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Deep Neural Network Inverse 
Design of Integrated Photonic 
Power Splitters
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Bingnan Wang, Chungwei Lin & Kieran Parsons

Predicting physical response of an artificially structured material is of particular interest for scientific 
and engineering applications. Here we use deep learning to predict optical response of artificially 
engineered nanophotonic devices. In addition to predicting forward approximation of transmission 
response for any given topology, this approach allows us to inversely approximate designs for a 
targeted optical response. Our Deep Neural Network (DNN) could design compact (2.6 × 2.6 μm2) 
silicon-on-insulator (SOI)-based 1 × 2 power splitters with various target splitting ratios in a fraction 
of a second. This model is trained to minimize the reflection (to smaller than ~ −20 dB) while achieving 
maximum transmission efficiency above 90% and target splitting specifications. This approach paves 
the way for rapid design of integrated photonic components relying on complex nanostructures.

Artificially engineered subwavelength nanostructured materials can be used to control incident electromagnetic 
fields into specific transmitted and reflected wavefronts. Recent nanophotonic devices have used such complex 
structures to enable novel applications in optics, integrated photonics, sensing, and computational metamate-
rials in a compact and energy-efficient form1–10. Nevertheless, optimization of nanostructures, with enormous 
number of possible combination of features, using numerical simulation is computationally costly. For example, 
computing electromagnetic field profile via finite-difference time-domain (FDTD) methods may require long 
simulation time, several minutes to hours depending on the volume of the photonic device, for analyzing the 
optical transmission response. In order to design nanostructures achieving target transmission profile, we need 
to perform a large number of FDTD simulations in most meta-heuristic approaches. To resolve the issue, we 
previously developed an artificial intelligence integrated optimization process using neural networks (NN) that 
can accelerate optimization by reducing required number of numerical simulations to demonstrate how NNs can 
help to streamline the design process11,12.

Deep learning methods are representation-learning techniques obtained by composition of non-linear models 
that transform the representation at the previous level into a higher and slightly more abstract level in a hierar-
chical manner13. The main idea is that by cascading a large number of such transformations, very complex func-
tions can be learnt in a data-driven fashion using deep neural networks14. The huge success of deep learning in 
modeling complex input-output relationship has attracted attention from several scientific communities such as 
material discovery15, high energy physics16, single molecule imaging medical diagnosis17, and particle physics18. 
It has received some attention in optical community and there has been several recent work on reverse modeling 
for design of nano-structured optical components using DNN19–25, as well as hardware implementation of an 
artificial neural network26–30. NNs can be used to predict the optical response of a topology (Forward Design) as 
well as to design a topology for a target optical response (Inverse Design).

Inverse design of photonic structures were conventionally demonstrated using adjoint sensitivity analysis31–34. 
More recently, D. Liu used a tandem NN architecture to learn non-unique electromagnetic scattering of alternat-
ing dielectric thin films with varying thickness21. J. Peurifoy demonstrated NNs to approximate light scattering 
of multilayer shell nanoparticles of SiO2 and TiO2 using a fully connected NNs with a depth of 4 layers24. During 
preparation of this paper, T. Asano provided a neural network for prediction of the quality factors in two dimen-
sional photonic crystals26. Inspired by this progress, we aim to train a NN that can instantaneously design an 
integrated photonic power divider with a ratio specified by the user. The design space for integrated photonic 
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devices is considerably larger than previously demonstrated optical scattering applications that call for robust 
deeper networks such as Deep Residual Networks (ResNet)35.

Integrated photonic beam splitters based on a multimode interference (MMI) have been widely used to equally 
divide the power into the output ports. Although an arbitrary split ratio can be applied in various applications 
such as signal monitoring, feedback circuits, or optical quantization36, the design space is hardly explored due 
to design complexity. Tian et al. demonstrated SOI-based couplers with variable splitting ratio in a 15 × 15 μm2 
device footprint with 60 nm bandwidth and 80% transmission efficiency37. Xu et al. optimized positioning of 
squared etched pixels to achieve 80% efficiency for arbitrary ratio power dividers in 3.6 × 3.6 μm2 device foot 
print38.

