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Abstract
In recent years, the emerging field of computational psychiatry has impelled the use of machine learning models as a
means to further understand the pathogenesis of multiple clinical disorders. In this paper, we discuss how autism
spectrum disorder (ASD) was and continues to be diagnosed in the context of its complex neurodevelopmental
heterogeneity. We review machine learning approaches to streamline ASD’s diagnostic methods, to discern similarities
and differences from comorbid diagnoses, and to follow developmentally variable outcomes. Both supervised
machine learning models for classification outcome and unsupervised approaches to identify new dimensions and
subgroups are discussed. We provide an illustrative example of how computational analytic methods and a
longitudinal design can improve our inferential ability to detect early dysfunctional behaviors that may or may not
reach threshold levels for formal diagnoses. Specifically, an unsupervised machine learning approach of anomaly
detection is used to illustrate how community samples may be utilized to investigate early autism risk,
multidimensional features, and outcome variables. Because ASD symptoms and challenges are not static within
individuals across development, computational approaches present a promising method to elucidate subgroups of
etiological contributions to phenotype, alternative developmental courses, interactions with biomedical comorbidities,
and to predict potential responses to therapeutic interventions.

Introduction and autism’s history
In the 1940s, Kanner and Asperger separately published

descriptions of patients who were aloof or withdrew from
others and had socioemotional limitations in function-
ing1,2. Kanner highlighted that patients with autism
insisted that things remained the same and were acutely
upset when routines were changed. Although distinctions
between Kanner’s early infantile autism and Asperger’s
syndrome were made because of increased language,
cognitive performance, and detailed knowledge in the
Asperger’s group, each patient cohort highlights

differences in intellectual abilities and their motivation for
behavioral outcomes. In the early 20th century, dom-
inantly held nurture-based theories blamed early
maternal-child interactions and marginalized parents of
affected children. Parent groups started to organize and
advocate for children with autism by the 1960s3. Subse-
quently, autism research moved towards seeking biologi-
cal etiologies and creating educational intervention
strategies to increase functional capacities. Over the last
forty to fifty years, the search for biological causes has
largely focused on studying core elements of autism
spectrum disorder (ASD). However, attempting to define
a homogenous disorder group has been challenging.
ASD’s history captures many of the tensions between

categorical and dimensional frameworks for psychiatric
diagnoses. Traditional approaches rely on criteria lists
that require clinicians to make dichotomous and
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categorical decisions, even though some individuals
demonstrate significant symptoms that do not reach
threshold for the disorder. Dimensional classifications and
assessments conceptualize disorders as quantitatively
rather than qualitatively different from a healthy state or a
normative life course. There has been a historical
sequence in autism classification, based on lumping or
splitting its features based on clinical presentation, func-
tional attributes, and genetic syndromes (e.g., Rett’s syn-
drome included in the Diagnostic and Statistical Manual
of Mental Disorders, DSM IV)4. As early as the 1970s,
genetic twin studies suggested strong heritability of the
constellation of ASD symptoms5,6. However, specific
genes were difficult to discover and clinical descriptions of
“infantile autism” overlapped with childhood schizo-
phrenia and psychosis in early versions of the DSM. More
specific definitions of “autism” by the 1980s included
impaired social communication and language, fear of
change, and symptoms of odd interests manifesting before
thirty months of age. Most ASD research to date has been
designed with the categorical approaches defined by the
DSM4,7 or the International Classification of Diseases8.
After the federal government made autism a special

education category in 1990, they began collecting school
data on identified children and quantifying access to
special services. Children with high functioning ASD and
Asperger’s often participated in typical classroom settings.
Differences in defining Asperger’s syndrome continued
even after it was added to the DSM in 19949. Identifica-
tion based on DSM definitions became more rigorous,
valid, and reliable as diagnosticians captured detailed early
developmental history from caregivers10,11 and tested
social engagement through direct observational tasks such
as the Autism Diagnosis Observation Schedule (ADOS)
developed in the 1990s. These assessments became
available commercially and have been increasingly used
since the early 2000s11,12. Data collected has resulted in
reclassification of symptom features and ASD’s behavioral
subdomains. For example, the three domains of language
communication, social deficits, and restrictive/repetitive
behaviors were subsumed into two functional sub-areas of
social communication and restrictive/repetitive beha-
viors13,14. Whereas the development of standardized tools
has made categorical distinctions more valid and reliable,
etiological discovery and treatment advances have con-
tinued to lag.
In this paper, we will discuss how ASD is currently

diagnosed and what contributes to its clinical and neu-
robiological heterogeneity. We will also review compu-
tational methods that have attempted to streamline ASD’s
diagnostic methods, distinguish differences from comor-
bidities, and follow developmentally variable outcomes.
For example, supervised machine learning models train
each data input with a corresponding target or known

classification outcome, such as an existing diagnosis for
ASD. Supervised methods may link data back to our
already-existing categorizations. In contrast, unsupervised
methods focus on many data inputs in order to find the
structural relationships that occur between different
inputs (e.g., symptoms/features that cluster together).
Unsupervised methods allow us to identify new dimen-
sions and categories from methods such as clustering
approaches, factor analyses, and independent components
analysis. This paper will highlight machine learning
approaches from the marriage of computer science and
statistics for pattern recognition applications in ASD. In
addition, we will present an example of how ASD risk and
symptom-related data can be ascertained within a com-
munity sample and analyzed using an unsupervised
machine learning approach such as anomaly detection15.
Specifically, it demonstrates how initial unsupervised
methods could eventually use longitudinal feedback data
for supervised methods to improve detection of early ASD
signs. In sum, we will explore how novel computational
methods with large datasets are particularly useful for
studying complex neurodevelopmental disorders with
multidimensional features and outcomes.

