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Regional protein expression in human Alzheimer’s
brain correlates with disease severity
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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that currently affects

36 million people worldwide with no effective treatment available. Development of AD fol-

lows a distinctive pattern in the brain and is poorly modelled in animals. Therefore, it is vital

to widen the spatial scope of the study of AD and prioritise the study of human brains. Here

we show that functionally distinct human brain regions display varying and region-specific

changes in protein expression. These changes provide insights into the progression of dis-

ease, novel AD-related pathways, the presence of a gradient of protein expression change

from less to more affected regions and a possibly protective protein expression profile in the

cerebellum. This spatial proteomics analysis provides a framework which can underpin

current research and open new avenues to enhance molecular understanding of AD patho-

physiology, provide new targets for intervention and broaden the conceptual frameworks for

future AD research.

https://doi.org/10.1038/s42003-018-0254-9 OPEN

1 Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester
Academic Health Sciences Centre, Core Technology Facility (3rd Floor), 46 Grafton Street, Manchester M13 9NT, UK. 2 School of Biological Sciences, and
Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
3 Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK. 4 Centre for Brain Research, Faculty of Medical and
Health Sciences, University of Auckland, Auckland 1142, New Zealand. 5 Research IT, The University of Manchester, Manchester M13 9PL, UK. 6 Division of
Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic
Health Sciences Centre, Manchester M13 9PL, UK. 7 Department of Population Health Sciences and Bristol Veterinary School, Faculty of Health Sciences,
University of Bristol, Bristol BS8 2BN, UK. Correspondence and requests for materials should be addressed to R.D.U. (email: r.unwin@manchester.ac.uk)

COMMUNICATIONS BIOLOGY |            (2019) 2:43 | https://doi.org/10.1038/s42003-018-0254-9 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

mailto:r.unwin@manchester.ac.uk
www.nature.com/commsbio
www.nature.com/commsbio


A lzheimer’s disease (AD) is a multifactorial neurodegen-
erative disorder characterised by progressive dementia1,2.
Accumulation of Aβ peptide and microtubule-associated

protein tau, which exhibits hyperphosphorylation, and oxidative
modifications into so-called plaques and tangles are considered to
be central to the pathology of AD3. Other prominent features of
AD include early region-specific decline in glucose utilisation and
mitochondrial dysfunction and consequently depleted ATP pro-
duction and increased reactive oxygen species production in
neurons4. Excitotoxicity in the AD brain arising from altered
glutamatergic signalling5, and dysregulation in other neuro-
transmitters has also been documented, including abnormalities
of adrenergic, serotonergic and dopaminergic neurotransmis-
sion6. In response to pathological stimuli associated with AD,
inflammatory events mediated through both innate and cell-
mediated immune mechanisms are also present3.

Despite an increase in research into the underlying pathology
of AD over the last decade, there remains controversy around
what underpins this disease process, which in turn affects the
pipeline of new disease-modifying agents. There remains a lack of
detailed mechanistic knowledge about what happens in the
human brain in AD. This is exacerbated by the fact that different
brain regions develop pathology at different times in the disease
process, adding a spatial element to the disease, which is not
captured by work in cell culture models and is often overlooked
in human studies, which tend to focus on single regions. Animal
models also fail to capture the full disease process, at either the
behavioural or biochemical levels7, such that translation of both
basic biological findings and/or the activity of potential disease-
modifying interventions from animals into humans is relatively
unsuccessful. While there have been several studies, which have
focused on the transcriptome in human AD, there is a wealth of
evidence that suggests many protein expression changes in bio-
logical systems can occur independently of transcript-level reg-
ulation, and that studying the proteome can provide new insights
on the regulation of functionally active molecules in a given
biological or disease state8.

Mass spectrometry-based proteomics has been recognised as a
powerful tool with the potential to uncover detailed changes in
protein expression9. To date, however, there are few studies of
protein expression in AD carried out using human brain tissue,
and those that exist typically examine a single AD-affected brain
region10,11, and use different patient cohorts and analytical
methods that makes between-region comparisons difficult. Such
studies also frequently use either small numbers of samples (n <
4) or cohorts poorly matched for age or tissue post-mortem
delay10,12,13. A recent study by Seyfried et al. bucks this trend
somewhat by analysing larger numbers of brain samples from
AD, asymptomatic AD (Braak IV) and control groups from two
affected brain regions, the dorsolateral prefrontal cortex (FC) and
precuneus (PC)14, and identifies functional networks present in
these affected regions.

The current study aims to overcome some of these existing
limitations by providing a spatially resolved analysis of protein
expression in six regions of human control and AD-affected brain,
reflecting varying levels of ‘affectedness’, in well-matched, short
post-mortem delay tissue. Briefly, we quantify over 5000 proteins in
AD and control tissue, to our knowledge the most in-depth study of
this type to date. These data reveal protein changes between AD
and control tissue, which appear to form a gradient through the
brain, in order of affectedness where less affected regions display a
smaller subset of those changes seen elsewhere, possibly repre-
sentative of an early disease state. We also show that unaffected
cerebellum, rather than being unaffected by AD, displays a pattern
of protein expression changes distinct from other brain regions,
which could be protective for this region of the brain.

Results
Study design. In this study, we analysed six functionally distinct
regions of human post-mortem brain: hippocampus (HP),
entorhinal cortex (ENT), cingulate gyrus (CG), sensory cortex
(SCx), motor cortex (MCx) and cerebellum (CB), by mass spec-
trometry to gain a more comprehensive understanding of protein
expression changes within the AD brain. These regions were
selected to represent parts of the brain known to be heavily
affected (HP, ENT, CG), lightly affected (SCx, MCx) and rela-
tively ‘spared’ (CB) during the disease process. Donors (n= 9 AD
cases, n= 9 asymptomatic controls) were well matched for age
and post-mortem delay times were short, with no significant
difference between cases and control. Donor data are provided in
Table 1. Relative protein expression was determined using an
isobaric tagging approach followed by two-dimensional liquid
chromatography and mass spectrometry. Peptide-level data were
then analysed using a Bayesian model that infers a posterior
probability distribution for the relative levels of each protein
between ‘cases’ and ‘controls’ based on the underlying relative
peptide levels. To promote sharing and usage of these data, we
have developed a searchable web interface that hosts all of
our results (www.manchester.ac.uk/dementia-proteomes-project;
described in Supplementary Information), which also includes
Bayesian probability distributions for each protein across all
individual brains examined in this study. The complete workflow
is illustrated in Fig. 1. Raw mass spectral data can be accessed via
PRIDE, with initial search outputs prior to Bayesian modelling
available via the Open Science Framework at https://doi.org/
10.17605/OSF.IO/6BXJQ (Supplementary Methods).

