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Mutant p53 Sequestration of the MDM2 Acidic Domain

Inhibits E3 Ligase Activity
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ABSTRACT Missense p53 mutants often accumulate in tumors and drive progres-
sion through gain of function. MDM2 efficiently degrades wild-type p53 but fails to
degrade mutant p53 in tumor cells. Previous studies revealed that mutant p53 inhib-
its MDM2 autoubiquitination, suggesting that the interaction inhibits MDM2 E3 ac-
tivity. Recent work showed that MDM2 E3 activity is stimulated by intramolecular in-
teraction between the RING and acidic domains. Here, we show that in the mutant
p53-MDM2 complex, the mutant p53 core domain binds to the MDM2 acidic do-
main with significantly higher avidity than wild-type p53. The mutant p53-MDM2
complex is deficient in catalyzing ubiquitin release from the activated E2 conjugat-
ing enzyme. An MDM2 construct with extra copies of the acidic domain is resistant
to inhibition by mutant p53 and efficiently promotes mutant p53 ubiquitination and
degradation. The results suggest that mutant p53 interferes with the intramolecular
autoactivation mechanism of MDM2, contributing to reduced ubiquitination and in-
creased accumulation in tumor cells.
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he p53 pathway is inactivated in the majority of human tumors. More than 50% of

human tumors express p53 with missense mutations (1). Tumors retaining wild-
type p53 often overexpress MDM2 and downregulate the expression of ARF, resulting
in functional inactivation of p53. The majority of p53 mutations are missense substi-
tutions in the DNA binding domain (core domain) that disrupt the p53-DNA interface
(contact mutant) or cause misfolding (conformational mutant) (2). A unique feature of
P53 mutants is their significant accumulation in tumor cells (3). Wild-type p53 is
ubiquitinated by the E3 ligase MDM2 and rapidly degraded by the proteasome. DNA
damage and various stress signals induce stabilization of wild-type p53, resulting in cell
cycle arrest or apoptosis (4). In contrast, the turnover of mutant p53 in tumor cells is
very slow, resembling that of wild-type p53 under stress. The accumulation of mutant
p53 is thought to facilitate tumor development by promoting cell survival and invasion
(5-7). This gain-of-function phenotype may involve interference in gene expression
through binding to other transcription factors, such as p63, p73, NF-Y, and ETS (8, 9).
Mice expressing mutant p53 have increased frequency of tumor metastasis compared
to that in mice without p53, providing evidence of mutant p53 gain of function (6, 7).

Given the strong evidence of transforming activities of mutant p53, there is signif-
icant interest in targeting mutant p53 for cancer treatment. Knockdown of mutant p53
in tumor cell lines reduces their viability and invasive potential, suggesting that
elimination of mutant p53 may have therapeutic benefits (10-12). Mutant p53s stably
associate with heat shock proteins like hsp70 and hsp90 (13, 14). Misfolding of the
mutated DNA binding core domain exposes hydrophobic regions, which may be
recognized by molecular chaperones as denatured proteins. Previous studies showed
that inhibitors of hsp90, such as geldanamycin, promoted mutant p53 degradation (15).
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Recent work showed that inhibition of hsp90 acetylation using histone deacetylase
(HDACQ) inhibitors promoted degradation of mutant p53 and conferred selective toxicity
on tumor cells expressing mutant p53 (16, 17). Several other studies also described the
identification of compounds that caused mutant p53 downregulation through different
mechanisms (18, 19).

Numerous stress signals have been shown to cause wild-type p53 accumulation, mainly
by blocking MDM2-mediated ubiquitination of p53. MDM2 promotes p53 degradation by
forming a stable complex through N-terminal domains. The MDM2 C-terminal RING domain
recruits ubiquitin-conjugating enzyme E2 that covalently modifies p53 lysine residues (20,
21). Phosphorylation of the p53 N terminus after DNA damage reduces MDM2 binding and
contributes to p53 activation (22, 23). DNA damage also induces ATM-dependent phos-
phorylation of MDM2, which inhibits RING domain dimerization and p53 polyubiquitination
(24-26). Oncogene activation induces the expression of ARF (alternative reading frame
protein), which binds to MDM2 and inhibits p53 ubiquitination (27). Inhibition of nucleolar
rDNA transcription promotes the release of ribosomal protein L11, which also binds to
MDM2 and stabilizes p53 (28, 29). However, there is no evidence that these mechanisms are
the main causes of mutant p53 stabilization in tumor cells.

We previously showed that mutant p53 overexpression caused MDM2 stabilization,
suggesting that the MDM2 E3 function was inactivated after binding to mutant p53
(30). Constitutive binding between the misfolded mutant p53 and hsp90 appeared to
be important for interference in MDM2 activity, since the hsp90 inhibitor geldanamycin
promoted the degradation of mutant p53 and MDM2 (31). Recent studies showed that
both MDM2 and another E3 ligase (CHIP) contributed to the degradation of mutant p53
upon hsp90 inhibition (32, 33). The mechanism of MDM2 inactivation by mutant p53
remained unresolved. Interestingly, mouse knock-in experiments revealed that mutant
p53 was rapidly degraded by MDM2 in most (but not all) normal tissues and that it
accumulated significantly only in tumor cells (34, 35). Therefore, unknown changes
associated with malignant transformation facilitate the stabilization of mutant p53.
Alterations in the molecular chaperones in tumor cells were suggested to promote
mutant p53 accumulation (16).