Contributions to ASD heterogeneity
Determining how to effectively parse complex and

overlapping features of a disorder with significant clinical
variability has been an enduring challenge to the field of
autism research. As a disorder, ASD exemplifies multi-
dimensional processes because of its intra- and inter-
subject clinical heterogeneity. Considered against other
psychiatric disorders, ASD’s phenotypic variability is
considerable16,17. Researchers are moving away from ASD
as a unitary construct and viewing it as an umbrella term
for multiple syndromes18–20, resulting from multiple
varying etiological pathways21. There have been attempts
to study subgroups of clinical subphenotypes (e.g., history
of regression, presence of intellectual disability or limited
language) in order to examine potential mechanisms21–23

and treatment targets. However, these approaches require
increasingly large sample sizes in conjunction with refined
and nuanced methods of subphenotyping24–26.
In addition, co-morbid clinical features add to the

complexity of ASD characterization and presentation over
developmental periods when other clinical populations or
larger control groups are compared. In child psychiatry,
co-morbidity or convergently arising diagnoses are com-
mon. Youth rarely have one disorder consistent with
adult-defined phenomenological categories. Over a third
of individuals with ASD meet criteria for attention deficit
hyperactivity disorder (ADHD)27, obsessive compulsive
disorder (OCD)28,29, disruptive behavior disorders (that
includes oppositional defiant disorder)30,31, anxiety and
mood disorders31,32, intellectual disability33, or
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epilepsy34,35. Other commonly reported co-morbidities
include specific language disorder, constipation, and other
known genetic and medical disorders36,37. Diagnostic
trends have switched from viewing cognitive, language,
compulsive, attentional, behavioral, mood and anxiety
symptoms as part of the disorder to being named inde-
pendently when they are severe enough to warrant spe-
cific treatments27,38. Child psychiatrists have long known
that certain disorders frequently emerge and present
together. For example, ADHD, OCD, and Tourette’s or tic
disorders39 as well as oppositional defiant disorder,
ADHD, and minor depression/dysthymia40 are common
triads. These often present by early school age and with
varying severity of symptom clusters in boys versus girls.
Some disorders may have earlier signs, but diagnoses are
made when children struggle to reach or maintain
expected milestones at school or home. Various diag-
nostic combinations occur with ASD and specific con-
vergent diagnoses are increasingly being identified.
Treatments often require modification based on cognitive
features of ASD. Research studies that exclude other
psychiatric disorders have limited application in the
community because of the pathophysiological overlap
between ASD and many comorbid disorders.

Computational psychiatry and new approaches to
studying ASD
Computational psychiatry is of growing interest because

it uses mathematical approaches to quantitatively inves-
tigate interacting variables across biobehavioral system
levels within and between psychiatric disorders. As a
newly emerging conceptual approach, it covers a range of
strategies to characterize and investigate complex and
interacting phenomena that contribute to outputs such as
clinical presentation of neurobehavioral disorders. Com-
putational methods can be applied at multiple levels in
psychiatry by improving behavioral and biological diag-
nostic approaches (e.g., diagnostic or treatment-related
biomarkers) and to subcategorize brain and behavioral
dysfunction through the use of large datasets. For exam-
ple, methods may be used to model neural circuits by
accounting for multifactorial contributions (e.g., genetic
and environmental factors) as explicit mathematical terms
in order to test hypotheses about how multiple variables
affect circuit function.
Time and progression of a disorder are important

because psychiatric disorders present differentially across
the lifespan and are nonlinearly influenced by biological
processes related to growth, reproduction, or degenera-
tion. Computational models in psychiatry have the
potential to test how circuit or biological dysfunction at
an initial time interval could create progressive disrup-
tions through alterations in neural development and
plasticity. These approaches have the potential to

characterize individual differences required to ascertain
“what is different about” how this specific child at this
time “processes information about the world”; this is
required to tailor biobehavioral interventions for sub-
groups41. As our technological ability to capture and share
data increases, neural and other biological variables col-
lected over time may be used to sequentially predict and
discern behavioral outcomes at the level of the individual.
Ultimately, computational and machine learning approa-
ches will help subgroup multifactorial inputs and outputs
in order to create specific treatment plans for individual
children with ASD and other developmental disorders.

Machine learning approaches used to identify key
diagnostic features of ASD
Highly standardized ASD assessments require more

evaluation time than most psychiatric disorders and a
high level of clinical training with ongoing reliability
confirmation. As the need for assessments increase, care
providers seek to decrease redundant measures and
minimize the time to complete separate instruments.
Given the range of signs and symptoms listed in the DSM,
questions arise about whether some features are more
important and central to the diagnostic category.
Researchers are now utilizing large datasets required for
genetic studies and analyses to address such concerns.
Several studies have evaluated machine learning as a