Regional comparison of protein expression in human AD
brain. Each brain region was analysed in isolation, adding
strength to our comparison of protein expression changes across
multiple regions, since these were identified and quantified
independently. An initial principal components analysis (PCA) of
the data for each region shows that samples appear to separate on
the basis of disease class (Supplementary Figure 1a)—there is no
significant clustering and hence confounding by age, sex or post-
mortem delay (PMD) in this analysis overall. In addition, we did
not observe any significant gender clustering in the AD cases
when analysed in isolation (Supplementary Figure 1b), as may be
anticipated given the well-matched nature of the case and control
sample sets.

Combining all protein identifications (at 1% false discovery
rate (FDR)) across the six experiments yielded a total of 5825
unique protein identifications across all regions. The complete
processed data for each region (at protein identification FDR <
1%) can be found in Supplementary Data 1. In our data, 990
proteins were quantified with only one or two spectra in any
single region, and were subsequently omitted from our down-
stream cross-regional comparison in order to retain the proteins
with the most precise quantification—optimisation data suggest
that when the same sample is split and processed independently,
> 99% of proteins are defined as not being significantly different
above this threshold (A. W. Dowsey, personal communication).
However, many of these will be quantified correctly (we have
previously validated expression changes based on a single
spectrum, e.g., p53 in8), and as such these data have been
included in Supplementary Data 1 and our online database. We
thus quantified a total of 4835 distinct proteins in at least one
brain region, among which 3302 proteins were common to at
least three regions, and 1899 to all six regions (Fig. 2a). These data
allow us to (a) define protein changes as a result of AD in any
given region of the human brain being studied, and (b) identify
differences in how distinct brain regions are affected in AD, and
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by extension protein changes, which occur in multiple regions of
the AD brain.

Comparison of the total number of proteins whose expression
is altered in each region reveals, perhaps unsurprisingly, that the
more severely affected areas in AD (HP, ENT, CG) show the
largest number of changes in protein expression (~30% of
quantified proteins), whereas less affected regions (MCx, SCx)
have fewer changes (11–13%). Strikingly, the CB, which many
think to be pathologically ‘unaffected’, shows a substantial
number of protein changes (20%; Fig. 2b). This observation
accurately recapitulates data from our previous study of the
metabolome on these brain samples15. Unsupervised hierarchical
clustering of protein expression changes from all six regions
demonstrates that the changes observed in CB are distinct from
those seen in the affected HP, CG and ENT (Fig. 2c). This is
supported by an Edwards–Venn representation of the data, which
shows that 120/403 (29.8%) of changes in CB are not seen
elsewhere (Fig. 2d; Supplementary Data 2). While it has long been
reported that the CB in AD can contain amyloid plaques16, it is
considered to be relatively ‘spared’ in AD. There is a lack of
neurofibrillary tangles in CB17, and this region does not appear to
develop notable neuronal loss, such that this region is often used
as a control in imaging studies of the AD brain18,19. However,
recent work by Guo et al. suggests a distinct pattern of cerebellar
atrophy, which spreads from intrinsic connectivity networks
within the cerebrum20, and alterations in cerebellar glucose
metabolism have been reported in late stages of the disease21,22.
Our data strongly suggest that the CB is heavily affected by AD at
the molecular level, at least in late stage disease, and is so to a
greater extent than other regions associated with later

degeneration such as MCx or SCx, where protein changes were
fewer and encompass those seen in the more severely affected
regions. That the changes in CB are different from those seen
elsewhere in the brain raises the possibility that, rather than being
‘spared’, the CB is affected in a different way to other brain
regions and that, given it shows little pathology, these changes
may reflect some level of active protection.

Hereinafter, we refer to HP, ENT and CG as the severely
affected, and MCx and SCx as the less affected regions based on
the number of significantly altered proteins and pathways
observed within this study.

Unsupervised clustering of brain regions based on their protein
expression, by performing a dimensionality reduction on these
data using isomeric feature mapping (Isomap), clearly shows this
hypothesised ‘evolution’ of the disease from the least affected
cortical regions to the most affected, with CB following a distinct
pathway from the inception of disease (Fig. 2e). This non-linear
approach has been shown to be an improvement over the more
standard PCA approach for analysis of gene and signalling
networks23. These data also further support our previous
observation that CB stands out as a single, uniquely affected
brain region based on the distinctive patterns of changes found
here, whereas the other regions line up along the same vector in
accordance with disease severity.

Previous studies using gene co-expression networks and
transcriptomics analysis have demonstrated a pattern where the
molecular signatures in less affected areas of the brain overlap
with but are less marked than the grossly affected areas, and have
hypothesised that these regions are on a different point along a
continuum of disease progression24. As such changes in less

Table 1 Clinical characteristics of AD and control brains used in this study

Case
no

Group Age/
sex

Ante-mortem brain/mental
state

Cause of death Braak
stage

Amyloid
load

PMD
(h)

Brain weight
(g)

1 AD 60/M Alzheimer’s disease and
dementia

Alzheimer’s disease VI 3/3 7 1020

2 AD 62/F Alzheimer’s disease and
dementia

Alzheimer’s disease VI 3/3 6 831

3 AD 63/F Alzheimer’s disease and
dementia

Bronchopneumonia VI 2/3 7 1080

4 AD 70/F Alzheimer’s disease and
dementia

Lung cancer V 3/3 7 1044

5 AD 73/M Alzheimer’s disease and
dementia

Gastrointestinal haemorrhage IV 3/3 4 1287

6 AD 74/F Alzheimer’s disease and
dementia

Metastatic cancer V 3/3 8.5 1062

7 AD 74/M Alzheimer’s disease and
dementia

Pseudomonas bacteraemia VI 2/3 12 1355

8 AD 77/M Alzheimer’s disease and
dementia

Myocardial infarction VI 3/3 4.5 1180

9 AD 80/M Alzheimer’s disease and
dementia

Bronchopneumonia/ pulmonary
oedema

V 3/3 5.5 1039

10 Control 61/M No brain disease or dementia Ischaemic heart disease - 0 7 1258
11 Control 64/F No brain disease or dementia Pulmonary embolism - 0 5.5 1260
12 Control 63/F No brain disease or dementia Ruptured aorta - 0 12 1280
13 Control 72/F No brain disease or dementia Emphysema - 0 9 1230
14 Control 66/M No brain disease or dementia Ischaemic heart disease - 0 9 1461
15 Control 76/F No brain disease or dementia Metastatic carcinoma II 3/3a 12 1094
16 Control 73/M No brain disease or dementia Ischaemic heart disease - 0 13 1315
17 Control 78/M No brain disease or dementia Ruptured abdominal aortic

aneurysm
- 0 7.5 1260

18 Control 78/M No brain disease or dementia Ruptured myocardial infarction - 0 12 1416

Brain pathology and amyloid load, were determined using the scoring system based on Braak and Braak staging, where a score out of 3 was determined by a qualified neuropathologist and cause of death
was determined at post-mortem examination. aDespite being phenotypically healthy, patient 15 was found retrospectively to have post-mortem signs consistent with AD and was described as A3, B1, C1
using the ‘ABC’ criteria for AD neuropathologic change that incorporates histopathological assessments of Aβ deposits (A), staging of neurofibrillary tangles (B) and scoring of neuritic plaques (C). The
corresponding data have been retained in the analysis presented in the article due to the early and asymptomatic nature of this patient
AD: Alzheimer’s disease, F: female, M: male
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affected areas (which are mirrored in the highly affected areas)
likely represent those which occur early in AD-related neurode-
generation24. Our data at the protein level would support this
conclusion—the less affected regions (MCx and SCx) contain
very few protein changes, which are not seen elsewhere. An
unsupervised clustering analysis suggests that these regions are
simply at an earlier stage down a similar pathway. This supports
the hypothesis proposed by Ray and Zhang that by comparing
more and less affected brain regions in a multi-regional approach
we can observe different stages of the this progressive disease,
enabling identification of early molecular changes.