Studies of wild-type p53 ubiquitination by MDM2 suggested that in addition to the
p53-binding and RING domains, the central acidic domain (AD) of MDM2 (residues 220
to 300) was also critical for ubiquitination of p53 (36, 37). A small region of the MDM2
AD (residues 230 to 260) participates in an intramolecular interaction with the RING
domain and stimulates the E3 ligase activity (38). The AD has features of a partially
unstructured region that interacts with MDM2 regulators, such as ribosomal proteins
and ARF (28, 39). The MDM2 AD has been shown to bind weakly to the p53 core
domain (40-44). This interaction induces conformational change of wild-type p53 and
exposes the Pab240 epitope, which is a feature of mutant p53. Therefore, it is possible
that mutant p53 with a misfolded core domain has high affinity for binding MDM2 AD
and interferes with its role in activating RING-mediated ubiquitination.

In this report, we investigate this hypothesis and present evidence that the mutant
p53 core domain engaged in stable interaction with the MDM2 AD. The mutant
p53-MDM2 complex was defective in promoting ubiquitin release from activated E2,
consistent with loss of E3 ligase activity. MDM2 with extra copies of AD was resistant
to inhibition by mutant p53 and efficiently promoted mutant p53 ubiquitination and
degradation, suggesting that mutant p53 blocked MDM2 autoactivation. The results
provide new insight on the mechanism of mutant p53 accumulation in tumors.

RESULTS

Mutant p53 inhibits MDM2 E3 ligase activity. A previous study showed that
coexpression of mutant p53 and MDM2 caused MDM2 stabilization and inhibited
MDM2 self-ubiquitination (30). This observation was reproduced in a cotransfection
experiment in which a panel of p53 mutants (conformation mutants with mutations
R175H [a change of R to H at position 175] and G245S and contact mutants with
mutations R248Q, R273H, and D281G) induced accumulation of MDM2 after coexpres-
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FIG 1 Mutant p53 inhibits MDM2 E3 ligase activity. (a) MDM2 was cotransfected with p53 mutants in H1299 cells for 48 h.
Protein expression was detected by Western blotting. *, the G245S mutant contained N-terminal FLAG tag. (b) MDM2 was
cotransfected with p53 mutants and Hiss-ubiquitin in H1299 cells for 48 h. MDM2 self-ubiquitination was analyzed by
Ni2*-NTA pulldown and Western blotting. (c) Dose-dependent inhibition of MDM2 self-ubiquitination by mutant p53. (d)
MDM?2 self-ubiquitination was abrogated by point mutation (H457S) or deletion of the RING domain. (¢€) MDM2
ubiquitination of MDMX was inhibited by mutant p53. (f) Purified MDM2-p53 or MDM2-R175H mutant complex was
incubated with charged E2. The release of ubiquitin from E2 was detected by Western blotting.

sion in p53-null H1299 cells (Fig. 1a). In an in vivo ubiquitination assay, coexpression of
mutant p53 inhibited MDM2 self-ubiquitination in a dose-dependent manner (Fig. 1b
and ¢), suggesting that MDM2 ubiquitin E3 ligase activity was inhibited. MDM2 ubiquiti-
nation in vivo was abrogated by point mutation or deletion of the RING, suggesting the
assay detected self-ubiquitination rather than the activity of another E3 ligase (Fig. 1d).
MDM2 is an E3 ligase for MDMX. The ability of MDM2 to promote MDMX ubiquitination was
also inhibited by mutant p53 (Fig. 1e).

Ubiquitin E3 ligases recruit charged E2 to the proximity of substrates for ubiquitin
transfer and also promote the release of activated ubiquitin from E2 to catalyze the
transfer reaction (45). To test whether MDM2 in complex with mutant p53 has catalytic
activity in promoting ubiquitin release, p53-MDM2 and R175H mutant-MDM2 com-
plexes immunopurified from cotransfected cells were incubated with E2 charged with
activated ubiquitin (Ub~S-UbcH5c¢). Incubation of Ub~S-UbcH5¢ with the p53-MDM2
complex resulted in time-dependent release of ubiquitin from the conjugate, whereas
the R175H mutant-MDM2 complex was largely inactive for the ubiquitin release func-
tion (Fig. 1f), suggesting that MDM2 lost E3 activity when bound to mutant p53.