To design photonic power divider with arbitrary splitting ratio, the designer often begins with an overall 
structure based on analytical models and fine tune the structure using parameter sweep in numerical simulations. 
Here, we demonstrate that using deep learning methods we could efficiently learn the design space of a broad-
band integrated photonic power divider in a compact deep residual neural network model. This method allows 
design by specifications, where user simply asks for a specific power splitting performance and can see the near 
ideal solution almost instantaneously without depending on time-consuming FDTD simulations. Our device has 
above 90% transmission efficiency in a footprint of 2.6 × 2.6 μm2, which to the best of our knowledge, is the small-
est arbitrary ratio beam splitter to date. Moreover, our design does not rely on arbitrary device morphologies and 
is constrained to a 20 × 20 vector of etched holes with a radius of 45 nm, conveniently fabricable by the current 
semiconductor technology.

Deep Learning for Forward Modeling to Predict Optical Response
Simulation Setting and Dataset.  When a broadband light encounters an obstacle with a different refrac-
tive index, along its path, it undergoes reflection, refraction, and scattering. The goal of the nanostructured inte-
grated photonics power splitter is to organize the optical interaction events, such that the overall effect of the 
ensemble of scattering evets guides the beam to a target port and power intensity. To design the power ratio 
splitter using DNN we chose a simple three port structure on a standard fully etched SOI platform. One input 
and two outputs 0.5 μm wide port are connected using an adiabatic taper to the 2.6 μm wide square power splitter 
design region with a connection width of 1.3 μm (Fig. 1). We use numerical simulation (Methods section) to 
generate labeled data for training the network. We then feed the DNN with numerical optical experiments and 

Figure 1.  Overview of the DNN prediction and inverse design process. (a) TE mode is launched into the 
standard SOI waveguide at the input port of the power splitter (Note that the scales in x- and y-directions 
are different). (b) Schematic of a nanostructured integrated photonics power splitter with a footprint of 
2.6 × 2.6 μm2. Circles indicates location of etch holes; by optimizing binary sequence of position of etch holes it 
is possible to adjust light propagation into either of the ports. (c) We use DNN for forward and inverse modeling 
of nanophotonic devices. The DNN can take device topology design as input and spectral response of the 
metadevice as label or vice versa.
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train a neural network able to represent the relationship between hole vectors and spectral response at each port. 
Initially our input data are several 20 × 20 hole vectors (HV), each labeled by its spectral transmission response 
(SPEC) at port 1 (T1) and port 2 (T2) and reflection from the input port (R). Each pixel is a circle with a radius of 
45 nm that is easily fabricable using conventional lithography methods32,39. Each pixel can have a binary state of 
1 for etched (n = nsilicon) and 0 for not etched (n = nsilica) (See Methods). Changing the refractive index at a hole 
position modifies the local effective index inside of the power divider to determine the propagation path for the 
travelling wave in the device.

We use randomly chosen HVs and carefully chosen patterned initial HVs (see Fig. 2a and Supplementary 
Fig. S1), and optimize spectral transmission values using heuristic optimization approaches for various optimiza-
tion metrics to collect a diverse set of labeled training data for supervised learning. In the case of a symmetric 
search, we enforce symmetry of HV across the X axis and take advantage of the symmetry of the topology to 