Pathways dysregulated in human AD. To identify key protein
expression changes in the brain in AD, we first identified all
proteins, which show differential expression in at least 5/6 brain
regions. This subset was selected as these proteins are guaranteed
to be changed in at least one of MCx and SCx, and as such likely
also represent changes, which occur earlier in disease, and are
thus more interesting from a therapeutic targeting perspective.
The 128 proteins, which fit this criterion are listed in Supple-
mentary Data 3. We can find no prior evidence in the literature
that 44 of these proteins have been previously linked to AD.
These are novel findings and include proteins involved in the
protein folding/stress response, in metabolism, in neuro-
transmitter production and exocytosis, and in cell signalling. A
further 22 of these proteins have only been previously linked to
AD via other -omics studies, including another recent large-scale
human brain proteome analysis14 and several others have only
been linked to AD via studies on animal models, and so our
dataset provides valuable validation data for these proteins in
human disease tissue.

To probe the differences in AD-related protein expression
between brain regions in more mechanistic detail, we performed a
pathway enrichment analysis for all differentially expressed
proteins for each region. Such analyses enable us to visualise
which processes are affected in the AD brain, and also whether
two (or more) regions are showing dysregulation in the same
pathway even if different subsets of proteins are identified as
‘changing’. These data are summarised in Fig. 3a and Fig. 3b (and
Supplementary Data 4).

Reflecting the individual protein expression data, HP and CG
showed the highest number of biological pathways being affected
by AD. The changes in specific molecular pathways were
comparable between HP, ENT and CG. CB, on the other hand,
showed altered regulation of a set of molecular pathways with
limited overlap with those affected in the other five brain regions,
again arguing for the presence of a distinct cellular response to
disease in this region.

One of the most consistent features across all brain regions was
a significant change in proteins and pathways involved with the
innate immune response. In AD, aggregates of Aβ can trigger
both pathogen-associated and initiate immune responses, and a
persisting elevation of Aβ may elicit a chronic reaction of the
innate immune system25. In this study, we observed strong
evidence for the global activation of the innate immune response,
including of the acute phase response, the complement system
(classical and alternative pathways) and the coagulation system,
consistent with widespread neuroinflammation, suggesting that
this may be a relatively early (prior to atrophy) event in
pathogenesis. Previous studies have also implicated complement
family proteins as potential AD biomarkers26, and genome-wide
association studies have identified AD risk loci in a number of
complement pathway genes27–29. It is worthy of note that these
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analysed by standard LC-MS/MS methods. Peptides were identified and quantified based on their iTRAQ reporter area; relative protein quantification was
inferred from these values using a Bayesian model. All data are deposited in a searchable online database
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studies do not directly inform on the activation state of the
complement pathway, and indeed in our study we see
upgregulation of SerpinG1, which inhibits complement C4
cleavage by C1 and MASP2, as well as increased levels of C4,

C3 and various regulators in AD. Although it is highly likely that
dysregulation of this pathway plays a role in AD, the precise
nature of this role remains to be determined. Overall, HP, ENT
and CG showed substantive evidence for a broader spectrum of

I
978

II
555

III
523

IV
439 V

441

VI
1899

No
Quant
990

Quant
4835

a b c

%
 P

ro
te

in
s 

ch
an

gi
ng

15.1 14.1 13.6

5.0 5.9

13.5

14.5 16.8
14.5

6.2 6.5

7.7

0

5

10

15

20

25

30

35

HP ENT CG MCx SCx CB

Down

Up

d

CB

MCx

SCx
CG

HP
ENT

1 (91 %)

3 (0%)

2 (12 %)

e

MCx SCx HP CG CB

–1.00
–0.67
–0.33
0.00
0.33
0.67
1.00

Log2(AD:Ctrl)

CB
(403)

ENT
(586)

MCx
(213)

SCx
(226)

HP
(564)

CG
(534)

ENT

14

12021119

8

8 4
1

3 6
222

2
8

90

69 10
12
21

61

27

108 39

28
7

3

6

6

4

4

1
6

25

2

16

1
2

2
1
16 26

27
2

2
2

2
1

0

6 3

27 52

0
0

17

13 5
32

2

18 3

Fig. 2 Summary of protein expression data. a In total, 5825 proteins were identified, with 990 quantified with only one or two spectra and which were thus
omitted from our primary comparative analysis. The remaining 4835 proteins are classified as to whether they were quantified in six or fewer distinct
regions. b Proportion of identified, quantified proteins showing a change in expression in Alzheimer’s disease (AD) in each of the six regions under study.
c Heat map and dendrogram showing the relationship between protein expression in each region mapped using proteins present in all six regions, with
three distinct ‘groups’ based on highly affected (hippocampus (HP), entorhinal cortex (ENT), cingulate gyrus (CG)), moderate (motor cortex (MCx),
sensory cortex (SCx)) and spared (cerebellum (CB)) clearly visible. d Edwards–Venn diagram showing the overlap of protein expression changes between
brain regions, including only proteins quantified in all regions. e Isometric mapping (Isomap) representation of protein expression data between brain
regions showing correlation in protein expression from non-affected towards affected regions, with the exception of cerebellum, which shows distinct
patterns of protein expression in AD

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-018-0254-9 ARTICLE

COMMUNICATIONS BIOLOGY |            (2019) 2:43 | https://doi.org/10.1038/s42003-018-0254-9 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


0 5 10 15 20 25 30 35 40 45

Acute phase response signaling
PI3K/AKT signaling
LXR/RXR activation

Protein ubiquitination pathway
HIPPO signaling

Granulocyte adhesion and diapedesis
Mitotic roles of polo-Like kinase

Complement system
Coagulation system

Noradrenaline and adrenaline degradation
Primary immunodeficiency signaling

PCP pathway
Cell cycle: G2/M DNA damage checkpoint regulation

Glycogen degradation II
Superpathway of D-myo-inositol (1,4,5)-trisphosphate metabolism

14-3-3-mediated signaling
Atherosclerosis signaling

Granzyme A signaling
Dendritic cell maturation

0.00 0.01 0.02 0.03 0.04 0.05

Number of proteins measured 

Entorhinal cortex

0 5 10 15 20 25 30 35

LXR/RXR activation
Acute phase response signaling

CTLA4 signaling in cytotoxic T lymphocytes
PI3K/AKT signaling

Mitotic roles of polo-like kinase
Granzyme A signaling

HIPPO signaling
Wnt/β-catenin signaling

Cell cycle: G2/M DNA damage checkpoint regulation
Complement system
Coagulation system