A protease-cleavable MDM2 protein for detecting domain interactions. The
MDM2 acidic domain (AD) and RING domain engage in intramolecular interaction that
stimulates the E3 activity (38). A minimal acidic domain (mAD) sequence of MDM2
(residues 230 to 260) is critical for this function. The MDM2 AD also interacts with the
wild-type p53 core domain and induces a mutant-like conformational change in p53
(43). We hypothesized that the mutant p53 core domain in its default misfolded state
may bind MDM2 AD with higher affinity and inhibit MDM2 E3 activity.

To analyze MDM2-mutant p53 domain interactions in a full-length MDM2-p53 complex,
MDM2 was modified by inserting 3 PreScission protease cleavage sites and epitope tags
into predicted disordered regions (Fig. 2a, MDM2GP; details in Materials and Methods).
Cleavage of MDM2GP with PreScission produced fragments with epitope tags. A longer
SQ-RING fragment (SQ designates the region with multiple ATM phosphorylation sites
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FIG 2 Construction of a cleavable MDM2 protein. (a) MDM2GP structure. PreScission cleavage site and epitope tags were inserted after residues
171, 332, and 422 of MDM2. (b, c) MDM2GP and MDM2 were cotransfected with p53 (b) or MDMX (c) in H1299 cells. The degradation of p53 and
MDMX by MDM2 or MDM2GP was analyzed by Western blotting. (d) MDM2GP was immobilized on beads using anti-FLAG antibody and cleaved
with PreScission for 1h. SQ-RING and RING fragment dissociation from the immobilized AD was detected by HA Western blotting. IP,
immunoprecipitation; Sup, supernatant. (€) MDM2GP was immobilized using HA antibody and cleaved with PreScission. AD fragment dissociation
from the immobilized RING domain was detected by FLAG Western blotting. (f) MDM2GP was immobilized using anti-4B2 antibody and cleaved
with PreScission. AD and RING fragment dissociation from the immobilized p53BD was detected by FLAG and HA Western blotting. (g) Model of
intramolecular interaction between MDM2 AD and RING domain. SQ designates the region with multiple ATM phosphorylation sites (residues 386
to 429).

[residues 386 to 429]) was also produced due to incomplete cleavage between the SQ and
RING regions. MDM2GP retained the ability to degrade p53 and MDMX in a cotransfection
assay (Fig. 2b and ), suggesting that the modifications did not affect its function.

A previous study suggested that MDM2 AD and RING engage in intramolecular
binding (Fig. 2g) (38). This interaction was confirmed using MDM2GP in a fragment
release assay. Immobilization of MDM2GP by the FLAG epitope (located in the AD
fragment) showed slow release of the RING and SQ-RING fragments after cleavage (Fig.
2d). Immobilization of the RING by the hemagglutinin (HA) epitope also resulted in slow
release of AD (Fig. 2e). In contrast, immobilization using the N-terminal antibody 4B2
showed rapid release of AD and RING, suggesting that the MDM2 N terminus (p53
binding domain [p53BD]) did not form a stable intramolecular complex with the AD or
RING (Fig. 2f).

Increased binding of mutant p53 to MDM2 AD and RING domains. To examine
the domain interactions with p53, the p53/MDM2GP complex produced in H1299 cells
was immobilized on beads using the anti-p53 antibody Pab421, followed by PreScission
cleavage (Fig. 3a). The release of MDM2 fragments into the supernatant was analyzed.
The MDM2 AD showed weak association with wild-type p53 after cleavage, since most
of the AD fragment was released into the supernatant (Fig. 3b, top left). The RING and
SQ-RING fragments showed moderate binding to wild-type p53 (Fig. 3b). The p53BD
fragment was not detectable because it comigrated with a background band. Interest-
ingly, the rates of release of AD, RING, and SQ-RING fragments from the R175H mutant
complex were significantly slower than their rates of release from the wild-type p53
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FIG 3 Increased binding of mutant p53 to MDM2 AD and RING domains. (a) Diagram of proteolytic fragment
release (PFR) assay for detecting intermolecular interactions. MDM2GP-p53 complex from transfected H1299 cells
was immobilized using anti-p53 antibody Pab421 conjugated to protein A beads. MDM2GP was cleaved by
PreScission on the beads, and the release of MDM2 fragments was detected by Western blotting. (b) Comparison
of MDM2 domain interactions with wild-type (Wt) and mutant p53. Wild-type p53 or R175H mutant was
cotransfected with MDM2GP in H1299. MDM2GP-p53 complex was immobilized by Pab421 beads and cleaved by
PreScission. MDM2 fragments that remained bound to the beads or dissociated into the supernatant were analyzed
by Western blotting (WB). (c) Comparison of MDM2 domain interactions with wild-type and additional p53 mutants
using the fragment release assay.

complex (Fig. 3b, right). This result suggests that the R175H mutant has stronger
binding to the MDM2 AD fragment (residues 171 to 332) and RING domain (residues
422 to 491) than does wild-type p53. Two contact mutants (the R273H and D281G
mutants) also showed increased binding to the MDM2 AD and RING, although this was
less pronounced than for the R175H conformational mutant (Fig. 3c). The R248Q
contact mutant had the weakest effect. The detection of strong RING binding by the
R175H mutant in the fragment release assay was consistent with a previous coimmu-
noprecipitation (co-IP) analysis showing that MDM2 bound the R175H mutant differ-
ently than wild-type p53, with the RING contributing significantly to the R175H
mutant’s binding (33).

