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Abstract

Endoplasmic reticulum (ER) stress is a mechanism that allows to protect normal cellular functions 

in response to both internal perturbations, such as accumulation of unfolded proteins, and external 

perturbations, for example redox stress, UVB irradiation, and infection. A hallmark of ER stress is 

the accumulation of misfolded and unfolded proteins. Physiological levels of ER stress trigger the 

unfolded protein response (UPR) which is required to restore normal ER functions. However, the 

UPR can also initiate a cell death program/apoptosis pathway in response to excessive or persistent 

ER stress. Recently, it has become evident that chronic ER stress occurs in several diseases, 

including skin diseases like Darier’s disease, rosacea, vitiligo, and melanoma; furthermore, it is 

suggested that ER stress is directly involved in the pathogenesis of these disorders. Here, we 

review the role of ER stress in skin function, and discuss its significance in skin diseases.
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Physiological levels of endoplasmic reticulum (ER) stress are required for modulation of normal 

cellular functions in the skin, including keratinocyte differentiation, through the unfolded protein 

response (UPR). However, persistent or excessive levels of ER stress induce cell death and 

apoptosis signalling. Growing evidence describes chronic ER stress in several cutaneous diseases 

e.g., Darier’s disease, rosacea, vitiligo, and melanoma. In this review, we discuss the role of ER 

stress in normal skin function and disease.
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Introduction

Endoplasmic reticulum (ER) stress is induced in cells following stress caused by both 

internal and external perturbations. In addition, chronic ER stress is evident in different 

human diseases, such as diabetes, immune disorders, cancers, neurodegeneration, pulmonary 

fibrosis, and rheumatoid arthritis [1]. In skin, subtoxic (physiological) levels of ER stress-

induced unfolded protein response (UPR) is required for normal cellular function, including 

differentiation. Yet, a chronic, sustained ER stress-induced UPR has deleterious effects on 

cells; UPR becomes a cell death mechanism [2]. Furthermore, as emerging evidence reveals 

that a continuously active UPR is involved in the pathogenesis of certain skin diseases; i.e., 
Darier’s disease, rosacea, vitiligo, and melanoma, recent studies have highlighted ER stress 

and UPR as potential therapeutic targets for treatment of such diseases [3-8]. This review 

article discusses roles of ER stress in normal skin function and in skin disease.

Function and Structure of the Skin

The skin is the interface between the external and internal environment [9], and competent 

barriers deployed in the skin protect our bodies from insults, such as UV irradiation, 

chemicals, pathogenic microorganisms and dryness [9, 10]. The skin consists of epidermis, 

dermis and subcutaneous tissue (fat, sebaceous glands, sweat gland and hair). The 
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epidermis, which is the outermost layer of the skin, is further divided into four 

histologically-distinct layers, dependent on different stages of keratinocyte (KC) 

differentiation. KCs are the dominant cell species (over 95%) in the epidermis [11, 12]. KCs 

proliferate at the innermost layer of epidermis, the stratum basale (SB), differentiate to the 

stratum spinosum (SS), then to the stratum granulosum (SG), and finally terminally 

differentiate to the stratum corneum (SC) [12]. During differentiation, KCs migrate towards 

the outer layer epidermis [12]. As KCs transition from the SG to the SC, they become 

enucleated corneocytes. Different from nucleated cells, the plasma membrane, which is 

formed by a lipid bilayer, is replaced by a protein cross-linked cornified envelope that resists 

mechanical and chemical stress [13, 14]. In addition, during the transition from SG to SC, 

intracellular organelles, called lamellar granules, which contain lipids, protein and 

hydrolytic enzymes, are secreted into the extracellular domain in the SC to form lamellar 

membrane structures that are responsible for permeability barrier function [12]. The 

permeability barrier prevents excess water and ion loss from the body and conversely 

prevents invasion of exogenous substances from the external environment [12]. Lipid 

species, cholesterol, free fatty acids and ceramides are the predominant constituents of 

lamellar membrane structures [14]. In addition, ceramide metabolites serve as lipid 

mediators to enhance innate immunity in the nucleated layers of epidermis (see below, 

“Physiological ER Stress Is Required for Normal Cellular Functions in Skin” section).