Primary immunodeficiency signaling
Telomerase signaling

p70S6K signaling
Acetyl-CoA biosynthesis I (pyruvate dehydrogenase complex)

B cell development
NADH repair

Clathrin-mediated endocytosis signaling
Granulocyte adhesion and diapedesis

Regulation of cellular mechanics by calpain protease
Histamine degradation

IGF-1 signaling
D-myo-inositol-5-phosphate metabolism

PTEN signaling
Phospholipases

Noradrenaline and adrenaline degradation
TCA cycle II (eukaryotic)

14-3-3-mediated signaling
Dopamine receptor signaling

ERK/MAPK signaling
Autoimmune thyroid disease signaling

Lipid antigen presentation by CD1
Virus entry via endocytic pathways

0.00 0.01 0.02 0.03 0.04 0.05

Number of proteins measured

–Log10 (p value)

–Log10 (p value)

–Log10 (p value)

Hippocampusa

b

c

0 5 10 15 20 25

Acute phase response signaling
LXR/RXR activation

Glutamate degradation III (via 4-aminobutyrate)
NADH repair

Antiproliferative role of TOB in T cell signaling
Pancreatic adenocarcinoma signaling

Coagulation system
Glutathione redox reactions II

Heparan sulfate biosynthesis (late stages)
Semaphorin signaling in neurons

tRNA charging
Pentose phosphate pathway (non-oxidative branch)

Purine ribonucleosides degradation to ribose-1-phosphate
Guanine and guanosine salvage I

Ascorbate recycling (cytosolic)
Cardiomyocyte differentiation via BMP receptors

CNTF signaling
Regulation of cellular mechanics by calpain protease

Primary immunodeficiency signaling
Acetyl-CoA biosynthesis I (pyruvate dehydrogenase complex)

Granzyme A signaling

0.00 0.01 0.02 0.03 0.04 0.05

Number of proteins measured

Cerebellum

Increased Decreased Log (p value)

Fig. 3 Network analysis summary. Alterations of molecular pathways in human Alzheimer’s disease brain across six distinct regions, namely a
hippocampus, b entorhinal cortex and c cerebellum. In each plot, the numbers of increased and decreased proteins are indicated by the red/blue bars,
whereas the black spots indicate the log10 (p-value) for each pathway
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changes in immune responses compared with MCx, SCx and CB.
These included specific cellular pathways including granulocyte
adhesion and dendritic cell maturation (Figs. 3 and 4,

Supplementary Datas 3 and 4), implying that while the innate
immune system becomes activated throughout the brain, the
adaptive immune response is primarily activated in regions of
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Fig. 4 Network analysis summary. Alterations of molecular pathways in human Alzheimer’s disease brain across the: a Cingulate gyrus, b Motor cortex,
and c Sensory cortex. In each plot, the numbers of increased and decreased proteins are indicated by the red/blue bars, while the black spots indicate the
log10 (p-value) for each pathway
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more significant damage. This supports our previous hypothesis,
and that of Ray and Zhang24 who noted a similar disparity in
immune processes between less and more affected regions that
these regions lie on a continuum of disease, and that what we are
observing is that while regions, which are earlier along this
continuum have activation of innate immunity, adaptive
processes are only present late in disease, possible as a response
to cellular damage. However, the interplay between these two
systems is complex and it is yet to be determined if these changes
are a cause, or a consequence of other aspects of AD
pathogenesis30.

This pathway-level analysis also identified signalling pathways
involved in apoptosis and cell cycle regulation as being widely
dysregulated in severely affected regions of AD brain, including
the HIPPO, ERK/MAPK, PI3K/AKT and Wnt/β-catenin path-
ways (Figs. 3 and 4), all known to be critically involved in
regulation of apoptosis and the cell cycle. Reduced abundance of
proteins involved in Polo-like kinase signalling and G2/M DNA
damage checkpoint regulation are likely a cause of impaired cell
cycle regulation, marking these pathways out as potentially key
contributors to neuronal cell death in AD. Strikingly, less affected
regions SCx and MCx do not show large changes in these
pathways, reflecting reduced levels of apoptosis seen in these
areas and providing further support for the idea that these regions
are reflecting ‘early’ disease changes. In CB, only granzyme A
signalling was identified as an apoptosis-related pathway,
indicative of fewer cell death signals in this region.

The only exceptions are the G2/M checkpoint and the Hippo
pathway, whose members are significantly decreased in these
regions, suggesting that inactivation of this key developmental
pathway, possibly via the observed upregulation of CD4431, or
altered regulation of associated proteins such as the synaptic
scaffolding proteins DLG2, DLG3 and DLG4, all of which are
downregulated, is an early event in AD development. The
observation of an altered Hippo signalling pathway in all areas of
the brain studied is, to our knowledge, the first time that this
pathway has been directly implicated in AD, although it has
previously been shown that the human orthologue of Hippo,
MST1, phosphorylates Foxo3 and that this is required for
neuronal death due to presence of reactive oxygen species
(ROS) or lack of neurotrophic activity32. This pathway can be also
activated by amyloid beta in primary cortical neuron cultures33.
The Hippo pathway is thought to be primarily involved in the
regulation of organ size and developmental processes within the
brain. However, links to neurodegeneration in ALS34, and a role
in microglial activation following ischaemic stroke35 suggest that
it is worthy of more investigation into any potential role in the
early stages of AD.

We also observed both global and regional metabolic
impairments in the AD brain. Defects in brain metabolism and
energetics are central to the pathogenesis of AD as evidence by
epidemiological, neuropathological and functional neuroimaging
studies36. The AD brain characteristically exhibits defective
cerebral perfusion37 and glucose uptake38, which is believed to
underlie hypometabolism and cognitive decline39. Alterations in
pathways of monosaccharide/glucose metabolism are highly
significant in severely affected brain regions and CB (Fig. 5,
Supplementary Data 3), consistent with our previous finding of
elevated free glucose levels in AD brain22. Citric acid cycle
enzyme abundance was generally decreased in all regions of AD
brain, going some way to explaining the previously observed shift
from primarily aerobic glycolysis (i.e., glycolysis followed by
complete oxidation in mitochondria) to the ketogenic/fatty acid
β-oxidation pathway, with impaired mitochondrial bioener-
getics40. Severely affected brain regions also showed substantial
alterations in signals related to altered regulation of

neurotransmitters/hormones (noradrenaline/adrenaline, dopa-
mine and aldosterone) that were not observed in less affected
regions. Although this might suggest that altered neurotransmit-
ter biology is a late or downstream process in pathogenesis, it is
notable that enzymes in the Tetrahydrobiopterin (BH4) pathway,
a key upstream pathway of neurotransmitter production are
differentially expressed in all regions. BH4 acts as a substrate for
the production of several neurotransmitters, including dopamine
and serotonin. Three proteins, SPR, QDPR and PCDB1, which
catalyse the conversion of BH4 away from these neurotransmit-
ters and towards biopterin increase throughout the brain. This is
the first time that these proteins have been observed to be
defective in AD brain, although reports from the mid-1980s
demonstrated reduced BH4 in AD41. This is the first time that
enzymes from this pathway have been directly implicated in AD
pathogenesis, although previous work has suggested a decrease in
BH4 levels in AD brain42. The observations at the protein level
may reflect either a feedback loop where the cell is responding to
decreased BH4, or a shift in BH4 metabolism towards biopterin
and away from NT production. The presence of this dysregula-
tion early in disease suggests it is a target, which deserves closer
attention.