A minimal region of MDM2 AD (mAD [residues 230 to 260]) is important for
stimulating the RING domain E3 ligase activity. To further test whether mutant p53
binds to the MDM2 mAD, a green fluorescent protein (GFP)-mAD fusion protein was
coexpressed with p53 in H1299 cells to compare binding efficiencies by co-IP. The result
showed that most contact and conformational mutants coprecipitated GFP-mAD with
higher efficiency than wild-type p53 (Fig. 4a). In contrast, the SQ-RING fragment (361 to
491) showed no increase or even weaker binding to mutant p53 in the co-IP (Fig. 4b),
suggesting that other MDM2 domains in the full-length complex were needed to
initiate the strong RING binding to mutant p53. Therefore, the strong AD-mutant p53
interaction was detectable using two different assays. The GFP-mAD8GS mutant, in
which 8 hydrophobic residues (comprising W, L, V, and F) in the mAD were replaced by
hydrophilic G or S, showed reduced binding to mutant p53 (Fig. 4c), suggesting that
the mAD interacts with exposed hydrophobic regions of the mutant p53 core domain
(see below) (38).
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FIG 4 Mutant p53 binding to MDM2 AD in coexpression and pulldown assay. (a) The minimal AD (mAD, residues
230 to 260) was expressed as a fusion to Myc-tagged GFP. Myc-GFP-mAD was coexpressed with p53 in H1299 cells.
The interaction of mAD with p53 was analyzed by IP-Western blotting. (b) H1299 cells were transfected with the
MDM2 RING domain fragment (residues 361 to 491) and p53. The interaction of RING and p53 was analyzed by
IP-Western blotting. (c) H1299 cells were transfected with GFP-mAD8GS (containing hydrophobic-to-hydrophilic
substitution of 8 residues) and p53 mutants. The binding between mAD and p53 mutants was analyzed by
IP-Western blotting.

Overall, the results showed that mutant p53 had significantly stronger binding to
the MDM2 AD, and certain mutants, such as the R175H mutant, also bound strongly to
the RING in the full-length complex, suggesting potential mechanisms for inhibiting
MDM?2 E3 ligase activity.

MDM2 AD and RING domains bind to the p53 core domain. To map the region
of p53 involved in binding to MDM2 AD and RING, immobilized glutathione S-transferase
(GST)-p53 deletion constructs were used to capture MDM2GP expressed in H1299 cells. The
GST-p53/MDM2GP complex formed in vitro was cleaved with PreScission and analyzed for
the release of MDM2 fragments. As expected, the MDM2 N terminus (p53BD) bound to all
constructs containing the p53 N terminus (Fig. 5a). The AD bound to the p53 construct
comprising residues 1 to 300 (p53-1-300) but not to p53-1-82 (Fig. 5a), suggesting that
residues 82 to 300 contained the main binding site for the MDM2 AD. The SQ-RING and
RING fragments also bound to all constructs containing the p53 core but lost binding to
p53-1-82, suggesting that the RING also interacts mainly with the p53 core (Fig. 5a). The
results suggest that the p53 core domain is the major binding site for both MDM2 AD and
RING (Fig. 5¢).

Similar analysis using GST-R175H mutant truncation constructs showed that mutant
p53 also used the core domain to interact with MDM2 AD and RING (Fig. 5b). The
GST-R175H mutant construct expressed in Escherichia coli showed stronger binding to
the MDM2 AD than the GST-p53 construct (Fig. 5b), suggesting that the conformational
defect of the R175H mutant was sufficient to increase binding to MDM2 AD. The AD
and RING of MDMX also interact with wild-type p53 and inhibit DNA binding (46). Using
a protease-cleavable MDMXc3 construct similar to MDM2GP in design (PreScission site
inserted after MDMX residues 140, 350, and 429) (47), the interactions of MDMX AD and
RING with wild-type and mutant p53 were compared. The MDMX AD binding to the
GST-R175H mutant construct was only modestly stronger than its binding to GST-p53.
Furthermore, MDMX RING binding was not enhanced by mutation in p53 (data not
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FIG 5 MDM2 AD and RING domains bind to p53 core domain. (a, b) Beads loaded with GST-p53 and GST-R175H deletion mutants were incubated with H1299
lysate containing MDM2GP to form p53/MDM2GP complexes that were then cleaved with PreScission. The release of MDM2 fragments from the p53 complex
was detected by Western blotting. Numbers above lanes show p53 residues present in each construct. (c) Diagram of MDM2 AD and RING binding to p53 core
domain. (d) H1299 cells cotransfected with MDM2GP and p53 were treated with 20 uM 17-AAG for 5 h. MDM2GP-p53 complex was captured on Pab421 beads
and cleaved by PreScission. The release of MDM2 fragments from p53 complex was detected by Western blotting. (e) SJSA cells were cultured in medium
containing 17-AAG (50 uM) for 24 h. The turnover of MDM2 and p53 was analyzed by Western blotting after treatment with cycloheximide (CHX; 100 pg/ml).

shown). Therefore, MDM2 AD and RING binding was significantly enhanced by muta-
tion of the p53 core domain, whereas MDMX AD and RING binding was less affected.