ER Stress and Unfolded Protein Response

The ER has the central machinery responsible for the synthesis, secretion, modification, and 

folding of proteins [1]. Various cellular stresses caused by external/internal circumstances or 

excessive protein production cause an inadequate folding of client proteins, leading to the 

accumulation of misfolding or unfolding proteins in the ER, which is referred to as “ER 

stress” [1, 15]. An unfolded protein response (UPR) initiates to restore normal ER functions 

by reducing ER stress through previously-demonstrated mechanisms [1, 15, 16]: i) shutting 

down cap-dependent translation; ii) increasing ubiquitin-proteasome-mediated degradation 

of misfolded/unfolded proteins via ER-associated degradation (ERAD); and iii) increasing 

expression of ER chaperones and folding enzymes that enhance the overall efficiency of 

protein folding. In fact, UPR is controlled by three ER transmembrane sensor proteins, 

including inositol-requiring enzyme 1 alpha (IRE1α), double-stranded RNA-dependent 

protein kinase (PER)-like ER kinase (PERK), and activating transcription factor 6 (ATF6) 

(Fig.1). UPR activation is prevented when these three ER sensor proteins are bound by 

glucose-regulated protein 78/binding immunoglobulin protein (GRP78/BiP), the ER resident 

chaperone, in unstressed conditions; whereas, accumulation of unfolded/misfolded proteins 

within the ER lumen cause GRP78/BiP to dissociate from these three ER sensor proteins, 

leading to UPR activation [1, 15-17].

IRE1 signaling

IRE1α is a highly conserved mediator of the UPR [16, 18]. Dissociated GRP78/BiP from 

IRE1α preferentially binds to unfolded/misfolded proteins, causing dimerization and auto-

phosphorylation of IRE1α through its kinase activity [16, 19]. This leads to an increase in 

nuclease activity of IRE1α, leading to catalyzing the excision of an unconventional intron 
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with 26 nucleotides in length from the X-box binding protein 1 (XBP1) mRNA to produce 

spliced isoform of XBP1 (XBP1s) [19]. While the unspliced isoform of XBP1 (XBP1u) is 

unable to activate gene expression due to a lack of transactivation domain, XBP1s can direct 

the transcription of a broad range of target genes involved in lipid metabolism, immune and 

inflammatory responses, and cellular differentiation as well as genes related to structural/ 

functional expansion of ER and ER-associated protein degradation (ERAD), in order to 

reduce ER stress and restore homeostasis [20-24]. In addition, IRE1α activation caused by 

phosphorylation induces the recruitment of tumor necrosis factor receptor-associated factor 

2 (TRAF2), forming IRE1α-TRAF2 signaling complex [25]. Phosphorylated IRE1α-

TRAF2 complex simultaneously activates both JNK and NF-κB, which signals to modulate 

IRE1α-mediated cell death [25, 26]. Prior studies using NF-κB and/or JNK1/2 knockout 

cells suggest that TRAF2-mediated activation of NF-κB and JNK1/2 protects cells from 

apoptosis by attenuating ROS production [27], whereas studies using cells overexpressed 

mutant IκB revealed that blockade of NF-κB activation made cells resistant to ER stress-

mediated cell death[28]. Therefore, whether IRE1α-TRAF2-dependent NF-κB and JNK 

pathways affect cell survival or death remains unclear. Moreover, in addition to XBP1 

mRNA, IRE1α also cleaves other mRNAs localized in the ER membrane and processes their 

degradation through a process known as regulated IRE1-dependent mRNA decay (RIDD) 

[29]. Emerging evidence suggests that RIDD has a critical role in the maintenance of ER 

homeostasis by alleviating ER client protein load through mRNA degradation and inhibition 

of protein synthesis by cleavage of 28S rRNA [16, 29]. See references [29] and [16] for 

more details on the role of IRE1α under ER stress.

PERK signaling

Similar to IRE1α activation, detachment of GRP78/BiP from PERK in the ER luminal 

domain leads to activation of PERK through its dimerization and auto-phosphorylation [16, 

30]. Activated PERK recruits and phosphorylates a translation initiation factor, eukaryotic 

translation initiation factor 2α (eIF2α), through its kinase activity [30, 31]. eIF2α is a 

subunit of the heterotrimeric eIF2 complex which regulates protein synthesis initiation by 

promoting the binding of the initiator tRNA to 40S ribosomal subunits [30, 31]. However, 

phosphorylated eIF2α inhibits eukaryotic translation initiation factor 2B (eIF2B) activity, 

leading to attenuation of cap-dependent protein synthesis and thereby reducing protein 

folding load in ER-stressed cells. In addition, phosphorylation of eIF2α selectively induces 

translation of activating transcription factor 4 (ATF4), whose transcript contains regulatory 

sequences such as short upstream open reading frames [30, 31]. ATF4 controls expression of 

adaptive genes associated with protecting mechanisms which protect cells against ER stress; 

i.e., amino acid metabolism, anti-oxidant response, protein homeostasis and autophagy [30, 