means to shorten the clinician-expert administrated
ADOS assessment, to test the accuracy of an observation-
based classifier for rapid detection of autism risk, or to
detect a minimal set of behaviors through feature
selection-based algorithms42–44. An early machine learn-
ing classifier of scored behaviors reported 99.7% sensi-
tivity and 94% specificity using 8 of the 29 items contained
in ADOS Module 144. Although limiting items reduces
testing time, this approach fails to consider that these
expert testers were already drawing from broader infor-
mation and their high level of training in diagnosis. For
example, clinical evaluators integrate multifaceted infor-
mation from their full encounters and do not assess
subtest sections in isolation. Later, the authors retested
the 8 items in subsequently larger datasets (autism=
1884, broader ASD= 449, and 283 non-ASD diagnoses)
and reported sensitivity of 97.1% and specificity of
83.3%44. They attributed the lower specificity to the small
number of controls used in the earlier study. The 8 items
do not robustly produce optimal performance across each
dataset previously combined to create the large sample45,
suggesting that information from some of the remaining
21 items were also valuable. Subsequently, this group
examined modules 2 and 3 of the ADOS, which
are appropriate for individuals with higher language
and cognitive abilities43. They reported between 98.3 and
97.7% accuracy using 9 of the 28 items from module 2 and
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12 of the 28 items from module 3 to be sufficient to detect
ASD risk, respectively.
Across all three ADOS focused studies described above,

atypical eye contact, facial expressions (e.g., social smile in
Module 1), interaction enjoyment, and joint attention
were key features of ASD. In the modules requiring higher
language and cognitive functioning, use of gestures, social
communication or conversation, quality of social over-
tures, amount of reciprocal interactions, atypical motor
mannerisms, and restricted/repetitive interests were also
important features43. These studies suggest that cognitive
level and daily functional abilities influence how many and
what symptoms inform a diagnosis. This work also
highlights that developmental level differentially influ-
ences the contribution of individual items. Future studies
will be needed to account for chronological or adaptive
age in streamlined diagnostic algorithms.
Data from detailed early developmental parent inter-

views obtained from the revised Autism Diagnostic
Interview (ADI-R) were also investigated using machine
learning methods. Wall and colleagues46 tested the
accuracy of a 7-question classifier (reduced from 93 items
of clinician-expert interview scores) in research datasets
with the full standardized parent interview. Bone et al.45

were not able generate comparable findings when they
used a larger dataset with more controls and severely
affected ASD participants. In a follow up study, Bone and
colleagues47 used machine learning to generate screening
questions using the ADI-R and the Social Responsiveness
Scale (SRS)48. Both sensitivity and specificity were differ-
entially weighted to achieve near-peak performance with
five or fewer codes using Machine Learning-based fusion
of ADI-R and SRS items. A screener algorithm for under
versus over 10 years of age reached 89.2% (>10 years,
86.7%) sensitivity and 59.0% (>10 years, 53.4%) specificity
for five behavioral codes. Note that demarcating age is
important here and that items vary in importance over the
developmental time course. The most frequently coded
ADI-R items that overlap across papers include reciprocal
conversation, direct gaze, and group play with peers.
Authors highlight that it is possible to create robust,
customizable screening or diagnostic instrument algo-
rithms47. However, outcomes are different when controls
with other difficulties or co-morbidities are included and
age cutoffs are varied. Future testing with screening items
alone in a community-based population versus a research
clinic sample will be required to confirm the effectiveness
of prioritizing specific or temporal features of ASD.
In addition to this diagnostic testing literature, there are

prospective studies on neuroimaging of infants at high
familial risk for ASD. For example, Emerson and collea-
gues49 utilized resting-state functional magnetic reso-
nance imaging (MRI) and a cross-validated machine
learning algorithm applied to the imaging data collected

at age 6 months to predict diagnostic outcomes at age 2
years. They reported a positive predictive value of 100%
and negative predictive value of 96% and functional
connections with social communication and repetitive
behavior at age 2 years. See reviews of the literature on
imaging and early identification of ASD50, as well as
limitations of use of machine learning approaches with
limited sample sizes in many current neuroimaging
studies51.

Machine learning approaches may be used to compare
frequent comorbidities and convergencies, such as ASD
and ADHD
It is estimated that between 30–80% of individuals with

ASD meet ADHD criteria52. The diagnostic time frame
may overlap but tends to be later for identifying ADHD,
which is more often noted with increased attentional
demands required for abstract and analytical thinking in
elementary education. DSM-5 modified symptoms being
detected for ADHD prior to twelve years of age versus the
earlier seven years that was required for DSM-IV-TR.
ADHD also has subdomains of inattention and hyper-
activity/impulsivity. Some research has attempted to
clarify overlapping and unique patterns of cognitive
impairment for children with ASD versus ADHD53.
Research on ADHD alone has attempted to integrate

behavioral and/or phenotypic information with brain
functional and structural MRI. Anderson and colleagues54

used four Non-Negative Matrix Factorization algorithms
to find the best fit for subnetworks that clustered with the
ADHD-Inattentive diagnosis. Brain areas highlighted were
the posterior cingulate, precuneus, and parahippocampal
regions. Authors concluded that multimodal data in
ADHD (N= 730) can be interpreted by latent dimensions
and unsupervised computational approaches, adding to a
growing number of studies using supervised computa-
tional approaches54.
Few studies have attempted cross-diagnostic classifica-

tion across ASD and ADHD. One study, conducted by
Lim and colleagues, reported high accuracy when dis-
criminating ADHD from controls versus ASD (accuracy
85.2 vs. 79.3%) when applying a Gaussian process classi-
fication to gray matter volumetric data55. Another study
considered both ASD and ADHD, but only compare each
classification against controls and not with each other56.
They used automated classification based on histograms
of oriented gradients features extracted from MR brain
images. Authors reported hold-out diagnostic accuracy
ranged from 65.0–69.6% (over baseline 51.6–55.0%) in
ASD and ADHD, respectively.
Using behavioral rating data, another study57 attempted