Inhibition of hsp90 stimulates wild-type p53 binding to MDM2 AD. Inhibitors of
hsp90, such as geldanamycin and 17-AAG (tanespimycin [17-N-allylamino-17-demethoxy-
geldanamycin]), promote mutant p53 degradation partly by restoring MDM2-mediated
ubiquitination (31, 32). Therefore, it was of interest to determine whether hsp90 inhibitors
act by disrupting the binding between mutant p53 and MDM2 AD. H1299 cells cotrans-
fected with p53 and MDM2GP were treated with 17-AAG. The p53-MDM2 complex was
immobilized and analyzed for MDM2 fragment release after protease cleavage. Inhibition of
hsp90 did not block the strong binding between the R175H mutant and the MDM2 AD and
RING fragments (Fig. 5d). The result suggests that binding of mutant p53 to MDM2 AD and
RING does not require hsp90. Therefore, hsp90 inhibitor-mediated mutant p53 degradation
does not involve the release of MDM2 AD from p53.

Interestingly, the interactions of wild-type p53 with MDM2 AD and RING were
significantly stimulated by 17-AAG (Fig. 5d). hsp90 participates in the folding and
activation of wild-type p53 (48, 49). The result suggests that inhibition of hsp90
produces misfolded wild-type p53 that binds tightly to MDM2 AD. We found that
treatment of cells expressing wild-type p53 (SJSA cell line) with 17-AAG caused
stabilization of both p53 and MDM2, consistent with the interpretation that a fraction
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of wild-type p53 adopts a mutant-like conformation and becomes stabilized by tightly
binding and inhibiting the MDM2 AD (Fig. 5e).

Mutant p53 interferes with both AD and RING functions. To test whether mutant
p53 inhibits MDM2 RING activity, the MDM2AAD mutant (without the AD) was coex-
pressed with mutant p53. Similar to full-length MDM2, MDM2AAD self-ubiquitination
was strongly inhibited by the R175H mutant (Fig. 6a), suggesting that RING was
inhibited by mutant p53. When the MDM2 RING domain was replaced with the RING
domain from the E3 ligase Praja (MDM2-Praja), the MDM2-Praja self-ubiquitination was
not sensitive to mutant p53 (Fig. 6b), suggesting that mutant p53 specifically inhibits
MDM2 RING activity (20).

The MDM2 AD stimulates RING activity through intramolecular interaction. The
strong binding of mutant p53 core domain to the AD is likely to inhibit its RING-
activating function. We reasoned that MDM2 with extra copies of the AD should be
resistant to inhibition by mutant p53, since one p53 core domain would not be able to
bind and inactivate multiple ADs simultaneously in a complex. To test this hypothesis,
the MDM2-3AD construct, containing 2 extra tandem copies of the AD (residues 221 to
280), was analyzed (Fig. 7a) (38).

In a cotransfection assay, the self-ubiquitination of MDM2-3AD was less sensitive to
inhibition by p53 mutants (Fig. 7b). MDM2-3AD was significantly more efficient than
MDM?2 in ubiquitinating mutant p53 (Fig. 7c). MDM2-3AD also degraded mutant p53
more efficiently than MDM2 in a cotransfection assay (Fig. 7d). When tumor cells
(MDA-231 cell line) expressing endogenous mutant p53 were transfected with MDM2
and MDM2-3AD, only MDM2-3AD was able to significantly degrade endogenous mu-
tant p53 despite having a lower expression level than MDM2 (Fig. 7e). The results
suggest that restoring the AD function of MDM2 may be a potential strategy to degrade
mutant p53 in tumor cells and eliminate gain of function.

DISCUSSION

Previous studies showed that mutant p53 expressed in transformed cells was
resistant to ubiquitination by MDM2 (32). The binding of mutant p53 to MDM2 also
inhibited MDM2 self-ubiquitination and caused MDM2 stabilization, suggesting that
mutant p53 inhibits MDM2 E3 activity (30, 31). Our current analysis of domain inter-
actions between MDM2 and mutant p53 showed that the mutant p53 core domain
bound to the MDM2 AD and RING domains with higher avidity than wild-type p53. The
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FIG 7 MDM2-3AD is resistant to inhibition by mutant p53. (a) The structure of MDM2-3AD. Two extra copies of AD (residues 221 to 280) were inserted. (b) The
effect of mutant p53 on MDM2-3AD self-ubiquitination was detected by coexpressing MDM2-3AD and mutant p53 in H1299 cells. MDM2 ubiquitination was
analyzed by Ni2*-NTA pulldown and MDM2 Western blotting. (c) H1299 cells were cotransfected with MDM2-3AD, p53, and Hiss-ubiquitin. MDM2 and p53
ubiquitination was determined by Ni2*-NTA pulldown and Western blotting for MDM2 and p53. (d) H1299 cells were cotransfected with MDM2-3AD and
p53-R175H. P53 degradation was determined by Western blotting. (e) MDA-MB-231 (R280K) cells were transiently transfected with the indicated plasmids. The

level of endogenous p53 was determined by Western blotting.

results suggest that mutant p53 may interfere with MDM2 E3 ligase function using two
different mechanisms, (i) binding and abrogating the autoactivating effect of the AD
and (ii) binding and inhibiting the RING domain.