31]. However, overactivation of PERK due to sustained or unresolved ER stress shifts its 

adaptive response toward a pro-death response. This change is mediated by upregulation of 

CAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) that in turn enhances 

oxidative stress and ATP depletion, leading to cell death. See references [30] and [31] for 

more details on the role of PERK under ER stress.
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ATF6 signaling

ATF6 expression is limited to the ER, however under ER stress it is exported to the Golgi 

apparatus where it is cleaved by the Golgi-resident proteases in order to produce the 

functional fragment of ATF6 [16, 19]. Fragmented AFT6 is then translocated into the 

nucleus to exert its function as a potent transcription factor, activating gene programs 

involved in restoring ER homeostasis [19]. See references [19] and [30] for more details on 

the role of PERK under ER stress.

Calcium signaling

ER is the largest calcium (Ca2+) store in the cell and it tightly regulates ER/cytosolic Ca2+ 

concentration through Ca2+ channels, Ca2+ transporters, Ca2+ pumps, or Ca2+-binding 

proteins [16, 32-34]. A balance between ER Ca2+-release and -uptake is crucial for the 

regulation of Ca2+ signaling-dependent normal cellular functions; e.g., proliferation, 

differentiation, apoptosis, and gene expression, in response to physiological stimuli [33, 34]. 

An increase in ER Ca2+-release leads to stimulation of cytosolic Ca2+ concentration, which 

induces ER stress, triggering UPR to either restore normal ER Ca2+ concentration and 

associated cellular functions or to eliminate the cells by apoptosis pathways [33, 34]. 

Depletion of Ca2+ concentration in the ER leads to a rapid accumulation of unfolded/

misfolded proteins, which promote dissociation of GRP78/BiP from three ER 

transmembrane sensor proteins, IRE1 α, PERK and ATF6, resulting in activation of the UPR 

pathway [32, 34]. See references [34] and [32] for more details on the importance of 

maintaining Ca2+ homeostasis and appropriate adaptation to ER stress.

Physiological ER Stress Is Required for Normal Cellular Functions in Skin

ER stress occurs in both physiological and pathological conditions, which modulate multiple 

cellular responses, including pro-survival or pro-apoptotic mechanisms. In skin, epidermal 

barrier perturbation, as well as external stress, such as UV irradiation and other types of 

oxidative stress, induce ER stress, which triggers UPR to regulate normal cellular functions 

through modulation of multiple intracellular mediators; e.g., ER chaperones, protein kinases, 

signaling lipids, and transcriptional factors [2, 35, 36]. Importantly, physiological ER stress 

is required for the maintenance of normal biological functions in skin, including KC 

differentiation [2]. KC differentiation is a vital process for the proper formation of a 

competent skin barrier [12]. Both 1,25-dihydroxyvitamin D3, an active form of vitamin D3, 

and Ca2+ play important roles in the regulation of the KC differentiation process [37]. 

Maintaining the Ca2+ gradient within the epidermis, with lowest levels in the SB and the 

highest levels in the SG, is important for both epidermal permeability barrier homeostasis 

and epidermal differentiation. Moreover, prior studies revealed that ER stress-signaled UPR 

is activated during epidermal KC differentiation [2, 38, 39]. Expression levels of ER 

stress/UPR activation markers, such as spliced forms of XBP1, CHOP, and GRP78/BiP, in 

undifferentiated/proliferative stage of KC are increased during KC differentiation [2, 35]. In 

addition, specific pharmacological ER stressors, thapsigargin (a SERCA2 Ca2+ pump 

inhibitor that depletes ER Ca2+), tunicamycin (a specific inhibitor of N-linked glycosylation 

that blocks glycoprotein synthesis thereby inducing UPR), and Brefeldin A (an ER-Golgi 
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transport inhibitor that causes accumulation of proteins in the ER, causing ER stress), 

stimulate expression of differentiation-related genes (ABCA12 and KLF4) through a XBP1-

mediated mechanism. These gene inductions by ER stressors were significantly suppressed 

in KC treated with siRNA against UPR makers; e.g., ATF4 and XBP-1 [2, 39].