The pathways we have identified as changing in AD share some
overlap with those identified in a recent study by Seyfried et al.14.
Here two brain regions, dorsolateral FC and PC were compared
for patients from AD, asymptomatic AD and control groups.
Taking the data from their paper and processing it using the same
pathway analysis tools as used to analyse our data yields some
interesting observations. Despite the presence of a small number
of protein changes (63) between the asymptomatic and control
groups (at p < 0.01, as used in the original publication), no
significant pathways could be determined for this subset, despite
the presence of Braak IV pathology in most of these samples.
Analysis of the Seyfried AD vs control data from FC identified
pathways also seen in our data, including a range of overlapping
signalling pathways around actin cytoskeleton signalling and cell
motility, synaptic long-term potentiation, semaphorin signalling
and myoinositol metabolism (Supplementary Data 5A). Fewer
pathways were seen in the dataset from PC. Notable by their
absence, however, were the strong signals, which we observed
from neuroinflammatory pathways and metabolism, although
‘inflammation’ was a feature of one of the protein co-expression
modules extracted from the Seyfried data. A search of these data
suggests that most of the proteins, which we found to be
differentially expressed in the ‘acute phase response’ signalling
pathway were quantified by Seyfried et al., but did not show
differential expression. Similarly of the eight proteins from the
citric acid cycle, which we showed to be differentially expressed
(IDH3A, IDH3B, OGDH, OGDHL, IDH3G, ACO1, SUCLA2,
SUCLG1), all were identified by Seyfried but none differed
significantly between AD and control. This is surprising given
that these changes are well established in human AD. The reasons
for these disparities are unknown, although of course the two
studies are investigating different regions of the AD brain. Of the
250 proteins identified as being differentially expressed in FC by
Seyfried at al., which were also identified in our study, 162 (65%)
were differentially expressed in both studies (Supplementary
Data 5B).

Although comparison of affected regions yields a range of
interesting and novel observations about the molecular under-
pinning of AD, the presence of a large number of changes in
‘unaffected’ CB provides a surprising finding, even more so when
one observes that these changes are distinct from those manifest
elsewhere. To investigate this population of protein changes
further, we analysed proteins uniquely affected in CB using both
DAVID and STRING. These analyses supported our earlier global
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pathway analysis in demonstrating that CB additionally showed
alteration in Semaphorin and ciliary neurotrophic factor pathway
members, which play important roles in neuronal survival and
neurodevelopment/neuronal regeneration (Figs. 3 and 4).
SEMA7A, shown here to be upregulated in CB of AD brains, is
known to be involved in repair of the glial scar following spinal
cord injury and to play a role in the development of multiple
sclerosis, but has not previously been linked to the disease process
in AD43. CB also showed a significant reduction in levels of both
nuclear and mitochondrial aminoacyl tRNA (transfer RNA)
synthetases. In CB, significantly depleted aminoacyl tRNA

synthetases, including those encoded in the mitochondrial
genome, as well as those from the nuclear genome (Figs. 3, and
4 and Supplementary Data 2), could disrupt translational fidelity,
leading to accumulation of misfolded proteins44. However, these
proteins are multifunctional. For example, Ishimura et al. have
shown that dysregulated tRNA processing can lead to neurode-
generation45, and tRNA synthetases have also been shown to be
mediators of inflammation46 thus downregulating these proteins
may confer some level of protection. This finding could also
provide a supportive mechanism for the hypothesis that
ribosomal dysfunction is an early event in AD47. Taken together

a

Pathway ID Pathway description FDR

GO:0006120 mitochondrial electron transport,
NADH to ubiquinone

3.31e–06

GO:0007399 Nervous system development 6.94e–06

GO:0031175 Neuron projection development 7.66e–06

b

c

Fig. 5 Cerebellum (CB)-specific biological processes in Alzheimer’s disease (AD) brain. a In total, 120 proteins that showed CB-specific alterations were
enriched for molecular processes in STRING using default setting. Each node represents a protein, and proteins involved in b significantly enriched
pathways were highlighted. c Dysregulation of the mitochondrial electron transport chain was highlighted by pathway analysis, and proteins affected
mapped (red star) into the NADH dehydrogenase complex in KEGG oxidative phosphorylation map
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with its known roles in inflammation and signalling, and in
several other neurodegenerative disorders48, our data suggest that
the role of tRNA synthetases in AD is worthy of significant
further investigation.

One of the most distinct changes observed in this CB-specific
analysis was that a much greater number of proteins of electron
transport chain (ETC) complex 1 were consistently more reduced
in abundance (Fig. 5; Supplementary Data 6) than was found in
other areas. Furthermore, CB showed increases in oxidative
defence proteins involved in glutathione redox reactions and
ascorbate recycling (Figs. 3 and 4). These data provide strong
additional evidence for a protective mechanism in CB that
decreases ROS production by ETC while simultaneously increas-
ing ROS defences. Another interesting observation in CB was the
activation of a purine ribonucleosides degradation pathway,
which could not only contribute substrate to the pentose
phosphate pathway, but also participate in guanine/guanosine
production in this brain region. Combined with the observed
activation of Guanine and Guanosine Salvage I pathway, and an
increase in guanosine level in CB as previously reported by our
metabolomics analysis15, these changes may also confer a
previously unknown neuroprotective effect in this brain region49.

It is well established that CB does not display extensive
apoptotic activation seen elsewhere in the brain in AD, which is
unsurprising given its structurally unaffected status. Our findings
indicate that the lack of significant neurodegeneration in this

region is not merely due to the absence of an apoptotic signal
(e.g., Tau tangles) but instead that CB actively induces a unique
pattern of upregulated neuronal survival pathways alongside
protection against oxidative and inflammatory damage; a
protective mechanism of gene/protein expression, which limits
disease-related degeneration in this region.