to distinguish between ASD and ADHD by using different
machine learning classification scores from the 65-item
SRS. They tested six machine learning models on ASD
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(N= 2775) or ADHD (N= 150) individuals, reporting
that five of the 65 behaviors measured were sufficient to
distinguish ASD from ADHD (area under the curve=
0.965). Challenges with these studies occur because of the
difficulty in subcategorizing the >20% number of children
with ASD who also have significant ADHD.
In a recent review by Uddin et al.58, they summarize

machine learning neuroimaging approaches from both
populations. For ASD they reviewed 29 neuroimaging-
based classification studies, and report how functional
connectivity, gray matter volume, and default mode net-
work approaches are being used to discriminate ASD
from typical development. For ADHD alone, they
reviewed nineteen studies showing that areas are more
widespread but frontal and cerebellar regions appear to be
important for classification compared to typical develop-
ment. Obstacles for reliability and reproducibility include
challenges of clinical heterogeneity in populations and
standardization of data acquisition methods across sites.
Addressing such heterogeneity is consistent with new
research initiatives that are motivated to find biologically
homogenous profiles of impairment. Identifying the
structural and functional network signatures of multi-
dimensionally-defined developmental profiles using
computational psychiatry has the potential to move us
toward a more biologically informed nosology, consistent
with current research initiatives41,59–61.

Computational approaches used to study longitudinal
changes in ASD
With increasing follow-up and standardized long-

itudinal data on individuals with ASD, computational
methods are helpful for predicting outcomes by char-
acterizing developmental trajectories. In computational
models of neurodevelopmental disorders, time is an
important variable because it captures sensitive and cri-
tical periods of growth that influence functional
outcomes.
Lord and colleagues62 have published a series of papers

examining trajectories of change in symptoms over the
developmental course of ASD. In a clinic-referred popu-
lation, latent class growth curve models assessed long-
itudinal data from 2 to 15 year olds (N= 345). The best-fit
model identified a large subgroup (80%) with the stable
high or stable moderate severity of ASD symptoms and
two smaller groups with increases (9%) or decreases (7%)
in severity over time. Although age, gender, race, and
nonverbal IQ did not predict group membership, verbal
IQ was maintained or increased over time in all groups
and adaptive behavior worsened in all groups (except the
small improving group). More recently, Lord and collea-
gues completed a growth curve analyses with a very

detailed longitudinal follow-up (N= 85) of developmental
trajectories from age 2 to 19 grouped by outcome62.
Although the sample size was small, groupings were based
on 19-year-old outcomes of verbal IQ, nonverbal IQ,
social adaptive skills, and parent-reported social-com-
munication. Differences in childhood trajectories for
more or less cognitively able children were plotted over
time beginning at age 2. Linear (Nonverbal IQ, ADI-R
Repetitive Sensory Motor and Insistence on Sameness)
and quadratic (Verbal-IQ, Vineland Social Adaptation,
ADI-R Social Deficits) growth curves were shown. Dif-
ferences in independent functioning and lack of comor-
bidity were associated with preschool through adolescent
trajectories in social adaptation, social deficits, and insis-
tence on sameness. Of note, change in social adaptation
and decreased insistence on sameness distinguished ASD
with higher cognitive abilities by adulthood from those
with lower IQ outcomes. A small group of young adults
who had childhood diagnoses of ASD (N= 8) with IQs in
the average range were functioning socially and adaptively
at age-appropriate levels.
Another study followed a cohort of children with ASD

(N= 152) at three discrete time points and a subset of
outcome measures over a ten year period63. Two distinct
but parallel trajectories were identified for adaptive
behavior and daily living skills. For social and commu-
nication, one trajectory showed increased growth while a
flatter trajectory for adolescent outcomes was observed
when participants started with lower cognitive and lan-
guage skills, early epilepsy, and more severe ASD symp-
toms around age five.
More recently, another study reported longitudinal data

(N= 105 children with ASD) using growth mixture model
analysis with four assessments between the ages of 3–8
years64. Best-fit models produced one decreasing trajec-
tory (73% of sample) and another moderate and stable
class (27%) using a standardized adaptive functioning
measure (Vineland-II)65. Focusing only within the pre-
school years, a multisite Canadian study used a semi-
parametric group-based approach to identify distinct
mixtures of trajectories of ASD children (N= 421) over
four time points (baseline, at 6 months and 12 months
after baseline, and at age 6 years)66. Best-fit models
showed an improvement in adaptive functioning in
approximately 20% of the sample. In contrast, ASD
symptom severity was more stable and only 11% of the
sample showed a decrease in symptom severity. Taken
together, these findings confirm that we have limited data
over extended developmental periods, that outcome
measures are inconsistent across studies, and that sample
sizes need to be larger to better characterize hetero-
geneous trajectories of development with ASD.
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Machine learning approaches to study ASD utilizing large
or biologically defined datasets
In contrast to the highly specialized and intensive