At present, the structural details of AD and RING interactions with mutant p53 and
the mechanism of MDM2 E3 ligase inhibition remain unknown. Previous work showed
that the intramolecular interaction between the MDM2 mAD region (amino acids [aa]
230 to 260) and RING significantly enhanced E3 ligase activity (38). Therefore, the strong
binding of the mutant p53 core domain to AD may interfere with the autoactivation
mechanism and suppress RING activity. The mAD sequence is also the ARF binding site
on MDM2, suggesting that mutant p53 and ARF use similar mechanisms to inhibit
MDM2 E3 activity. The presence of multiple domain interactions between MDM2 and
p53 prevented us from determining whether mutant p53 disrupts the intramolecular
AD-RING binding. It should be noted that ARF binding to the MDM2 AD inhibits p53
ubiquitination without disrupting AD-RING interaction (38). Our analysis using MDM2
mutants without the AD showed that mutant p53 also directly inhibited RING domain
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FIG 8 A model of MDM2 inhibition by mutant p53. (a) Wild-type p53 binding to MDM2 is initiated through
N-terminal-specific interaction, followed by weak secondary interactions between the AD and RING with the core
domain. The AD induces mutant-like conformational change in the core and inhibits p53 DNA binding. The weak
AD and RING interactions with the core do not interfere with MDM2 E3 activity and p53 degradation. (b) Mutant
p53 interaction with MDM2 is also initiated by specific N-terminal binding. Subsequently, the exposed hydrophobic
residues of the mutant p53 core domain bind AD and RING with high avidity, blocking the MDM2 E3 activity. These
interactions cooperate with other mechanisms, such as chaperone binding, to inhibit mutant p53 ubiquitination
and degradation.

activity. The significance of this interaction in mutant p53 stabilization is unclear at
present.

What is the structural basis for the strong binding between mutant p53 core and
MDM2 AD? Previous work indicated that the MDM2 AD bound to the wild-type p53
core domain with low affinity and induced the misfolding of p53 to a mutant-like
conformation, suggesting that the AD favored binding to p53 with a mutant confor-
mation (43, 44). The wild-type p53 conformation is thermolabile and is thought to exist
in a dynamic equilibrium between wild-type and mutant conformations (50). MDM2 AD
binding will shift the conformation equilibrium of wild-type p53 toward the mutant, as
reported previously (Fig. 8a). Naturally misfolded mutant p53 core domain is expected
to have high avidity for the MDM2 AD (Fig. 8b). The MDM2 AD has a high degree of
intrinsic disorder and is capable of binding to different partners. The mutant p53 core
domain with exposed hydrophobic sequences may be a favored binding target for the
AD. Such strong binding is a nonspecific by-product of p53 mutations rather than an
evolutionarily fine-tuned function. However, because mutant p53 retains specific bind-
ing to MDM2 through the N terminus, strong AD-core binding and inhibition of MDM2
E3 function occur by default, resulting in the stabilization of most p53 mutants (Fig. 8b).

Our findings provide a new clue to the mechanism of mutant p53 stabilization.
However, its connections to mutant p53 stabilization in transformed cells and degra-
dation by hsp90 inhibitors remain unclear. hsp90 inhibitors disrupt hsp90 binding to
p53 and promote mutant p53 degradation, leading to the conclusion that stable hsp90
binding to mutant p53 inhibits MDM2 E3 activity (31, 32). However, hsp90 inhibitors
may also directly affect MDM2 activity to promote mutant p53 degradation (51). Our
results showed that hsp90 inhibition did not affect the binding of AD to mutant p53,
ruling out the AD-core interaction as a target of hsp90 inhibitors. MDM2 has been
reported to ubiquitinate other proteins in addition to p53 and MDMX. Our results
suggest that mutant p53 may affect the ubiquitination of other MDM2 substrates,
which may contribute to gain-of-function effects.
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Mouse models showed that mutant p53 accumulated only in tumors and was
degraded as rapidly as wild-type p53 in normal tissues (7, 34). However, recent analysis
using more sensitive antibodies detected mutant p53 accumulation in the proliferating
cells of intestinal crypts, suggesting that stabilization can occur to some degree in
nontransformed cells (35). The abnormal mutant p53 interaction with MDM2 AD and
RING may be responsible for the stabilization in normal cells. The mechanisms of
mutant p53 stabilization in tumor cells remain undefined but may include multiple
pathways, such as oncogene activation, increased ARF expression, chronic DNA dam-
age signaling, and changed chaperone activities (16, 52). For technical reasons, our
analysis of mutant p53 interaction with MDM2 AD and RING used tumor cells in order
to obtain sufficient protein levels. Whether the interactions are different in transformed
and normal cells remains to be determined, and the answer may provide further insight
into the phenomenon of tumor cell-specific accumulation of mutant p53.