Finally, ceramide metabolites, sphingosine-1-phosphate and ceramide-1-phosphate, signal to 

stimulate the key antimicrobial peptide, cathelicidin antimicrobial peptide, and human beta-

defensin 2 and 3, respectively, in keratinocytes to enhance antimicrobial defense in response 

to physiological levels of ER stress induced by external perturbations such as UV irradiation 

and other types of oxidative stress [35, 36, 40]. Moreover, sphingosine-1-phosphate-

dependent increases in cathelicidin antimicrobial peptide production are likely linked to an 

increase in physiological ER stress during keratinocyte differentiation [41].

ER Stress and Associated Skin Diseases

Darier’s Disease

Darier’s disease is a disease associated with impaired ER calcium homeostasis that induces 

ER stress (Fig. 2). It is an autosomal dominant genodermatosis caused by mutations of the 

gene encoding sarco/endoplasmic reticulum Ca2+-ATPase 2 (SERCA2), an intracellular 

calcium pump that transports Ca2+ from the cytoplasm to the ER against a calcium gradient 

[8]. Darier’s disease is characterized by the symmetrical eruption of keratotic papules 

predominantly in seborrheic areas. Loss of cell-to-cell adhesion due to abnormal 

keratinocyte differentiation and dyskeratosis are the histological hallmarks of Darier’s 

disease [42], and ER stress response has been proposed to play a crucial role in the 

pathogenesis of this disease [43, 44]. Darier keratinocytes have been shown to have a 

chronic depletion of stored ER calcium, with a constitutive ER stress response [45]. Chronic 

decreases in ER calcium levels cause dysregulation of cargo protein processing and 

trafficking. Indeed, SERCA2-inhibited keratinocytes show i) impaired translocation of 

desmosomal cadherins such as desmoglein 3 and desmocollin 3, desmoplakin, and 

components of adherens junctions, to the cell membrane; and ii) ER retention of 

desmosomal cadherins and E-cadherin. These findings implicate that ER stress-induced 

abnormal trafficking of junctional components is a mechanism of acantholysis in Darier’s 

disease [43, 44]. In addition to the prolonged ER calcium depletion, SERCA2 mutant 

protein itself also contributes to the development of the ER stress response in this disease. 

SERCA2 mutant proteins have been shown to trigger and to enhance the UPR leading to 

apoptosis of keratinocytes [2]. These findings suggest that the accumulation of the mutant 

SERCA2-induced activation of the pro-apoptotic branches of the UPR, CHOP upregulation, 

is a mechanism of Darier’s disease dyskeratosis. The role of ER stress in the 

pathomechanism of Darier’s disease is further supported by the therapeutic effect of 

Miglustat, a drug with a chemical chaperone that reduces ER stress during the structural and 

functional restoration of desmosomes and adherens junctions in the Darier keratinocyte [43].

Keratinization Disorders

Prior studies have addressed the potential role of ER stress and UPR in keratinocyte 

differentiation and keratinization [2], and UPR has been demonstrated to be activated during 
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normal epidermal keratinocyte differentiation [8]. These findings suggest that abnormal 

UPR may be associated with skin diseases characterized by abnormal keratinization, and 

differentiation. ER stress is known to play an important role in the pathomechanisms of 

several rare hereditary keratinization disorders.

Erythrokeratoderma variabilis

Erythrokeratoderma variabilis (EKV) is a rare hereditary disorder belonging to the 

heterogeneous group of skin diseases called the erythrokeratodermia which presents with 

migratory erythema and fixed hyperkeratotic plaques. EKV is caused by the mutations in 

GJB3 encoding the gap junction protein, Connexin 31 [4]. Connexin proteins are the main 

components of gap junctions which mediate epidermal keratinocyte communications. 

Several studies have demonstrated that microinjection of the skin disease-associated 

Connexin 31 mutants R42P, C86S, and G12D into keratinocytes showed a high incidence of 

cell death, but the precise mechanism is not known [46-48]. Recent study revealed that EKV-

associated mutants of Connexin 31 have cytoplasmic localization with defective trafficking 

and leads to upregulation of UPR in keratinocytes. Despite lack of direct evidence, these 

findings suggest that mutant Connexin 31-induced pathological ER stress is associated with 

cell death in EKV [46]. The exact mechanism of abnormal keratinocyte differentiation and 

hyperproliferation in EKV is not yet defined, but it is postulated that the defective Connexin 

31 may affect the functions of other connexins or other cellular components, thereby leading 

to the abnormal pathologies of EKV [49]. Further studies are needed to define the exact role 

and therapeutic potential of ER stress in EKV.