resources required to follow a clinical sample over time,
another computational approach is to use large existing
datasets that store health information as it was accessed.
For example, electronic medical record time series ana-
lyses (6 month windows from birth to 15 years old) were
used to examine comorbidities with ASD67. Hierarchical
clustering methods were used to identify four groups
(defined by salient features that included seizure, psy-
chiatric, auditory, gastrointestinal) that were distinct from
the larger sample and that could not be attributed to
another medical cause. Three patterns of medical trajec-
tories were identified using an unsupervised approach.
Only the gastrointestinal and seizures disorder groups had
between group correlations with both symptoms, and this
finding was replicated in another sample population.
Future research may use these methods of subgrouping to
examine etiological risk factors related to ASD, including
genetically-linked subgrouping based on specific
comorbidities68.
Scientists often seek “causal” determinants that make

disorders easier to classify in a binary categorical manner
and to find targeted treatments or cures. For example, the
gene required for Rett syndrome was identified when
comparisons were made to the broader category of
“idiopathic autism”69,70. Other studies have examined
ASD phenotypic presentation and overlap in fragile X and
Prader-Willi syndrome (PWS). A recent paper71 reported
that 51% of males versus 18% of females with fragile X
syndrome (FXS) have co-morbid ASD as assessed by the
Social Communication Questionnaire (SCQ). This
comorbid subgroup had a higher prevalence of seizures,
more sleep and behavior problems, and similar side effect
profiles with some medications. They were underserved
with behavioral treatments offered to children with
“idiopathic” ASD. In contrast, 12.3% of children with PWS
had ASD according to the ADOS-2 versus the 29–49%
that screened positive for ASD with the SCQ72. Com-
munication problems were observed in positive screens
that did not make clinical diagnostic cut-off criteria.
Genetic specificity was observed because the majority
with ADOS-2 confirmed ASD also had maternal uni-
parental disomy PWS genetic subtype. This approach
requires very large datasets in order to chip away at dis-
covering small subgroups of the broader phenotype that
can be attributed to specific genetic causes.
Although refined subgroup characterization promises to

identify genetic or other etiological subtypes, the wide net
of broader autism phenotype captures features of the
many neurodevelopmental genetic syndromes altogether.
Studies focusing on subgroups may be useful in under-
standing brain development across a broader population.

For example, large clinical samples required to do genetic
studies of ASD have recently been used to also study
spatiotemporal development in the brain73. Authors cal-
culated expression signatures specific to spatiotemporal
windows (16 brain regions and 13 developmental stages).
In order to identify when and where predicted ASD genes
are specifically active, their analytic approach required
carefully controlled permutation tests. There are large
gaps of knowledge between causal and contributing genes
and common neural networks that need to be targeted for
educational and clinical interventions across overlapping
phenotypic clusters.
Advances in precision or personalized medicine will

require an ability to disentangle the complexity of over-
lapping symptoms in order to identify neurobehavioral
pathways that specifically impact functional outcomes.
For example, ASD researchers have struggled to identify
circuit pathways or molecular mechanisms that lead to
specific treatment targets because subgroups are influ-
enced by additional dimensions of variability (e.g., atten-
tion deficits, intellectual disability, or severity of insistence
on sameness). Moreover, sampling approaches intending
to create “clean” study samples by excluding participants
with other disorders have produced mixed outcomes.
Clinicians already know that research methods optimized
to increase homogeneity and reduce heterogeneity have
limited utility for translating research outcomes to real-
world communities. Long-term approaches will benefit
from increased sample sizes of typical and atypical data
from children to model developmental trajectories of
ASD. This would increase our ability to find the weak
links or pathways that lead to systemic and specific
functional impairments41 as children face incremental
challenges with age.
Given that ASD is known to emerge during the first

years of life, understanding variability in early typical
versus atypical development is likely to yield particularly
important insights regarding heterogeneity. The data
presented below uses a community sample that can be
followed over time and a novel computational approach
to examine risk for developing ASD-related symptoms.
Focusing on early development is an essential step for
creating and selecting treatments that target plastic neural
systems and compensatory processes unique to this
period.

Proof of principle: anomaly detection as a
computational example for detecting ASD risk
and variance in a community sample to be
followed longitudinally
Anomaly detection focuses on identifying data that

markedly deviates from the normal patterns that are
observed within datasets. Although statistical approaches
have detected outliers or anomalies since the 19th
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century74, current methods have advanced by integrating
machine learning, data mining, information theory, and
spectral theory in order to tackle specific data questions15.
Atypical observations sometimes group together in clus-
ters, but those clusters are often relatively small and less
cohesive, and thus specialized techniques for finding
anomalies have been developed in a wide variety of dis-
ciplines15,75. Multiple anomaly detection techniques are
available, including techniques such as local outlier factor
(LOF)76, one class support vector machines77, and auto-
encoder neural networks78.
Here, we demonstrate how unsupervised anomaly

detection is used to identify early risk features that may
predict autism or related disorders in early development.
The data is from a community sample of data gathered
from 1570 children between 17–25 months of age.
Methods used have been previously described79,80 for
online acquisition81 of the Video-Referenced Rating of
Reciprocal Social Behavior82, the Repetitive Behavior
Scale for Early Childhood80, and the MacArthur-Bates
Communicative Development Inventories83, along with
demographic information. Over time, subsamples of these
toddlers will be recruited to complete an independent
follow-up evaluations with researchers blind to the online
assessment data from the first time point. This long-
itudinal data will be used to give feedback information
and to improve working models of early developmental
heterogeneity related to autism versus other neurodeve-
lopmental outcomes.
In this example, anomaly detection is initially being

used to calculate how each parent rating about their child
deviates across normal dimensional patterns of behavior.
This approach produced anomaly scores that fell into a
relatively small range around a central peak, with “true”
anomalies extending into a rightward tail. Routines were
considered robust after a process of checking the data.
When anomalous cases were eliminated from the full
dataset of 1570 children, few to no new anomalies were
detected when the routines were rerun. To illustrate this
process, we computed LOF anomaly scores76. Note that
the scores incorporate information across many items and
dimensions of behaviors. As represented in Fig. 1a, we
identified 80 out of 1570 toddlers (or 5%) with an LOF
score greater than 1.32, which we chose (for this example)
as the threshold for being anomalous (95th percentile of
LOF scores).