Key regulators of AD-induced protein expression changes.
Given the apparently similarity in protein expression, which we
seen within each group (severely affected and less affected), we
next attempt to identify key regulators of what appears to be a
coordinated alteration in protein expression across the brain in
response to AD. We performed a correlation network analysis to
identify key nodes, which may be responsible for the programme
of protein expression observed, using the Cytoscape ModuLand
plug-in50. The resulting correlation network is shown in Fig. 6a.
Each cluster is coloured differently according to a distinct meta-
node, the key regulators of which can be determined by visualising
higher levels of this hierarchy (Fig. 6b). Using this method, we can
identify the most influential genes in this correlation network,
which we hypothesise to be key regulators of protein expression
during the pathogenesis of AD. It is noteworthy that in this cor-
relation matrix we are aiming to correlate what we believe to be
two distinct processes—AD pathogenesis (seen in HP, ENT, CG,
MCx and SCx) and a protective programme that we observe in
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CB. By overlaying protein expression data onto this network, we
can identify which nodes are associated with which process. This
overlay (Figs. 6c–h) clearly demonstrates that the correlation
network is mainly constructed from proteins involved in AD
pathogenesis in the affected regions—few proteins in the network
are changed in CB despite the relatively large number of CB
proteins, which we observe to be changed in the complete dataset.
This is to be expected as CB-specific protein changes have limited
correlation to the remainder of the dataset. This network is
therefore likely to provide a good representation of the key events
in AD pathogenesis, and reveals four proteins with the most
overall influence on the correlated expression networks, based on
intra-network connectivity: syntaxin binding protein 1 (STXBP1);
collapsin response-mediator protein 1 (CRMP1); actin-related
protein 10 homologue (ACTR10); and amphiphysin (AMPH).

STXBP1 is the regulator with the most influence in this
network. It is reportedly upregulated in AD51, has been linked to
NFTs52 and may interact with PS153. It also plays a major role in
neurotransmitter release. STXBP1 thus provides a potential
mechanistic explanation for our observation that pathways of
neurotransmitter metabolism including dopamine-, noradrena-
line- and serotonin-related signalling showed significant changes
in severely affected regions and SCx, but not in MCx or CB.
Another important regulator of the network, CRMP1, is part of
the semaphorin signalling pathway, which is known to guide
axons in developing nervous tissue and participates in shaping of
neural circuits54. ACTR10 may affect prion susceptibility through
its involvement in prion propagation and clearance55, and has
been identified by large-scale computational network analyses as
one of a large number of potentially important genes in
hippocampal ageing, but our finding is novel in AD56. The

fourth key network regulator identified here, AMPH, is a
candidate AD risk gene that may participate in receptor-
mediated endocytosis and hence be involved in APP metabo-
lism/clearance57. Our finding that these four genes appear to be
central to various pathological processes known to be involved in
AD development is important, and suggests that further work
should be performed to focus on the role of these potentially key
mediators of AD progression.

Measurement of amyloid beta. As one of the key factors in AD
pathogenesis is thought to be the build-up of amyloid con-
sisting of Aβ peptide generated as a proteolytic product of the
amyloid precursor protein (APP) we examined our data for
information about the levels and distribution of these mole-
cules. We found no marked change in APP levels overall but
significantly elevated Aβ peptide levels (Fig. 7a, b), consistent
with previous reports14. The extent of the increase in Aβ
between regions does not appear to follow a gradient of
‘affectedness’, albeit there may be a more pronounced increase
in HP. Indeed Aβ levels are increased in CB, despite the dif-
ferential response observed in this region. There is no way to
determine the primary structure of the Aβ peptide(s) present in
each region from these data. Interestingly, whereas in the AD
group almost all samples showed uniformly high levels of Aβ
peptide, there was marked variation in levels in control samples
(Fig. 7c). Although the quantification of Aβ is necessarily from
one peptide, these data emanate from between 5 and 12 unique
spectra in each sample, we consider this observation is likely
robust. This variability is therefore likely to be due to inherent
variations in the control population.
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Fig. 7 Expression of amyloid precursor protein and Aβ peptide. Expression probability distributions for a amyloid precursor protein and b the Aβ peptide
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Although all patients in this group were asymptomatic, it is
likely that varying degrees of prodromal disease could have been
present, given their age. This is most noticeable in our control
#15. While initially assigned as a control, a pathological re-
examination performed as a result of the findings of this study
and our previous metabolomics analyses15 re-classified this
individual as a Braak II preclinical AD patient. This patient has
the highest level of Aβ of all of the control samples and
interestingly appears to demonstrate some AD-related changes
both in their metabolome and in some of the proteins, which we
observe to be changed in symptomatic disease, although drawing
any conclusions from this single case would be ill-advised at this
stage. However, this sample was retained in the analysis, both for
our previous metabolomics15 and metallomics58 studies on this
cohort and for the current study, since the donor was
asymptomatic at the time of death, and therefore remains
representative of a ‘non-AD’ population in this age cohort. This
decision is supported by PCA analysis of both metabolomics and
proteomics data (Supplementary Figure 1), which suggests that
this sample clusters more closely with the control samples than
AD in most regions. This observation supports the idea that
increases in Aβ levels may reflect varying degrees of prodromal
disease in these elderly controls. It also demonstrates that studies
of the type performed here in earlier stage presymptomatic
patients will be critical to further tease out the very earliest events
in AD pathogenesis.

Discussion
In summary, this study provides a map of molecular changes that
are present in human post-mortem brain tissue in patients with
AD and matched controls, providing insights into the brain
region specificity of disease at two levels; individual proteins and
pathways. We observed global perturbation of protein expression
in all six regions of the AD brain that we studied. An association
between extent of molecular changes and affectedness was
observed for five regions, allowing us to delineate probably ‘early’
and ‘late’ changes in protein expression and revealing previously
novel involvement of several pathways and processes. The sixth
region, CB, showed an unexpectedly distinct pattern of protein
changes, suggestive of induction of a protective response. Cor-
relation network analysis identified four candidate genes STXBP1,
CRMP1, ACTR10 and AMPH, which may underpin significant
portions of the protein expression response to AD. Finally, we
recognise that these data have significant value to the community
and that other researchers will no doubt wish to assess the status
of other AD-related changes not discussed here. As such we have
provided all results in an accessible format via a freely available,
searchable online database, to allow others to probe specific
pathways or individual proteins and their expression in regions
across the human AD brain and matched controls.

Methods
Human brains. All experiments were performed in accordance with relevant
guidelines and regulations. The case–control study of post-mortem human brain
was approved by the University of Auckland Human Participants Ethics Com-
mittee with informed consent from all families.

Human brains were obtained from the New Zealand Neurological Foundation
Human Brain Bank, University of Auckland59. Each brain was dissected under the
supervision of neuroanatomists (J.X., S.P., H.W. and R.L.M.F.), who accurately
identified each region as previously described22. Brain regions studied were HP,
ENT, CG, SCx, MCx and CB: grey matter from each region was sampled. Aliquots
of 100 ± 5 mg were dissected from each region and stored at –80 oC until analysis,
and were otherwise treated as previously described60. Patients had ante-mortem
evidence of clinical dementia, whereas controls did not. Controls were selected by
matching for age, sex and post-mortem delay. A consultant neuropathologist
diagnosed or excluded AD by applying the Consortium to Establish a Registry for
Alzheimer’s Disease (CERAD) criteria61, and determined the neuropathological
severity by assigning the Braak stage62 and amyloid load by applying the 2013

consensus National Institute on Aging–Alzheimer’s Association guidelines63

(Supplementary Data 1). One control patient (115) had neuropathological findings
consistent with AD (Braak Stage II; Supplementary Data 1) and was therefore
diagnosed with preclinical disease: this finding is consistent with the known
frequency of asymptomatic AD in similarly aged groups in the study population64.