Figure 2.  We train the DNN network with a diverse set of data. Each data set starts with an initial condition, 
etched hole density, and a metric to optimize a spectral response. We generate approximately ~20,000 etched 
hole vector as data, each associated with its transmission response as label. Here we show two of these data sets: 
(a) an asymmetric optimization search to maximize α α+ − × | | =T T Rmin( ) min( ) max( ) ( 2)1 2  with a 
random initial vector, (b) a symmetric search to maximize α α+ − × | | =T T Rmin( ) min( ) max( ) ( 4)1 2  with 
a patterned initial vector. T1 and T2 are transmitted power at port 1 and 2, respectively; R is the reflected optical 
power to the input port. For symmetric cases, the transmission for port 1 and port 2 are identical (T1 = T2). (c) 
Histogram of all transmission train and test data labels collected by numerical methods for ~20,000 power 
splitter topologies at 1550 nm. d) Learning curve for ~10,000 epochs of training for both training (lines) and test 
(dots) losses, for networks with constant hidden layer width of 100 and depth of 4, 8, and 10. Learning curve for 
deep residual neural network shows the network loss reduces by increasing depth of network up to 8 layers. The 
inset shows the best case (4 layer) for a FCDNN that has significantly larger loss value ~0.58. Here all cost 
functions are based on negative log likelihood.
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reduce the search space from 400 pixels to 200. In addition, this reduces the simulation time to half because of the 
symmetric boundary condition. Therefore, the spectral response T1 and T2 are equal for symmetric devices 
(Fig. 2b). The input and output waveguide and other geometrical details of symmetric and asymmetric cases are 
identical. For both cases shown in Fig. 2, we start the optimization with an initial hole vector and use a single 
stride binary search to maximize α= + − × | |T T RFOM min( ) min( ) max( )1 2  for α = 2 and 4 for Fig. 2a and 
b, respectively. Our design goal is to achieve compact nanostructured power splitters with high transmission 
efficiency and minimized back reflection. Low back reflection is of great importance since in active integrated 
photonic circuits, it is important to minimize the back reflection. That is why we use reflection factors larger than 
2 in our optimization metrics to emphasize minimizing back reflection in these power splitters. We repeat this 
process for ~ 20 different initial conditions and splitting ratio targets and add mirrored data for asymmetric cases 
to collect a total of ~ 20,000 data with their corresponding spectral labels (Fig. 2c).

For the forward problem, inputs are two-dimensional 20 × 20 HV arrays corresponding to binary images of 
hole locations. We train a DNN to predict the SPEC vector which is a one dimensional vector with 63 elements. 
SPEC includes broadband spectral data (1450 to 1650 nm) for transmission at output ports T1 and T2, as well as 
the reflection to the input port R. For the inverse design, SPEC is used as an input and hole vectors are considered 
as labels. The forward problem is solved as a regression problem and we use a Gaussian log-likelihood function 
to train the model. In contrast, the inverse problem is solved as a classification problem, where we predict the 
binary vectors that represent the hole locations. Therefore, we use a Bernoulli log-likelihood classifier as the loss 
function for training the inverse problem. The Gaussian log-likelihood loss function is represented by the follow-
ing equation.
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where P(Y|X,W) denotes the probabilistic model, W denotes the model parameters, K is the number of training 
data. The loss function is optimized using the Adam optimization algorithm40. Training is terminated after a fixed 
number of iterations to ensure convergence (Fig. 2d). The training and validation results were similar for our 
trained networks and thus we didn’t use any regularization for over-fitting.

For both the problems, we first used a fully-connected DNN (FCDNN) with multiple layers where each layer has 
100 neurons. The number of layers was considered as a hyperparameter which was optimized during the numerical 
experiments. However, we found that increasing the depth of the FCDNNs didn’t improve the performance of the 
network. Consequently, we used a residual deep neural network (ResNet) to improve the depth of training up to 8 
hidden layers for both the forward and inverse problem (see Fig. 2d for a quantitative comparison between regular 
DNNs and ResNets). To explain, FCDNNs generally suffer from the problem of vanishing gradients. As a result, 
increasing depth of a FCDNN doesn’t necessarily improve the performance. The ResNet is designed to circumvent 
this problem by using “identity shortcut connections” with the underlying hypothesis that it is easier to optimize 
the residual mapping than to optimize the original, unreferenced mapping (Fig. 3). ResNets have empirically been 
proven to allow more flexibility in training deep architectures than the FCDNN35. The main idea is that the ResNet 
uses an additional identity function to allow smooth forward and backward propagation of gradients.

Results
To test the nanostructured power divider network, first we use a randomly selected, unseen 20% data from the 
same set of simulation data used to train the network. The test data set helps to prevent overfitting the model to 
the training data (Fig. 2d).

In the following we present the outcome of the network for forward prediction of spectra from HV (Fig. 4), 
and inversely designing the HV from a given physically feasible SPEC specifications (Fig. 5). First we test the 
forward computation of the network to see prediction of spectral response of a topology that the network is not 
trained on. Interestingly, the network could predict transmission and reflection spectra quite accurately (Figs 4 
and 5).