Keratosis linearis with ichthyosis congenita and sclerosing keratoderma syndrome

Keratosis linearis with ichthyosis congenita and sclerosing keratoderma syndrome (KLICK 

syndrome [MIM 601952]) is a rare autosomal-recessive skin disorder characterized by 

palmoplantar keratoderma, linear hyperkeratotic papules, and ichthyosiform scaling and is 

causes by POMP (proteasome maturation protein) gene mutations [50]. Altered distribution 

of POMP and proteasome subunits during formation of the horny layer have been shown to 

induce persistent ER stress in keratinocytes, suggesting that proteasome insufficiency-

induced abnormal UPR contributes to the abnormal terminal differentiation in KLIKC 

syndrome [2, 50].

Ichthyosis follicularis, alopecia, and photophobia syndrome

Ichthyosis follicularis, alopecia, and photophobia (IFAP) syndrome is a rare X-linked 

disease caused by mutations in membrane-bound transcription factor protease, site 2 

(MBTPS2), a membrane-embedded zinc metalloprotease. MBTPS2 is involved in the 

cholesterol homeostasis and ER stress response [51]. It has been suggested that mutated 

MBTPS2-induced impairment in the cleavage of ATF6 and sterol regulatory element-

binding proteins (SREBP), and consequent impairment of cholesterol metabolism and UPR 

is the mechanism of the abnormal keratinization in IFAP syndrome [51, 52].
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Psoriasis

Abnormal ER stress response in epidermal keratinocytes is also reported in a common 

inflammatory skin disease, psoriasis [2]. The abnormal differentiation and hyperproliferation 

of epidermal keratinocytes are important parts of the psoriasis pathogenesis. Recent studies 

demonstrated that UPR induced proteins BiP/GRP78 and HRD1, which are normally 

induced during keratinocyte differentiation, were poorly expressed in lesional epidermis, 

suggesting that impaired activation of the UPR in psoriasis KCs might contribute to 

abnormal epidermal keratinocyte differentiation [45]. However, how ER stress contributes to 

the pathophysiology of psoriasis remains unknown.

Rosacea

Rosacea is a chronic inflammatory skin disease characterized by transient or persistent 

erythema, papules and pustules, and telangiectasia on the facial skin. Facial flushing, 

burning, or tingling sensations are frequent in affected individuals, especially with exposure 

to various substances including cosmetics [3]. The pathophysiology of rosacea is diverse, 

while aberrant innate immune responses and neurovascular dysregulation are evident [53]. 

Increased expression of both cathelicidin antimicrobial peptide and the pattern recognition 

receptor, toll-like receptor 2 (TLR2) occurs in rosacea keratinocytes [54]. TLR2 activation 

by various triggering factors such as ultraviolet (UV), demodex and other microbes enhances 

the production of a serine protease, kallikrein 5 (KLK5), which cleaves cathelicidin to 

LL-37 and smaller peptides, thereby triggering pro-inflammatory events and angiogenesis 

[54]. ER stress by several inducers such as thapsigargin, tunicamycin, and dithiothreitol has 

been shown to increase the expression of TLR2 via transcription factor ATF4 signaling 

pathway and Ligand-responsiveness of TLR2 in epithelial cells [55]. Although further 

studies are needed to confirm that ER stress-induced UPR signaling is responsible for the 

upregulation of TLR2 in the lesional skin of rosacea, it can be postulated that ER stress 

plays a role in rosacea via upregulating TLR2 and triggering a TLR2-KLK5-LL37 

inflammatory cascade (Fig. 3) [55-57]. Enhanced ER stress also can promote TLR2 

signaling in neurons, which could trigger neurogenic inflammation [57]. Moreover, ER 

stress directly upregulates cathelicidin, the precursor of LL-37, via sphingosine-1-phosphate 

(S1P)-NF-κB-C/EBPα-dependent pathway [36]. Vitamin D is an important regulator of 

cathelicidin expression, but a recent study demonstrated that serum vitamin D is lower in 

patients with rosacea, although serum cathelicidin is higher than that of the controls, 

suggesting that in rosacea, ER stress is essential for production of cathelicidin [58].

In addition, various trigger factors for rosacea such as UV exposure, skin irritants that 

perturbate skin barrier, heat, and some foods, induce ER stress in keratinocytes. ER stress 

likely contributes to the aberrant innate immune responses and neurovascular dysregulation 

in rosacea pathogenesis, and inhibition of ER stress responses may provide a potential 

therapeutic strategy in rosacea.