Protein extraction and preparation for iTRAQ labelling. Protein extraction and
preparation for iTRAQ was carried out according to a previously described
method65, with each brain region analysed independently. Brain tissue samples of
100 ± 5mg were extracted in 500 μL 1M Triethylammonium bicarbonate buffer
(TEAB)+ 0.1% (w/v) sodium dodecyl sulphate (SDS), and homogenised at 25 Hz
(2 × 3 min) with a Qiagen tissuelyser. The tubes were then vortexed for 10 s and
centrifuged at 4 °C for 5 min at 13,400 × g. The supernatants were transferred into a
new set of tubes and protein concentration was determined by using Bradford
protein assay (Bio-Rad Protein Assay Dye Reagent Concentrate) and a SpectraMax
M5 plate-reader (Molecular Devices). From each sample, a volume equivalent to
100 μg protein was transferred into a new set of tubes for further processing.
Identical reference pool samples (total of 100 μg protein per reference sample) were
made by combining portions from four representative individual samples from
each group, AD and control. All samples were equalised for final volume using 1M
TEAB+ 0.1% (w/v) SDS.

Protein samples were reduced by addition of 0.1 volume of 50mM dithiothreitol,
followed by incubation at 60 °C for 30min. Alkylation was carried out by addition
of 0.05 volumes of 200mM iodoacetamide, followed by incubation in the dark at
room temperature for 10–15min. Protein digestion was subsequently carried out
overnight at 37 °C, by adding 10 μg of modified porcine trypsin (Promega) re-
suspended in 1M TEAB, ensuring the final SDS concentration fell below 0.05%
(w/v). After digestion, the samples were dried completely in an Eppendorf
concentrator, and re-suspended in 30 μL 1M TEAB to achieve equal volume across
all samples before iTRAQ labelling. The iTRAQ labelling was carried out according
to the manufacturer’s instruction using the 8-plex iTRAQ kit (AB Sciex). Briefly,
vials containing iTRAQ reagent were thawed on the bench for 2–3min. After
spinning the samples down, 70 µL isopropanol was added to each vial, followed by a
pulse spin. The content of the vials was then transferred to the protein samples and
then incubated on the bench for 2–3 h. Each 8-plex contained two separate digests
of the reference pool sample, three AD samples and three control samples. iTRAQ-
labelled samples destined for the same liquid chromatography/tandem mass
spectrometry (LC-MS/MS) run were pooled, followed by a spin at 13,400 × g for
5 min. Each pooled sample was then divided into two equal aliquots and dried
completely using an Eppendorf centrifugal evaporator concentrator. One pooled
aliquot from each 8-plex experiment was subjected to high-pH reverse phase
(HpHRP) for peptide fractionation. Remaining dried-pool aliquots were stored
at –80 oC for repeated analysis if required.

HpHRP fractionation. HpHRP was performed using an Agilent high performance
liquid chromatography (HPLC) 1200 system (Agilent, Santa Clara, California).
Reversed-phase chromatography buffers (buffer A; 0.1% (v/v) ammonium hydro-
xide in HPLC grade water and buffer B; 0.1% (v/v) ammonium hydroxide in
acetonitrile) were made fresh. Each iTRAQ-labelled pool sample was re-suspended
in 900 μL of 3% (v/v) buffer B and loaded onto a HpHRP column (ZORBAX
300Extend-C18 4.6 × 150 mm 3.5 μm, Agilent) for 40-min with a flow of 1 mL/min
at 3% (v/v) buffer B. The peptides were then eluted using the gradient as follows
(minutes:%B); 0:3, 5:3, 30:27, 35:50, 36:100, 41:100, 42:3. A total of 86 fractions
were collected in a 96-well plate, which was dried in a centrifugal evaporator
(Eppendorf) and stored at –20 °C prior to LC-MS/MS analysis.

Low-pH LC-mass spectrometry data acquisition. Each fraction was re-
suspended in 27 μL of 97% water+ 3% acetonitrile+ 0.1% trifluoroacetic acid
(TFA; v/v/v) and 9 μL was injected into a nano-Acquity UPLC system (Waters).
Peptides were trapped on a nanoACQUITY 2G-V/M Trap Sym C18 5 µm 180
µm × 20mm (Waters) and washed at a flow rate of 7.5 μL/min for 10 min. Peptides
were then eluted and chromatographed using a nanoACQUITY BEH300 C18
1.7 μm 75 μm× 250 mm (Waters) at 300 nL/min using following gradient profile
(minutes:%B); 0:3, 3:3, 91:40, 93:90, 108:90, 109:3, 130:3. The buffers used were:
buffer A: 97% water+ 3% acetonitrile+ 0.1% formic acid and buffer B: 100%
acetonitrile+ 0.1% formic acid (v/v).

The eluent was directed into an ESI microionspray II source of a QSTAR Elite
Q-TOF spectrometer (AB SCIEX) scanning in MS from 400 to 1200 m/z. Multiply
charged peptides (2+ to 4+ ) were selected for MS/MS analysis (110–1200m/z).
The information-dependent acquisition (IDA) settings were: four precursors per
cycle and cycle times (MS 0.75 s, MS/MS1 0.75 s, MS/MS2 0.75 s, MS/MS3 1 s and
MS/MS4 1 s). Selected peptides were fragmented twice and then dynamically
excluded for 90 s. The resulting data were searched against the human component
of the Swissprot database (release 2013_03) using Protein-Pilot v4.0 (AB SCIEX).
Search parameters were: iTRAQ 8-plex, trypsin; cys alkylation, iodoacetamide;
search effort, thorough. A total of 40,466 proteins were searched. To perform FDR
analysis on the protein identification, the search database was reversed and
concatenated with the forward database and used as the search DB within
ProteinPilot. FDR was determined by calculating the number of reverse ‘hits’ as a
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proportion of ‘forward’ hits using the dedicated worksheet exported from the
search software.

Data processing. Bayesian protein-level differential quantification was performed
separately for each brain region using v1.0.0 of the in-house developed software
BayesProt (https://github.com/biospi/bayesprot/releases/tag/v1.0.0). An earlier
version of this technique was presented in Freeman et al.66, which combined
Protein-Pilot (AB SCIEX) sample normalisation (‘bias correction’) with a Bayesian
linear mixed-effects model implemented with the MCMCglmm R Package67.
Analysis of each brain region in isolation adds strength to our comparison of
protein expression changes across multiple regions, as these were identified and
quantified independently.

