class I complex: HLA-A*01:01 receptor presenting a tumor-derived 9-mer 

peptide (PDB code 5BRZ). Class II complex: HLA-DRB1*01:01 receptor presenting a 14-

mer bacteria-derived peptide (PDB code 1KLU). Receptor chains α and β (or β2-

microglobulin) are depicted in surface, while peptide ligands are depicted in surface (A, B) 

or ball-and-sticks (C, D). Graphics were obtained with UCSF ChimeraX (66).
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Figure 4. Side view of a pMHC complex after ensemble refinement.
Alternative conformations of selected MHC side chains are depicted in sticks, as well as 

alternative conformations of the ligand. All alternative conformations are compatible with 

the x-ray experimental data, and were obtained through a procedure of ensemble refinement 

(157). The single peptide conformation displayed in the crystal structure is represented in a 

darker shade of grey. Part of the conformational “frame” of the binding site can also be 

observed (i.e., a lateral alpha-helix and a floor of beta-sheets, both depicted in cartoon). 

Graphics were obtained with UCSF Chimera (158).
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