How accurate or stable is this computational model in
identifying anomalies with these behavioral variables?
Figure 1 shows a histogram of LOF scores. Although it

looks 2-dimensional in this plot, the LOF scores are cal-
culated from many variables of each participant, which
indeed represents multiple dimensions of behavior. For
example, the distance between two points in

3-dimensional space is a 1- dimensional number. The
accuracy of LOF threshold score can thus be tested. If 80
anomalous toddlers are omitted and LOF scores are
recomputed, only 6 subjects obtain LOF scores greater
than 1.32. Note these 6 had initial LOF scores near the
1.32 threshold. This suggests that this threshold is fairly
accurate when all these behavioral variables are con-
sidered together (see Fig. 1d for listing of variables). For
this dataset, 5% was chosen as the LOF threshold because
it corresponded to a point at which the LOF distribution
changed from a “bump,” i.e., a somewhat normal looking
distribution to a more uniform distribution. Such a region
represents a different and lower density area of the data
space where anomalies are expected to be found. For
other datasets, the appropriate LOF threshold might
correspond to a different percentage of the data, e.g., 1 or
10%. Using this approach, we are able to test if an
appropriate LOF threshold is identified for a particular
population based on how the distribution is affected when
anomalies are removed.

How accurate or stable is this computation with this
sample size?
Many anomaly detection routines are also relatively

robust to sample size. To test this in our data, we ran-
domly sampled the data set to obtain 1000 half size
samples. The overlap in anomalies found in the samples
with the full data set is shown in the Fig. 1b. On average,
74% of the anomalies (LOF > 1.32) found in the half size
samples occurred in the full data set. Furthermore, the
correlation between the LOF scores in the full sample and
the half sized sample is about 91%. On average 94% of the
anomalies (LOF > 1.32) found in the half size samples
have an LOF score of 1.22 or more in the full data set.
These are signs that LOF scores are relatively stable for
this current sample under consideration. Moreover, it
suggests that the threshold determined as anomalous in a
large sample could also be used for a smaller sample.
Given our focus on heterogeneity, we are also able to
evaluate how much the LOF score varied by comparing
the LOF scores of a subject in the half size samples to the
LOF score in the full sample.

How does this sample relate to previously collected
population data?
With the initial developmental data, we were able to

determine that 80 children had LOF > 1.32 scores out of
the overall sample of 1570 toddlers. This represents about
5% of the sample. This percent of outliers is between the
prevalence data of 13% for developmental disabilities and
the 1.5–2% estimates for prevalence data of ASD84,85.
Longitudinal follow up will confirm if around 3% of this
sample will have closely related developmental disorders
affecting language or developmental delays that do not
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fulfill full criteria for autism. There are different ways to
view and select outliers and anomalies from typical
development. An alternative way to view this data is to
look at the number and identity of individuals outside of
two standard deviations across variables (see Fig. 1c).
Another way to view relationships between variables is to
plot correlations between the variables assessed (Fig. 1d).

What are way to improve predictive models with a
longitudinal study design?
Next steps would be test how predictive and accurate

this unsupervised approach to identify children at risk is
for later diagnoses of autism or related developmental
disorders (e.g., developmental delay, specific language
disorder, etc.). As we follow these children longitudinally,
we will use supervised computational models to augment
what is initially learned from the initial anomaly detection
analyses. Expert examination and tracking outcome
diagnosis back to the anomaly detection results will help
refine the model. Multiple waves of data collection for
ages 18–24 months, would allow for testing and retesting
of the reliability of this computational approach as the
sample size increases. Different trajectories may be
observed. Subgroupings of anomalous subjects with
similar clinical features may be identified earlier and be
linked to similar etiologic factors or genetic risk.
Supervised anomaly detection approaches use class

labels, but have the same goal of distinguishing anom-
alous and normal points. More generally, some supervised
anomaly detection approaches produce an anomaly score
that, as with unsupervised anomaly detection, allow for
the ranking of data points according to how anomalous

each clinical feature is. Combined with an understanding
of the anomaly detection algorithms, supervised feedback
could be used to refine the algorithms and filter the
results for those relevant to identifying subjects at high
risk for ASD. Recent implementations of anomaly detec-
tion approaches have been able to detect patterns and
outliers in sequence data86,87.
These advances will afford the opportunity to model

complex, sequential data such as those observed in neu-
rodevelopmental disorders. Other analytical methods can
be tested and compared with the results of anomaly
detection methods, including clustering techniques such
as k-means, hierarchical, and shared nearest neighbor88.
Alternative supervised approaches such as ensemble
techniques89 may be employed to further incorporate the
clinical symptom observations as feedback. The utility of
such approaches for early identification of autism risk
needs to be confirmed through future research. Com-
munity samples that include typically developing children
as well as children at risk for a range of neurodevelop-
mental disorders may be helpful to develop population-
based methods for early detection of disorder risk.