Vitiligo

Vitiligo is a melanocyte-specific autoimmune disease of the skin affecting melanocytes that 

leads to depigmentation in the affected area of skin, mucosa, and hair. Recent study shows 

that IFNγ-induced chemokines and cytotoxic CD8 T cells play a key role in the autoimmune 
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responses in vitiligo [5]. Melanocytes are constantly exposed to environmental factors, such 

as UV exposure and certain chemicals; e.g., phenolic and catecholic chemicals, that induce 

oxidative stress [5]. In addition, it has been suggested that melanocytes from vitiligo patients 

have intrinsic defects that reduce the capacity to manage cellular stress, resulting in 

increases in ROS production and UPR induction, which in turn activate innate inflammation 

[5, 59]. Genetic association studies of XBP1 SNPs in patients suggest a role of ER stress in 

vitiligo [60]. These findings illuminate a possible role of ER stress-UPR signaling in 

melanocytes in the pathogenesis of vitiligo.

Pemphigus

Pemphigus is an autoimmune mucocutaneous blistering disease caused by autoantibodies 

against desmosomal cadherins, desmoglein (Dsg) 1 and Dsg3, which induce loss of cell-to-

cell adhesion (acantholysis) and intraepidermal blisters [61]. The activation of cellular 

signaling pathways including p38 mitogen activated protein kinase (p38 MAPK) have been 

suggested as pathomechanisms of autoantibodies-induced acantholysis [62]. Recently, 

emerging evidence suggests the possible role of ER stress in the pathophysiology of 

pemphigus [63-65], i.e., 1) PERK is activated in keratinocytes exposed to pemphigus 

vulgaris serum by non-IgG serum factors, thereby eliciting the reduction of metabolic 

activity and cell viability in keratinocytes, and these changes were almost absent in PERK-

deficient cells [63], and 2). anti-Dsg1 autoantibodies specifically induce ER stress marker 

CHOP expression [64]. Interestingly, MAPK signaling can also drive ER stress, and ER 

stress is known to induce stress kinases such as p38 MAPK, indicating that activation of 

PERK-CHOP pathway can be a novel signaling mechanism of pemphigus acantholysis via 

its acting as a positive regulator of p38 MAPK pathway and inducing apoptosis [65].

Graft versus Host Disease

GvHD is a fatal complication following allogeneic hematopoietic stem cell transplantation 

in which immune cells from donor recognize the host as foreign, leading to adaptive 

immune responses and tissue damage. There are two clinical forms of GvHD, acute and 

chronic GvHD, which differ in their pathophysiology [66, 67]. Donor T cells are the primary 

immunocompetent cells that induce both acute and chronic form of GvHD, but in chronic 

GvHD, B cell signaling pathways are persistently activated and play an important role in 

pathophysiology by the production of antibodies to HY and nuclear antigens that can cause 

tissue damage [68]. Inhibition of B cell signaling was reported to reverse tissue injury in 

murine models of chronic GvHD [68]. ER stress is important in B cell function and 

autoimmunity [69]. Recently, conditioned knockdown of XBP-1 in B cells was shown to 

prevent chronic GvHD and to preserve the graft-versus-leukemia in chronic GvHD mice 

model [70]. These findings suggest a possibility that IRE-1α/XBP-1 pathway can be a new 

therapeutic target of chronic GvHD.

Hypopigmentation of tuberous sclerosis complex

Tuberous sclerosis complex (TSC) is a genetic disease caused by mutations in the TSC1 and 

TSC2 tumor suppressor genes resulting in hyperactivation of the mammalian target of 

rapamycin (mTOR) signaling pathway [71]. The mTOR is a central regulator of cellular 

proliferation and metabolic homoeostasis; therefore, hyperactivation of mTORC1 signaling 
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is the key mechanism of hamartomas occurring in multiple organ systems [71]. Cutaneous 

manifestations including facial angiofibromas or forehead plaque, nontraumatic ungual or 

periungual fibroma, hypomelanotic macules, and shagreen patches are the major diagnosis 

criteria of TSC. Among them, angiofibromas, ungulal or periungual fibroma, and shagreen 

patches are connective tissue hamartomas related to mtoc1 overactivation, however, the 

exact contribution of mTORC1 signaling to cutaneous hypopigmentation is not fully 

understood. A recent study demonstrated that constitutive hyperactivation of mTORC1 by 

conditional TSC2-knockout in melanocytes induces ER damage and enhances ER stress 

markers in melanocytes, which in turn, reduce skin pigmentation in mice by showing that 

alleviation of ER stress partially reversed the reduced pigmentation in these mice [72]. 