To quantify the prediction accuracy we use a correlation plot that compares true numerically verified optical 
response with DNN predictions. The correlation coefficient of the DNN prediction was above 99% (Fig. 5). We 
use the variance of the negative log likelihood cost function as a means to determine the confidence of the neural 
network and show it as the area of the prediction uncertainty in the correlation plot. We observe that confidence 
of the prediction is lower in lower transmission regime and improves at higher transmission regimes. This is 
expected since the training data mainly contains high transmission devices (Fig. 2d).

We test the inverse modeling on the same data as above by using SPECs as data and HVs as label and reversing 
and optimizing the inverse network. To test the generalization capabilities of the network, we investigate the net-
work’s inverse design performance on arbitrary and unfamiliar cases. To do this, we generate a reference table con-
taining broadband constant transmission values for each port and use them as the input data batch for the Inverse 
Design DNN model. The predicted HVs can take any value from 0 to 1 from a Bernoulli distribution classifier. The 
classification converges to 0 or 1 as the loss reduces by increasing the number of training epochs. The produced 
quantized binary sequences contain features that the model is not trained on (Supplementary Fig. 2), which are 
then fed back into the numerical solver to evaluate the prediction performance. In a next step, we run independent 
FDTD simulation to check validity of the response (Fig. 6). Numerically simulated electric field propagation at 
center wavelength of 1550 nm for 8 splitting ratios of 1:1, 1:1.05, 1:1.5, 1:1.55, 1:2, 1:2.5, 1:3, and 1:3.5 show various 
power splitting mechanisms from classical MMI based beam splitters. The electric field distribution intensity in the 
case of 1:1 and 1:05 splitting are almost symmetric. On the other hand the electric field intensity is asymmetric for 
asymmetric splitting ratio devices (as expected) and beam path is broadened for the side with a larger output T2.
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Predicted topologies for target spectral responses for a-b and c-d pairs show different looking patterns for 
similar spectral response. This makes sense, because there could be several solutions to a single electromagnetic 
problem. FDTD simulated optical power propagation through predicted power splitter are demonstrated for 
each pattern. In all of the eight cases shown in Fig. 6 the transmission efficiency exceeds 90% which, to the best 
of our knowledge, is the highest transmission efficiency demonstrated in integrated power splitters. And this is 
also the first time minimizing reflection is taken into consideration. Although we did not aim to maximize the 
operation bandwidth as an objective, our power splitters show broadband transmission between 1450 to 1650 
nm. Additionally, we set the reflection target to −20 dB at 1550 nm wavelength. We achieve reflection responses 
less than −20 dB at 1550 nm, except for the case of Fig. 6c. The main reason for apparently large variations in 
predicted and actual reflection response shown Fig. 6 is because the spectral response are shown in logarithmic 
scale. In reality the differences are very small.

Discussion
NNs can be used to take device structure data (shape, depth, and permittivity) to predict the optical response 
of the nanostructure (forward network). In this case NN can be used as method for fast approximation of the 
optical response instead use of computationally heavy numerical methods. Another way to use NNs, which is not 
available in conventional numerical methods, is taking an optical response as input and providing user with an 
approximate solution nanostructure (inverse design). Although DNN initially need a large amount of data set for 
the training purpose, it is possible to process several heuristic optimization metrics in parallel on a computing 
cluster to speed up generating the training data. Once the network is trained to represent the topology as optical 
response and vice versa, it can design the nanostructured geometry in a fraction of second.

We utilized a ResNet DNN architecture to use an additional identity function to allow smooth forward and 
backward propagation of gradients. This allowed us to increase the depth of the network to 8 layers. We observed 
that there is still some overfitting in the ResNet DNN for 10 × 100 structure (10 layer deep and 100 neuron wide). 
As the number of parameters learned from data depend on the number of neurons in the DNN, the 10 × 100 has 
the highest number of parameters learned during training. While this provides good performance during train-
ing, it leads to some overfitting of the data. It is possible to include dropout in the DNN to allow for regularization 
and increasing the hidden layer depth further; however, this is left as a future work.