Next steps and conclusions
The complex, heterogeneous nature of ASD has impe-

ded our efforts to understand etiology and to predict
which treatments will be effective. Big data and machine
learning approaches may not only serve to parse sub-
groups within a large heterogeneous clinical category, but
may also be used to examine common treatment targets
across distinct neurodevelopmental trajectories. In such
computational studies, samples need to be large enough

(see figure on previous page)
Fig. 1 a Distribution of local outlier function (LOF) scores. Scores greater than 1.32 are classified as anomalies. Although histograms are 1-dimensional,
scores are calculated from the data records of each participant which are multidimensional. As an analogy, the distance between two points in 3-
dimensional space is a 1-dimensional number. As a test, if the 80 anomalous toddlers are omitted and LOF scores are recomputed, only 6 subjects
obtain LOF scores greater than 1.32. Note these 6 had initial LOF scores near the 1.32 threshold. For this example, 5% was chosen as the LOF
threshold because it corresponded to a point at which the LOF distribution changed from a “bump,” i.e., a somewhat normal looking distribution to a
more uniform distribution. Such a region represents a different and lower density area of the data space where anomalies are expected to be found.
For other datasets, the appropriate LOF threshold might correspond to a different percentage of the data, e.g., 1 or 10%. As an example of an
unsupervised anomaly detection approach, we were able to determine that 80 children had LOF > 1.32 scores out of the overall sample of 1570
toddlers. b Overlap between anomalies detected in full sample vs. 1000 random samples of half the data. Many anomaly detection routines are also
relatively robust to sample size. To illustrate this, we randomly sampled the data set to obtain 1000 half size samples. The overlap in anomalies found
in the samples with the full data set is shown. On average, 74% of the anomalies (LOF > 1.32) found in the half size samples occurred in the full data
set. Furthermore, the correspondence between the LOF scores in the full sample and the half sized sample is about 91%. On average 94% of the
anomalies (LOF > 1.32) found in the half size samples have an LOF score of 1.22 or more in the full data set. All of this is a sign that LOF scores are
relatively stable for the sample under consideration. The goal of this evaluation was to test how much the LOF score depended on the sample size
and thus, whether a threshold determined as anomalous in one sample could be used for a smaller sample. More generally, we evaluated how much
the LOF score varied by comparing the LOF scores of a subject in the half size samples to the LOF score in the full sample. c An alternative way to
view the sample data from LOF scores shows number of subjects outside of two standard deviations. d In addition, the data can be plotted to
illustrate the levels of correlations between variables assessed in a matrix plot. Multiple waves of data collection for ages 18–24 months, would allow
for testing and retesting of the reliability of these patterns with these dimensions of observations as the sample size increases
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for training and retesting computational models as they
are optimized. The goal is to capture as much of the
variation of the disorder as possible and conduct analyses
to delineate biologically and clinically meaningful sub-
groups. An advantage of computationally driven research
is the ability to compare multiple analytic methods to
hone our ability to predict outcomes and quantify risk in
the midst of heterogeneity.
Although large data-driven approaches require multi-

disciplinary collaboration and investment, they are
increasingly important given the complexity and hetero-
geneity associated with developmental disorders such as
ASD. We have learned through over 70 years of research
that ASD defies simple categorical classification. This
necessitates new approaches that leverage larger samples
to build reliable models that accurately reflect the com-
plexity inherent to autism. This “complexity” refers not
solely to inter-subject variability, but also to intra-subject
phenotypic variability as a function of development.
Because ASD symptoms and challenges are not static
within individuals across development, computational
methods may contribute to better understanding of
growth and time-related courses, subgroups of etiological
contributions to phenotype, and interactions with
medical-psychiatric comorbidities.
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Reports, 2016).

62. Lord, C., Bishop, S. & Anderson, D. Developmental trajectories as autism
phenotypes. Am. J. Med. Genet. C. 169, 198–208 (2015).

63. Baghdadli, A. et al. Developmental trajectories of adaptive behaviors from
early childhood to adolescence in a cohort of 152 children with autism
spectrum disorders. J. Autism Dev. Disord. 42, 1314–1325 (2012).

64. Farmer, C., Swineford, L., Swedo, S. E. & Thurm, A. Classifying and characterizing
the development of adaptive behavior in a naturalistic longitudinal study of
young children with autism. J. Neurodev. Disord. 10, 1 (2018).

65. Sparrow, S., Cicchetti, D. & Balla, D. Vineland-II Adaptive Behavior Scales, Second
Edition, Survey Forms Manual (Circle Pines, MN: AGS Publishing, 2005).

66. Szatmari, P. et al. Developmental trajectories of symptom severity and adap-
tive functioning in an inception cohort of preschool children with autism
spectrum disorder. Jama Psychiatry 72, 276–283 (2015).

67. Doshi-Velez, F., Ge, Y. R. & Kohane, I. Comorbidity clusters in autism spectrum
disorders: an electronic health record time-series analysis. Pediatrics 133,
E54–E63 (2014).

68. Ceroni, F. et al. A deletion involving CD38 and BST1 results in a fusion
transcript in a patient with autism and asthma. Autism Res. 7, 254–263
(2014).

69. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2,
encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

70. Cuddapah, V. A. et al. Methyl-CpG-binding protein 2 (MECP2) mutation type is
associated with disease severity in Rett syndrome. J. Med. Genet. 51, 152–158
(2014).

71. Kaufmann, W. E. et al. Autism spectrum disorder in fragile X syndrome:
cooccurring conditions and current treatment. Pediatrics 139, S194–S206
(2017).

72. Dykens, E. M. et al. Diagnoses and characteristics of autism spectrum disorders
in children with Prader-Willi syndrome. J. Neurodev. Disord. https://doi.org/
10.1186/s11689-017-9200-2 (2017).

73. Krishnan, A. et al. Genome-wide prediction and functional characterization of
the genetic basis of autism spectrum disorder. Nat. Neurosci. 19, 1454–1462
(2016).

74. Edgeworth, F. Y. On discordant observations. Philos. Mag. 23, 364–375 (1887).
75. Aggarwal, C. C. Data Mining (Switzerland: Springer International Publishing,

2015).
76. Breunig, M. M., Kriegel, H. P., Ng, R. T. & Sander, J. Vol. 29, 582–588 (New York,

NY: ACM Sigmod Record, 2000).
77. Scholkopf, B., Burges, C. J. C. & Smola, A. J. Advances in kernel methods—

support vector learning—Introduction. Adv. Kernel Method. 1-15 (Cambridge,
MA: MIT Press, 1999)

78. Hawkins, S., He, H., Williams, G. & Baxter, R. International Conference on Data
Warehousing and Knowledge Discovery. 170–180 (Berlin Heidelberg: Springer,
2002).

79. Sifre, R. et al. Restricted, repetitive, and reciprocal social behavior in toddlers
born small for gestation duration. J. Pediatr. 200, 118–124 e119 (2018).

80. Wolff, J. J., Boyd, B. A. & Elison, J. T. J. Neurodev. Disord. 8, 27 (2016).
81. Weigold, A., Weigold, I. K. & Russell, E. J. Examination of the equivalence of self-

report survey-based paper-and-pencil and internet data collection methods.
Psychol. Methods 18, 53–70 (2013).

Jacob et al. Translational Psychiatry            (2019) 9:63 Page 11 of 12

https://doi.org/10.1371/journal.pone.0067797
https://doi.org/10.1371/journal.pone.0067797
https://doi.org/10.1038/tp.2015.51
https://doi.org/10.1038/tp.2015.7
https://doi.org/10.1038/tp.2012.10
https://doi.org/10.1371/journal.pone.0043855
https://doi.org/10.1371/journal.pone.0043855
https://doi.org/10.1126/scitranslmed.aag2882
https://doi.org/10.1126/scitranslmed.aag2882
https://doi.org/10.1371/journal.pone.0166934
https://doi.org/10.1371/journal.pone.0166934
https://doi.org/10.1038/tp.2017.164
https://doi.org/10.1038/tp.2017.164
https://doi.org/10.1186/s11689-017-9200-2
https://doi.org/10.1186/s11689-017-9200-2


82. Marrus, N. et al. Rapid video-referenced ratings of reciprocal social behavior in
toddlers: a twin study. J. Child Psychol. Psychiatry 56, 1338–1346 (2015).

83. Fenson, L. et al. MacArthur-Bates communicative development inventories (2nd
ed.). (Baltimore: Paul H. Brookes, 2007).

84. Rosenberg, S. A., Zhang, D. & Robinson, C. C. Prevalence of developmental
delays and participation in early intervention services for young children.
Pediatrics 121, e1503–e1509 (2008).

85. Rosenberg, S. A., Ellison, M. C., Fast, B., Robinson, C. C. & Lazar, R. Computing
theoretical rates of part C eligibility based on developmental delays. Matern.
Child Health J. 17, 384–390 (2013).

86. Bouadjenek, M. R., Verspoor, K. & Zobel, J. Automated detection of records in
biological sequence databases that are inconsistent with the literature. J.
Biomed. Inform. 71, 229–240 (2017).

87. Lu, W. et al. Unsupervised sequential outlier detection with deep architectures.
IEEE Trans. Image Process. 26, 4321–4330 (2017).

88. Tan, P., Steinbach, M. & Kumar, V. Introduction to Data Mining. (Boston: Pearson
Addison-Wesley, 2006).

89. Lazarevic, A. & Kumar, V. Feature bagging for outlier detection. Proc. 11th ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining.
157–166 (Chicago, Illinois: 2005).

Jacob et al. Translational Psychiatry            (2019) 9:63 Page 12 of 12


	Neurodevelopmental heterogeneity and computational approaches for understanding autism
	Introduction and autism&#x02019;s history
	Contributions to ASD heterogeneity
	Computational psychiatry and new approaches to studying ASD
	Machine learning approaches used to identify key diagnostic features of ASD
	Machine learning approaches may be used to compare frequent comorbidities and convergencies, such as ASD and ADHD
	Computational approaches used to study longitudinal changes in ASD
	Machine learning approaches to study ASD utilizing large or biologically defined datasets

	Proof of principle: anomaly detection as a computational example for detecting ASD risk and variance in a community sample to be followed longitudinally
	How accurate or stable is this computational model in identifying anomalies with these behavioral variables?
	How accurate or stable is this computation with this sample size?
	How does this sample relate to previously collected population data?
	What are way to improve predictive models with a longitudinal study design?

	Next steps and conclusions
	ACKNOWLEDGMENTS