These findings suggest that ER stress-induced UPR is involved in the mTORC1 signaling 

mediated regulation of cutaneous pigmentation and hypopigmentation in TSC.

Melanoma

Recent studies show an involvement of ER stress in tumorigenesis. Various physiologic and 

pathological stimuli causing ER stress, such as hypoxia, hypoglycemia, genome instability, 

and cytotoxic compound administration, occur in the uncontrolled proliferation of cancer 

cells [7]. Cellular adaptation to ER stress is regarded as cancer cell survival strategy, by 

which the cells escape from apoptosis and host anti-tumor immune systems [73]. ER stress 

is often evident in melanoma [74]. The high expression of GRP78/BiP, which increases in 

ER-stressed cells, correlates with melanoma malignancy [75]. ER stress-induced autophagy 

is a potential pro-survival mechanism that contributes to melanoma progression and a 

protective mechanism of melanoma cells to overcome BRAF inhibitor resistance [6, 76]. 

This evidence suggests that targeting adaptation to ER stress can be a potential therapeutic 

strategy for melanoma. In addition, recently, forkhead family transcription factor (FOXO), 

which is an important transcriptional regulator of tumor growth and progression, has been 

shown to interact with ER stress and UPR signals, including PERK and IRE-1 pathways [77, 

78]. It has been demonstrated that FOXO activity is controlled in melanoma cells through 

PI3K/Akt activation, TRIB2 (tribbles homolog 2) and microRNA and is involved in the 

proliferation and invasion of melanoma, and suppression of FOXO3 promotes survival and 

metastasis of melanoma cells [79-81]. Taken together, these findings suggest that the 

inhibition of ER-stress/UPR signaling and its FOXO link can have therapeutic potentials in 

melanoma treatment.

Conclusion

The ER is a multifunctional signaling organelle that regulates a variety of biological 

processes; e.g., protein folding and Ca2+ signaling, through evolutionary-conserved 

signaling pathways, termed the UPR. Previous studies provide important evidence of how 

the UPR pathway can have a “Yin-Yang” role in cells in response to various ER stress levels 

triggered by diverse conditions. As we discussed in this review, physiological ER stress is 

required for the maintenance of normal biological functions in skin, including KC 

differentiation, a vital process in competent skin barrier formation. In contrast, excessive ER 

stress is involved in the pathogenesis of certain skin diseases; i.e., Darier’s disease, rosacea, 

vitiligo, and melanoma (Table 1). Because disease phenotype and symptoms caused by 
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dissimilar conditions are expressed differently, regulation of ER stress could be a potent 

therapeutic strategy for the treatment of a number of skin diseases in which various 

pathomechanisms are involved. Moreover, management of ER stress can reduce the risk of 

developing certain health conditions, including aging. To apply strategies that target ER 

stress and the UPR pathway to the treatment of these diseases, a comprehensive 

understanding of what the UPR pathway is associated with in the etiology of each disease, 

and how it contributes to each disease pathomechanism at the molecular level is needed. 

Moreover, 1) involvement of the intensity, type, and duration of ER stress in epidermal 

barrier homeostasis; and 2) the underlying pathomechanism of skin disease associated with 

ER stress are still unknown.
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Fig. 1. The three branches of the unfolded protein response (UPR).
In unstressed conditions, stress sensor proteins activating transcription factor (ATF) 6, 

inositol-requiring enzyme (IRE1) α, and RNA-dependent protein kinase-like ER-resident 

kinase (PERK), representing the three branches of the UPR, are associated with the folding 

chaperone glucose regulated protein/binding immunoglobulin protein (GRP78/BiP) in the 

ER. Accumulation of unfolded/misfolded proteins within the ER lumen causes GRP78/BiP 

disassociation from these three sensor proteins, leading to UPR activation. Each pathway 

uses a different mechanism of signal transduction. Activated IRE1α mediates 

unconventional splicing of X-box binding protein (XBP) 1 to produce spliced, active 

isoform of XBP1. IRE1α recruits TNF receptor associated factor (TRAF) 2 to activate the 

downstream signal mediators, NF-κB/JNK. IRE1α-mediated activations of XBP1 and 

TRAF2/NF-κB/JNK regulate UPR target genes associated with lipid metabolism, immune, 

inflammatory response, and differentiation, as well as structural/ functional expansion of ER 

and ER-associated protein degradation (ERAD). In addition, IRE1α can reduce the ER 

protein folding load by the IRE1-dependent decay of mRNA (RIDD) causing degradation of 