hsp90 inhibition achieves only partial degradation of mutant p53 and does not
affect binding to MDM2 AD, indicating that targeting hsp90 alone does not fully restore
MDM2 function. Our current findings suggest potential new targets for stimulating
mutant p53 degradation in tumor cells. Proof-of-concept experiments using the MDM2-
3AD construct showed that extra copies of the AD increased resistance to inhibition by
mutant p53 and enhanced the ubiquitination/degradation of mutant p53. The results
suggest that small molecule drugs that disrupt mutant p53-AD interaction may stim-
ulate MDM2 E3 activity. Alternatively, small molecules may be developed that interact
with and activate the RING similarly to the mAD. Such compounds may have thera-
peutic potential against tumors that accumulate gain-of-function mutant p53. There-
fore, it will be informative to determine the structures of the AD-mutant p53 core
domain complex and the AD-RING complex to understand the mechanisms of auto-
activation and mutant p53-mediated inhibition.

MATERIALS AND METHODS

Plasmids, cell lines, and reagents. All MDM2 and p53 constructs used in this study were human
cDNA clones. MDM2 constructs for expression in mammalian cell culture were generated by PCR cloning
and inserted into the pCMV-neo-Bam vector. The MDM2GP sequence contains the sequences GGGGGL
EVLFQGPDYKDDDDKGGGGG, LEVLFQGPEEQKLISEEDL, and GGGGGLEVLFQGPYPYDVPDYAGGGGG in-
serted after MDM2 residues 171, 332, and 422, respectively. MDM2 and p53 constructs for expression in
E. coli were generated by cloning cDNA sequences into the pGEX-2T vector (GE Healthcare Life Sciences).
The human NSCLC cell line H1299 (p53 null), osteosarcoma cell line SJSA (p53 wild type), and human
breast adenocarcinoma cell line MDA-MB-231 (p53 R280K) were purchased from ATCC (Manassas, VA)
and maintained in Dulbecco modified Eagle medium (HyClone) with 10% fetal bovine serum (Sigma).
Cells were cultured at 37°C in an incubator with a humidified atmosphere containing 5% CO,. The HSP90
inhibitor 17-AAG was obtained from Selleck Chemicals (Houston, TX). Cycloheximide was purchased from
Sigma-Aldrich (St. Louis, MO). Anti-MDM2 monoclonal antibodies 4B2, 4B11, and 3G9 and anti-MDMX
monoclonal antibody 8C6 were generated previously (53, 54). Anti-FLAG polyclonal antibody and
anti-Myc polyclonal antibody were purchased from Sigma-Aldrich (St. Louis, MO). Anti-HA polyclonal
antibody and mouse anti-B-actin antibody were obtained from Cell Signaling Technology (Danvers, MA).
Mouse anti-p53 antibody DO1 was purchase from BD Biosciences (San Jose, CA). Anti-GFP polyclonal
antibody was obtained from Santa Cruz Biotechnology (Dallas, TX). Polyethylenimine (PEI) was purchased
from Polysciences (Warrington, PA).

Proteolytic fragment release assay. H1299 cells were transfected with MDM2GP and p53 using the
PEI method. Cells were lysed in immunoprecipitation buffer (150 mM NaCl, 50 mM Tris-HCI [pH 8.0], 0.5%
Nonidet P-40, 2.0 mM NaF, 1.0 mM dithiothreitol [DTT], 10% [vol/vol] glycerol). Cell lysate (~1mg
protein) was incubated with Pab421 conjugated to protein A beads (30 ug packed volume) for 18 h at
4°C. The beads were washed twice with PreScission buffer (150 mM NaCl, 10 mM HEPES pH 7.5, 0.05%
Nonidet P-40, 1.0 mM DTT, 10% glycerol) and suspended in 100 ul of PreScission buffer with PreScission
protease (0.2 ug/ul). After incubation at 4°C for 1 h with shaking, the mixture was centrifuged to separate
the beads (bound material) and supernatant (released material). The beads were washed once briefly
with PreScission buffer to remove the residual supernatant. The beads and supernatant were boiled in
Laemmli sample buffer and subjected to SDS-PAGE for Western blotting to analyze the bound/released
ratio of each fragment using anti-FLAG, anti-Myc, anti-HA, and anti-4B2 antibodies.