In conclusion, we have demonstrated application of DNNs in design of nanostructured integrated photonic 
components. Although the design space for this problem is very large (2400) possible combinations), by training 
DNN with nearly 20,000 simulation data we trained a network that can approximate the spectral response of an 
arbitrary hole vector within this design space. In addition, we could use the inverse network to design a nearly 
optimized power splitter topology for any user specific power splitting ratio. The capability of DNN in predicting 
optical response of a topology and the inverse design holds promise in wide spread use of these networks in the 
design of nanostructured photonic systems.

Figure 3.  Network architectures for a plain FCDNN (a) and a ResNet DNN (b) used for the inverse design of 
integrated nanophotonics. We use sigmoid (σ) activation function in both network architectures. Increasing 
depth of a FCDNN doesn’t necessarily improve the performance. The ResNet is designed to use an additional 
identity function to achieve accuracy from increase in network depth.
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Methods
Numerical Simulations.  We use Lumerical’s FDTD simulation package to generate the training data. The 
data contains more than 20,000 numerical simulations, where each experiment is a 3D FDTD simulation com-
posed of passive SOI waveguides and the beam splitter device. Initial random hole position matrix of the beam 
splitter was generated, exported, and manipulated using the MATLAB automation. Hole position generating 
script uses different algorithms (such as Direct Binary Search), initial conditions, and optimization metrics to 
sequentially create sufficiently large data set required for a robust neural network representation of the device 
structure. It took a desktop computer with a core-i7 CPU with 3.7 GHz clock speed and 64 GB RAM about two 
weeks to complete collecting the 20,000 simulation data.

Dispersive refractive indices of silicon and silica from literature41 were used for all simulations for a broadband 
simulation in the range of 1.45–1.65 μm. The fundamental TE mode at 1550 nm was used at input source and TE 
mode output power was recorded for transmission and reflection. We note that TM mode output is below 10−5.

Figure 4.  Spectrum approximation using deep ResNet. We use 16,000 (80% of the total) input data for training 
and 4,000 (20% of the total) data for testing. a, b, and c are comparison of ResNet predicted spectral response of 
the three representative power splitters to the numerically verified spectral responses. Black, blue, and red colors 
stand for transmission at port 1, transmission at port 2, and reflection at the input port, respectively. Solid lines 
are true values for a given hole vector and dashed lines are predicted spectral response using ResNet.

Figure 5.  Correlation coefficient. Fitting ResNet predicted transmission values versus true transmission values 
for port 1 (a) and port 2 (b). The correlation coefficient R is above 0.995 across the full range of transmission 
ratios (0 to 1) and approaches unity as transmission increases. Gray circle symbol size is proportional to 
gradient uncertainty.
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Deep Neural Network (DNN).  We use the open source machine learning framework of Tensorflow in 
python language to build and test our deep neural networks. The runtime to train the neural network model 
depends on network and training parameters including data size, hidden layer depth and width, batch size, and 
epoch numbers. The runtime to train the neural network model depends on network and training parameters 
including data size, hidden layer depth and width, batch size, and epoch numbers. For the representative network 
parameters, with hidden layer width of 100, hidden layer depth of 8, batch size of 100, epoch number of 10,000, 
and trained on 20,000 data, shown in Fig. 2d, it take 1337 seconds (~22 minutes) to train the model.

References
	 1.	 Ni, X., Wong, Z. J., Mrejen, M., Wang, Y. & Zhang, X. An ultrathin invisibility skin cloak for visible light. Science 349, 1310–1314 

(2015).
	 2.	 Alù, A. & Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005).
	 3.	 Monticone, F., Estakhri, N. M. & Alù, A. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett. 

110, 203903, https://doi.org/10.1103/PhysRevLett.110.203903 (2013).
	 4.	 Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength polarization-insensitive lenses based on dielectric 

metasurfaces with meta-molecules. Optica 3, 628–633 (2016).
	 5.	 Khorasaninejad, M. et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. 

Science 352, 1190–1194 (2016).
	 6.	 Krasnok, A., Tymchenko, M. & Alù, A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today 21, 8–21, https://

doi.org/10.1016/j.mattod.2017.06.007 (2018).