ER membrane-bound mRNAs. Activated PERK recruits and phosphorylates eukaryotic 

initiation factor (eIF2) α reduce global protein synthesis and thereby reduce protein folding 

load in ER-stressed cells. Paradoxically, however, PERK/eIF2α-translation of ATF4 

increases certain UPR gene transcriptions, including CCAAT-enhancer-binding protein 

Park et al. Page 17

FEBS J. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



homologous protein (CHOP). Lastly, activated ATF6 is exported to the Golgi apparatus 

where it is cleaved by the Golgi-resident proteases SP1 and SP2 to produce the functional 

fragment of ATF6. The functional ATF6 is then translocated to the nucleus where it 

transactivates UPR genes associated with ER homeostasis.
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Fig. 2. Role of ER stress in Darier’s disease.
In Darier’s disease, mutations in the ATP2A2 gene, which encodes the SERCA2, cause 

impaired transport of calcium from cytosol to ER, thereby leading to chronic ER stress in 

keratinocytes. ER calcium is an important regulator of the reorganization of adherens 

junctions and desmosomes. Defective ER calcium homeostasis in keratinocytes of Darier’s 

disease may contribute to abnormal cell-to-cell adhesion via defective reorganization of 

junctional components, causing acantholysis. In addition, chronic ER stress triggers the 

disproportionate activation of the apoptotic component of the UPR. PERK-dependent 

apoptotic signaling can contribute to the non-physiologic and premature keratinocyte 

apoptosis which can be observed as dyskeratotic keratinocytes (“corp ronds”) in Darier’s 

disease. Taken together, ER stress is implicated in the pathogenesis of Darier’s disease 

characterized histologically by acantholytic dyskeratosis.
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Fig. 3. Role of ER stress in Rosacea.
Rosacea is a chronic inflammatory condition, in which both innate and adaptive immune 

responses are activated by multiple environmental factors. Many triggering factors of 

rosacea can induce ER stress and UPR signaling pathways in keratinocytes. ATF4-mediated 

signaling induces TLR2 expression and TLR2-mediated innate immune responses. 

Subsequently, TLR2 increases KLK5 expression in keratinocytes. ER stress can also induce 

cathelicidin production by S1P signaling pathway in keratinocytes. Excess cathelicidin and 

their proteolytic processing by KLK5 play a central role in the innate immune activation of 

rosacea.
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Table 1.

ER stress and skin disorders

Disease Possible mechanism of ER stress Possible implication of ER stress in the
disease pathomechanism

Darier disease Chronic depletion of ER calcium store due to 
mutations in the gene encoding SERCA2 causes 
constitutive ER stress in keratinocytes [31]

• Abnormal trafficking of junctional 
components implicates in the acantholysis [30, 
31]
• SERCA2-induced activation of the pro-
apoptotic branches of the UPR implicates in the 
dyskeratosis [46]

Erythrokeratoderma variabilis Mutant Connexin 31 with defective trafficking 
causes UPR in keratinocytes [4, 32]

Cell death, abnormal keratinocyte differentiation 
and hyperproliferation [32]

Keratosis linearis with ichthyosis 
congenita and sclerosing 
keratoderma syndrome

POMP (proteasome maturation protein) gene 
mutations proteasome insufficiency induces 
persistent elevated ER stress in keratinocytes [11]

Abnormal terminal differentiation [11]

Ichthyosis follicularis, alopecia, 
and photophobia (IFAP) syndrome

Mutated MBTPS2 (a membrane-embedded zinc 
metalloprotease)-induced impairment in the 
cleavage of ATF6 induces UPR in keratinocytes 
[34, 35]

Abnormal keratinization [34, 35]

Psoriasis Undefined Abnormal epidermal keratinocyte differentiation 
[2]

Rosacea Various triggering factors of rosacea such as UV 
exposure, skin irritants, heat, and some foods 
induce ER stress in keratinocytes [38, 39]

Upregulation of TLR2 which triggers TLR2-
KLK5-LL37 inflammatory cascade [37-39]

Vitiligo Environmental factors which induce oxidative 
stress such as UV exposure and certain chemicals 
can induce UPR in melanocytes [5, 40, 41]

Activation of innate inflammation which triggers 
autoimmunity targeting melanocytes [5, 40, 41]

Melanoma Hypoxia, hypoglycemia, genome instability,and 
cytotoxic compounds [7, 42]

• Cellular adaptation to ER stress can be the 
survival strategies of melanoma cells [6]
• ER stress-induced autophagy can be a pro-
survival mechanism of melanoma cells to 
overcome BRAF inhibitor resistance [45]
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