Since iTRAQ measurements from Time-of-Flight instruments are recorded as
discrete ion counts, and technical/biological variation are assumed log-normal, we
adopted a generalised linear mixed model (GLMM) with Poisson likelihood and
log-link, where each protein was modelled separately using peptide measurements
unique to that protein. The sample normalisation factors represent the mass
spectrometer’s exposure to each sample, and hence were included as a fixed offset
within the model. The current version of BayesProt additionally (i) enables
estimation of both biological and digestion variance through the incorporation of
multiple digests for a single sample (i.e., the six reference pool digests), (ii) negates
the need for Protein-Pilot normalisation by implementing a two-stage GLMM and
(iii) provides a simplified Markov Chain Monte Carlo (MCMC) mixing criterion
for both stages.

In both stages: (a) for each peptide a separate random digest effect is fitted,
which has the effect of weighting each peptide’s contribution to the protein-level
quantification by its reproducibility across digests; (b) the set of measurement
channels within each iTRAQ spectrum are each assigned (i) a baseline fixed effect
to account for varying selection/ionisation/fragmentation efficiencies across
spectra, and (ii) an independent log-normal residual variance to account for over-
dispersion due to background contamination and incorrectly identified spectra. In
stage one, we also model the interaction between LC-MS/MS run and iTRAQ
channel as a fixed effect, i.e., within each run, we infer the protein-level log ratio
between iTRAQ channel 113 and channels 114, 115, 116, 117, 118, 119 and 121.
For each channel relative to 113, the result is a set of posterior probability
distributions, one for each protein in the study; these are combined to derive a
posterior distribution for the median log ratio for each channel relative to 113,
which is taken as the inferred sample normalisation factors. To construct the PCA
plots presented in Supplementary Figure 1, the protein-level log ratios for all
proteins with measurements across all three 8-plexes were first normalised using
these sample normalisation factors. Subsequently, for each protein ‘variable’, the
resulting sample ‘observations’ were then centred and scaled by the mean standard
deviation of their posterior distributions, before final input into the R ‘prcomp’
function to generate the principal components.

In stage two, rather than using point estimates of the normalisation factors as
fixed sample offsets, a set of sample fixed effects are fitted, which have prior
distributions set to the means and variances of the inferred median log ratio
distributions. In addition, in stage two we specify the full experimental design: (a)
protein-level differential expression fold change between cases and controls is fitted
as a condition fixed effect (with control as baseline); (b) due to unequal biological
variance across cases and controls, subject is treated as two random effects, one for
control samples and one for cases. Using the inferred posterior distribution of the
condition fixed effect, we performed a one-sided significance test on the posterior
probability that the mean fold change is either above or below ± 1.05—i.e., at least a
5% change from control—denoted as P (1.05 fc). The reciprocal of this posterior
probability represents the local FDR (lFDR), the probability that this specific test is
a false discovery. In this study, we defined significance using a global FDR
threshold of 5%, i.e., the largest set of proteins with an average lFDR ≤ 5% were
deemed significant and hence delivered to downstream pathway analysis. The
condition fixed effect posterior distributions, FDRs and descriptive statistics (mean
log ratio plus 95% highest posterior density interval) for every protein across all
regions are presented online (www.manchester.ac.uk/dementia-proteomes-
project). Posterior distributions of per-sample protein quantifications are also
presented, derived from the latent variables of the sample random effects.

Residual variances were assigned inverse-Gamma priors, whereas random
effects were assigned parameter-expanded Cauchy priors. The model was tested
with different prior scale factors to establish that the priors were not informative to
the outcome. In stages one and two, the model was run with 10 and 100 MCMC
chains per protein, respectively, each chain consisting of 10,000 samples preceded
by 3000 burn-in samples. Mixing was assessed using Warnes & Raftery’s
MCGibbsit run-length diagnostic, combining the estimate error-bounding
approach of Raftery and Lewis with the between chain variance verses within chain
variance approach of Gelman and Rubin (https://cran.r-project.org/web/packages/
mcgibbsit/index.html).

For a protein to be considered quantified sufficiently well to be included in
downstream pathway, correlation and comparative analyses, we require
identification and quantification from at least three spectra. This quality control is
important when making comparisons across datasets as it ensures that only high-
quality protein quantitation is taken forward into comparative studies, reducing
‘noise’.

Data analysis. Processed protein-level data were analysed through a range of
software tools. Data alignment, filtering and characterisation was initially per-
formed in Microsoft Excel. Heat maps were constructed using Cluster 3.0 (http://
bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) and viewed using Java
TreeView (https://sourceforge.net/projects/jtreeview/files/;68). Venn diagrams were
built using the Interactive Venn tool (www.interactivenn.net;69). The Isomap
algorithm70,71 was implemented in Qlucore Omics Explorer (version 3.2, Qlucore,
Lund, Sweden).

Network analysis. Pathway enrichment analysis was performed for each brain
region independently using Ingenuity Pathway Analysis (Qiagen), selecting the
user dataset as the background and considering only relationships, which had been
experimentally observed or predicted with ‘high’ confidence, and was limited to
human interactions. Following analysis, significant pathways were reviewed and
those which contained genes, which formed a complete subset of another pathway
were removed. In parallel, we performed functional annotation clustering analysis
for each brain region using online DAVID (https://david.ncifcrf.gov/;72,73) with
custom classification stringency setting; similarity term overlap= 5, similarity
threshold= 0.95, initial group membership= 3, final group membership= 3,
multiple linkage threshold= 0.5, EASE= 1.0 and Benjamini correction. Enrich-
ment score ≥ 1.3 was considered significant and highlighted in supplementary
data 5. Protein–protein interaction networks were analysed for proteins that were
uniquely altered in CB only, using online STRING (https://string-db.org;74) at
default setting.

To identify key regulators of protein expression, a correlation matrix of protein
expression across the six brain tissue samples was generated in Qlucore Omics
Explorer and modified in R to only contain proteins with a│0.9│r-value. The
network was visualised in Cytoscape75. Protein modules with correlated expression
were identified using the Moduland algorithm50 and arranged in a hierarchy based
on their network centrality.

Data availability
All raw mass spectral data, along with extracted.mgf peaklists and ProteinPilot.
group results files generated during this study are available via the PRIDE data
repository, with each brain region submitted independently to reflect the way in
which the study was performed. PRIDE accessions are: Hippocampus—
PXD008739; Entorhinal cortex—PXD008806; Cingulate gyrus—PXD008779;
Motor cortex—PXD008807; Sensory cortex—PXD008753; Cerebellum—
PXD008755. We recognise that these data require specialist interpretation. To
support data sharing, we have also made available the outputs of our initial MS
analysis (after ProteinPilot database searching for peptide/protein identification
and peptide relative quantification, but before Bayesian inference) by depositing the
Protein Summary (protein identification data) and Peptide Summary (peptide
identification data), along with the raw MS peak lists, with the Open Science
Framework (https://osf.io), which can be accessed by the following https://doi.org/
10.17605/OSF.IO/6BXJQ. All fully processed data are available via the Supple-
mentary Data associated with this Article, and online in a searchable format, along
with probability distribution plots for each protein, at www.manchester.ac.uk/
dementia-proteomes-project.
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