Figure 6.  Demonstration of DNN inverse design. We use ResNet DNN inverse design for 90% efficient power 
splitters. Here we show 8 representative devices with splitting ratios of 1:1, 1:1.05, 1:1.5, 1:1.55, 1:2, 1:2.5, 1:3, 
and 1:3.5 from a to h, respectively. Spectral response plots show that the numerically verified transmitted and 
reflected optical powers (dashed lines) of the predicted binary patterns match well with the target broadband 
spectra (solid lines). Electromagnetic energy density plots (right) of each device operating at 1,550 nm are 
calculated using FDTD simulations.

https://doi.org/10.1038/s41598-018-37952-2
https://doi.org/10.1103/PhysRevLett.110.203903
https://doi.org/10.1016/j.mattod.2017.06.007
https://doi.org/10.1016/j.mattod.2017.06.007


www.nature.com/scientificreports/

8Scientific Reports |          (2019) 9:1368  | https://doi.org/10.1038/s41598-018-37952-2

	 7.	 Azad, A. K. et al. Metasurface broadband solar absorber. Sci. Reports 6, 20347 (2016).
	 8.	 Lalau-Keraly, C. M., Bhargava, S., Miller, O. D. & Yablonovitch, E. Adjoint shape optimization applied to electromagnetic design. 

Opt. Express 21, 21693–21701 (2013).
	 9.	 Motayed, A. et al. Highly selective nanostructure sensors and methods of detecting target analytes US Patent 9,983,183 (2018).
	10.	 Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).
	11.	 Kojima, K., Wang, B., Kamilov, U., Koike-Akino, T. & Parsons, K. Acceleration of FDTD-based inverse design using a neural 

network approach. In Integrated Photonics Research, Silicon and Nanophotonics, ITu1A–4 (Optical Society of America, 2017).
	12.	 Teng, M. et al. Broadband soi mode order converter based on topology optimization. In 2018 Optical Fiber Communications 

Conference and Exposition (OFC), Th2A.8 (2018).
	13.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
	14.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. vol. 60, 84–90, https://

doi.org/10.1145/3065386 (ACM, New York, NY, USA, 2017).
	15.	 Ghaboussi, J., Garrett, J. Jr & Wu, X. Knowledge-based modeling of material behavior with neural networks. J. Eng. Mech. 117, 

132–153 (1991).
	16.	 Baldi, P., Sadowski, P. & Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5 

(2014).
	17.	 Jun, Y. et al. Deep-learned 3d black-blood imaging using automatic labelling technique and 3d convolutional neural networks for 

detecting metastatic brain tumors. Sci. Reports 8, 9450 (2018).
	18.	 Radovic, A. et al. Machine learning at the energy and intensity frontiers of particle physics. Nature 560 (2018).
	19.	 Liu, D., Tan, Y., Khoram, E. & Yu, Z. Training deep neural networks for the inverse design of nanophotonic structures. ACS Photonics 

5, 1365–1369 (2018).
	20.	 Ma, W., Cheng, F. & Liu, Y. Deep-learning enabled on-demand design of chiral metamaterials. ACS Nano 12, 6326–6334 (2018).
	21.	 Malkiel, I. et al. Deep learning for the design of nano-photonic structures. In 2018 IEEE International Conference on Computational 

Photography (ICCP), 1–14, https://doi.org/10.1109/ICCPHOT.2018.8368462 (2018).
	22.	 Peurifoy, J. et al. Nanophotonic particle simulation and inverse design using artificial neural networks. Sci. Adv. 4, https://doi.

org/10.1126/sciadv.aar4206, http://advances.sciencemag.org/content/4/6/eaar4206.full.pdf (2018).
	23.	 Sun, Y., Xia, Z. & Kamilov, U. S. Efficient and accurate inversion of multiple scattering with deep learning. Opt. Express 26, 

14678–14688 (2018).
	24.	 Liu, Z., Zhu, D., Rodrigues, S., Lee, K. & Cai, W. Generative Model for the Inverse Design of Metasurfaces. Nano Letters 18(10), 

