Skip to main content
. Author manuscript; available in PMC: 2019 Feb 4.
Published in final edited form as: Curr Top Med Chem. 2018;18(26):2239–2255. doi: 10.2174/1568026619666181224101744

Table 2.

Key methods applied to pMHC binding affinity prediction

Publication (Ref.) Tool/Method Validation (size) Dataset Composition
Rognan et al., 1999 (75) FRESNO scoring function Correlation (84) Class I: HLA-A*02:01, HLA-A*02:04, H-2K
Altuvia et al., 2004 (83) PREDEP, residue-contact matrices Classification and Correlation (>1000) Class I: 2 HLA-A, 4 HLA-B, H-2D, H-2K, H-2L
Tong et al., 2006 (84) calibrated scoring function Classification (139) Class II: HLA-DQ3.2β
Tong et al., 2006 (85) calibrated scoring function Classification and Correlation (84) Class II: HLA-DRB1*0402, HLA-DQB1*0503
Liao et al., 2011 (86) Modified version of FRESNO scoring function Correlation (>100) Class I and II: HLA-A2, HLA-DR15, HLA-DR1, and HLA-DR4
Knapp et al., 2011 (87) PeptX, genetic algorithm Classification (>1000)* Class I: HLA-A*02:01
Yanover et al., 2011 (88) Rosetta Classification (>1000)* Class I: 7 HLA-A, 12 HLA-B
Atanasova et al., 2011 (89) EpiDOCK, generated quantitative matrices Classification (4540) Class II: 12 HLA-DRB1
Doytchinova et al., 2002 (90) QSAR Correlation (266) Class I: HLA-A*02:01
Doytchinova et al., 2004 (91) QSAR Correlation (90) Class I: HLA-A*02:01
Jojic et al., 2006 (92) custom scoring function with calibrated weights Classification and Correlation (>500) Class I: 4 HLA-A, 5 HLA-B
Antes et al., 2006 (82) DynaPred, SVM using quantitative matrices and MD-derived energy features Classification (>1000) Class I: HLA-A*02:01
Bordner et al., 2006 (78) SVM using scoring function terms Classification (331) Class I: HLA-A*02:01, H-2Kb
Tian et al., 2009 (93) QSAR Correlation (152) Class I: HLA-A*02:01
Bordner, 2010 (69) random forest using scoring function terms Classification (>1000) Class II: various human and murine allotypes
Saethang et al., 2013 (94) random forest using residue-residue contacts and topological descriptors Classification (>1000) Class I: HLA-A2
Mukherjee et al., 2016 (95) learning statistical pair potentials to use as features for Gaussian process regression Classification and Correlation (>10000) Any Class I with experimental binding affinity data
Davies et al., 2003 (96) simulated annealing, AMBER force field Classification (>10) Class II: 4 HLA-DR1
Zhang et al., 2010 (97) position specific free energy contributions using MD and MM/PBSA Correlation (3882) Class II: HLA-DRB1*0101
Polydorides et al., 2016 (98) Proteus, computational suite for the optimization of protein and ligand conformations Correlation (1)** Class II: HLA-DQ8
Wan et al., 2015 (99) MD, MM/PB(GB)SA Correlation (12) Class I: HLA-A*02:01
Knapp et al., 2016 (100) hierarchical natural move Monte Carlo simulations Correlation (32) Class I: HLA-A*02:01

Correlation: study reports computing affinity values that can be directly compared with experiment. Classification: study reports affinity predictions for the purpose of classifying peptides as binders or non-binders given an appropriate threshold.

*

These studies searched for strong binding peptides, instead of producing a score related to affinity. See text.

**

Only reported an example use case using their tool