Western blotting. To detect proteins by Western blotting, cells were lysed in lysis buffer (50 mM
Tris-HCI [pH 8.0], 150 mM NaCl, 0.5% NP-40, 1 mM phenylmethylsulfonyl fluoride [PMSF], 1X protease
inhibitor cocktail) and centrifuged at 4°C for 10 min at 14,000 X g. The supernatant was boiled in
Laemmli sample buffer for 5min and subjected to SDS-PAGE and Western blotting to detect the
expression of proteins indicated in the figures using the corresponding antibodies. To determine the
half-life of MDM2 and p53 in SJSA cells after 17-AAG (50 uM for 24 h) treatment, cells were incubated
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with 100 ug/ml of cycloheximide. The samples collected at different time points were analyzed by
Western blotting.

GST pulldown and proteolytic fragment release assay. GST-p53 or GST-R175H full-length and

deletion mutants were induced by 0.1 mM isopropyl-1-thio-B-p-galactopyranoside (IPTG) and 150 uM
ZnCl, at 18°C for 20 h. The bacterial pellet from 250 ml of culture was suspended in 10 ml 1X PBS and
sonicated. Triton X-100 (final concentration, 0.5%) was added to the lysate, followed by 30 min of
incubation on ice and 10 min of centrifugation at 10,000 X g. The GST-p53 fusion protein from 0.2 m| of
lysate was captured by glutathione-agarose beads (20-ul packed volume). The loaded beads were
washed with PreScission buffer and incubated with H1299 lysate containing MDM2GP or MDMXc3 at 4°C
for 18 h. The beads were washed twice with PreScission buffer and suspended in 100 ul PreScission
buffer, and PreScission protease was added (0.2 ug/ul). After incubation at 4°C for 1 h with shaking, the
mixture was centrifuged to separate the beads (bound material) and supernatant (released material). The
beads were washed once with PreScission buffer. Beads and supernatant were boiled in Laemmli sample

buffer and subjected to SDS-PAGE for Western blot analysis of MDM2 fragments.
GST pulldown and dissociation assay. Bacterial lysates expressing different GST-p53 fragments or

the GST-R175H mutant construct were incubated with glutathione-agarose beads to capture the fusion
proteins. The loaded beads (20 ul packed volume) were incubated with H1299 cell lysate containing
MDM2 and deletion mutants for 2 h at 4°C. The beads were washed with lysis buffer and incubated in
1 ml lysis buffer for up to 6 h with constant rotation. The beads were recovered and boiled in Laemmli
sample buffer. The fraction of MDM2 remaining on the beads was analyzed by Western blotting.

In vivo ubiquitination assay. H1299 cells were transfected with Hiss,-ubiquitin and plasmids

indicated in the figures using the PEI method. Twenty-four hours after transfection, cells were collected
into two aliquots. One aliquot (10%) served as input. The remaining cells (90%) were used for purification
of Hiss-tagged proteins by Ni2*-nitrilotriacetic acid (NTA) beads. The cell pellet was lysed in buffer
A (6 M guanidinium-HCI, 0.1 M Na,HPO,/NaH,PO,, 0.01 M Tris-HCI, pH 8.0, 5 mM imidazole, 10 mM
B-mercaptoethanol) and incubated with Ni2*-NTA (Qiagen) for 4 h at room temperature. The beads
were washed with buffer A, buffer B (8 M urea, 0.1 M Na,PO,-NaH,PO,, 0.01 M Tris-HCl, pH 8.0, 10 mM
B-mercaptoethanol), buffer C plus (8 M urea, 0.1 M Na,PO,-NaH,PO,, 0.01 M Tris-HCl, pH 6.3, 10 mM
B-mercaptoethanol, 0.2% Triton X-100), and buffer C (8 M urea, 0.1 M Na,PO,-NaH,PO,, 0.01 M Tris-HCl,
pH 6.3, 10 mM B-mercaptoethanol), and beads were boiled in Laemmli sample buffer containing 200 mM
imidazole. The samples were analyzed by Western blotting for ubiquitin-conjugated p53 and MDM2.

Ubiquitin release assay. UbcH5c charged with ubiquitin was produced in a reaction mixture (20 ul)

containing 0.2 ug Hisg-E1, 0.2 ug His,-UbcH5¢, and 2 pg ubiquitin (Biomol) in a buffer containing 10 mM
HEPES (pH 7.5), 100 mM Nacl, 40 uM ATP, and 2 mM MaCl, as previously described (38). The reaction
mixture was incubated for 20 min at room temperature, and 0.04 unit/ul apyrase (Sigma) was added and
the mixture incubated for 10 min at room temperature to deplete ATP. The MDM2-p53 complex or
MDM2-R175H mutant complex was captured from transiently transfected H1299 cells using anti-p53
antibody Pab421 and protein A beads. The beads, loaded with similar amounts of MDM2 in complex with
p53, were added to the reaction mixtures containing ubiquitin-charged UbcH5c. Samples were incubated
for different times at 23°C, and the ubiquitin release reaction was stopped by adding nonreducing
Laemmli sample buffer. Boiled samples were fractionated by SDS-PAGE and blotted with anti-UbcH5
antibody (Boston Biochem).
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