6570–6576 (2018).
	25.	 Asano, T. & Noda, S. Optimization of photonic crystal nanocavities based on deep learning. arXiv preprint arXiv 1808, 05722 (2018).
	26.	 Shen, Y. et al. M. Deep learning with coherent nanophotonic circuits. Nature Photonics 11(7), 441 (2017).
	27.	 Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci. Reports 7, 7930 (2017).
	28.	 Moon, G., Zaghloul, M.E. & Newcomb, R.W., VLSI implementation of synaptic weighting and summing in pulse coded neural-type 

cells. IEEE Transactions on Neural Networks, 3(3), pp.394–403 (1992).
	29.	 Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science, https://doi.org/10.1126/science.aat8084 

(2018).
	30.	 Chiles, J., Buckley, S. M., Nam, S. W., Mirin, R. P. & Shainline, J. M. Design, fabrication, and metrology of 10100 multi-planar 

integrated photonic routing manifolds for neural networks. APL Photonics 3, 106101 (2018).
	31.	 Piggott, A. Y. et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics 

9, 374–377 (2015).
	32.	 Piggott, A. Y., Petykiewicz, J., Su, L. & Vučković, J. Fabrication-constrained nanophotonic inverse design. Sci. Reports 7, 1786 (2017).
	33.	 Frandsen, L. H. & Sigmund, O. Inverse design engineering of all-silicon polarization beam splitters. In Photonic and Phononic 

Properties of Engineered Nanostructures VI, vol. 9756, 97560Y (International Society for Optics and Photonics, 2016).
	34.	 Cao, Y., Li, S., Petzold, L. & Serban, R. Adjoint sensitivity analysis for differential-algebraic equations: The adjoint dae system and its 

numerical solution. SIAM J. on Sci. Comput. 24, (1076–1089 (2003).
	35.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer 

vision and pattern recognition, 770–778 (2016).
	36.	 Kang, Z. et al. Resolution-enhanced all-optical analog-to-digital converter employing cascade optical quantization operation. Opt. 

Express 22, 21441–21453 (2014).
	37.	 Tian, Y. et al. Broadband 13 couplers with variable splitting ratio using cascaded step-size mmi. IEEE Photonics J. 10, 6601008 

(2018).
	38.	 Xu, K. et al. Integrated photonic power divider with arbitrary power ratios. Opt. Lett. 42, 855–858 (2017).
	39.	 Lu, L., Zhang, M., Zhou, F. & Liu, D. An ultra-compact colorless 50: 50 coupler based on PhC-like metamaterial structure. In Optical 

Fiber Communications Conference and Exhibition (OFC), 2016, Tu3E.5 (IEEE, 2016).
	40.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv 1412, 6980 (2014).
	41.	 Palik, E. D. Handbook of optical constants of solids. In Handbook of optical constants of solids, 429–443 (Elsevier, 1997).

Author Contributions
M.T. and K.K. conceived the device idea(s) and numerical tests, M.T., D.J. and T.K.-A. developed the neural 
network scripts, M.T. conducted the numerical and neural network tests and analyzed the results. M.T., K.K., 
T.K.-A., D.J., B.W., C.L. and K.P. helped interpreting the results, wrote, and reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-37952-2.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1038/s41598-018-37952-2
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/ICCPHOT.2018.8368462
http://dx.doi.org/10.1126/sciadv.aar4206
http://dx.doi.org/10.1126/sciadv.aar4206
http://advances.sciencemag.org/content/4/6/eaar4206.full.pdf
https://doi.org/10.1126/science.aat8084
https://doi.org/10.1038/s41598-018-37952-2


www.nature.com/scientificreports/

9Scientific Reports |          (2019) 9:1368  | https://doi.org/10.1038/s41598-018-37952-2

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-018-37952-2
http://creativecommons.org/licenses/by/4.0/

	Deep Neural Network Inverse Design of Integrated Photonic Power Splitters

	Deep Learning for Forward Modeling to Predict Optical Response

	Simulation Setting and Dataset. 

	Results

	Discussion

	Methods

	Numerical Simulations. 
	Deep Neural Network (DNN). 

	Figure 1 Overview of the DNN prediction and inverse design process.
	Figure 2 We train the DNN network with a diverse set of data.
	Figure 3 Network architectures for a plain FCDNN (a) and a ResNet DNN (b) used for the inverse design of integrated nanophotonics.
	Figure 4 Spectrum approximation using deep ResNet.
	Figure 5 Correlation coefficient.
	Figure 6 Demonstration of DNN inverse design.




