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Abstract

CRISPR-Cas12a/Cpf1, a single RNA-guided endonuclease system, provides a promising tool for genome
engineering. However, only three Cas12a orthologs have been employed for mammalian genome editing, and
the editing efficiency as well as targeting coverage still requires improvements. Here, we harness six novel
Cas12a orthologs for genome editing in human and mouse cells, some of which utilize simple protospacer
adjacent motifs (PAMs) that remarkably increase the targeting range in the genomes. Moreover, we identify
optimized CRISPR RNA (crRNA) scaffolds that can increase the genome editing efficiency of Cas12a.
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Background
Clustered regularly interspaced short palindromic repeats
(CRISPR)-Cas12a/Cpf1 is the type V A CRISPR-Cas (CRIS-
PR-associated proteins) system that has been recently
harnessed for genome editing [1]. Several unique features
make Cas12a distinguished from Cas9, providing a substan-
tial expansion of CRISPR-based genome-editing tools. First,
Cas12a is a single crRNA-guided endonuclease [1], while
Cas9 is guided by a dual-RNA system consisting of a crRNA
and a trans-activating crRNA (tracrRNA) [2]. Second,
Cas12a recognizes a 5′ T-rich protospacer adjacent motif
(PAM) [1], different from the 3′ G-rich PAM utilized by
Cas9 [3, 4]. Third, after cleavage of double-stranded DNAs
(dsDNAs), Cas12a generates staggered ends distal to the
PAM site [1], whereas Cas9 introduces blunt ends within the
PAM-proximal target site [5]. Moreover, RuvC and Nuc do-
mains of Cas12a are responsible for target DNA cleavage [6],
whereas Cas9 uses the RuvC and HNH endonuclease do-
mains to cleave the target DNAs [3]. While these diverse
properties of the CRISPR-Cas12a system provide potential
for the development of versatile tools for genome

engineering [1, 7–11], there are still challenges, including few
currently identified orthologs, limited genomic targeting
coverage, and relatively low editing efficiency [1, 12–15]. To
address these limitations, we aimed to identify novel Cas12a
nucleases with simpler PAM requirements which can in-
crease its targeting range and engineer the crRNA scaffold to
achieve higher efficiencies of genome editing.

Results and discussion
To search for new Cas12a proteins for genome editing,
we first used PSI-BLAST program [16] and identified 21
non-redundant CRISPR-Cas12a loci which have not pre-
viously been employed for genome editing and 4 Cas12a
proteins (BoCas12a, BsCas12a, PbCas12a, and TsCas12a)
recently being characterized during our paper submis-
sion [17] (Additional file 1: Supplementary Methods
and Additional file 2: Figure S1a). The alignment of their
mature crRNA sequences showed that they used 5 highly
conserved crRNA scaffolds in total (scaffolds 1~5, loop re-
gion: UAUU, UGUU, UUUU, UAGU, and UGUGU, re-
spectively) that only had sequence variations in the loop
region (Fig. 1a and Additional file 2: Figure S1b), which is
consistent with the previous report [1]. We synthesized 12
Cas12a genes coding for approximately 1200~1300 amino
acids or less and 3 corresponding crRNA sequences (scaf-
folds 1, 2, and 5) (Additional file 1: Supplementary
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Methods, Additional file 2: Figure S1b, c, Additional file 3:
Table S1, Additional file 4: Table S2, and Additional file 5:
Supplementary Sequences). Then, we purified the Cas12a
proteins expressed in E. coli cells (Additional file 2: Figure
S2a) and incubated them with in vitro-transcribed crRNAs
and dsDNA substrates for in vitro DNA cleavage assay
(Additional file 2: Figure S2b and Additional file 4: Table
S3). The conservation of the crRNA scaffolds suggested
that these Cas12a proteins might also recognize the 5′
T-rich PAM as the previous report indicated [1]. Indeed,
we found that crRNA scaffold 1, 2, or 5 enables Cas12a
proteins to cleave the target DNAs with a 5′-TTTN or
even 5′-TTN PAM in vitro (Additional file 2: Figure S2c).

To further characterize the PAM requirements, we ana-
lyzed the Cas12a cleavage activity on dsDNA substrates
bearing 5′-TTN, 5′-TNN, and 5′-NTN PAMs (Add-
itional file 4: Table S3). We found that ArCas12a,
BsCas12a, and PrCas12a recognized 5′-TTN PAM for
dsDNA cleavage, and HkCas12a recognized a simple
5′-YYN PAM (Y:T or C) (Additional file 2: Figure S2d).
Next, we explored the capability of these Cas12a ortho-

logs to cleave the target genomic sequences in mammalian
cells. The 12 synthesized Cas12a genes fused with 2 nuclear
localization signals (NLSs) at each end were constructed
into mammalian expression vectors for Cas12a expression
in human and mouse cells (Additional file 2: Figure S3a
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Fig. 1 New Cas12a orthologs harnessed to robustly edit mammalian genomes. a Alignment of direct repeats (DRs) from the 25 Cas12a family
proteins. Note that 4 Cas12a bacterial loci contain no DR array. Non-conserved bases in the loop are colored, and the conserved stem duplex is
highlighted in pink. b (Upper) schematic showing the sequence of crRNA targeting the human CD34 gene site 1. (Lower) T7EI analysis of
targeted indel frequencies induced by the 6 Cas12a candidates (ArCas12a, BsCas12a, HkCas12a, LpCas12a, PrCas12a, and PxCas12a) as indicated.
AsCas12a was used as positive control. GFP, an empty backbone vector without Cas12a protein expression. M, DNA marker. c (Upper) schematic
showing the sequence of crRNA targeting the human CD34 gene site 8. (Lower) T7EI assay result indicated that HkCas12a facilitated targeted
indels directed by 5′-TCTN PAM. GFP, an empty backbone vector without Cas12a protein expression. M, DNA marker
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and Additional file 5: Supplementary Sequences). After
transfection, the immunofluorescence staining results
showed clear nuclear compartmentalization of the Cas12a
proteins in mammalian cells (Additional file 2: Figure S3a).
Then, we co-transfected human embryonic kidney 293FT
cells or mouse embryonic stem cells (ESCs) with individual
Cas12a orthologs and crRNAs (scaffold 1) to target
endogenous loci containing the 5′ T-rich PAMs. Results of
T7 endonuclease I (T7EI) assay showed that 6 Cas12a
nucleases (ArCas12a, BsCas12a, HkCas12a, LpCas12a,
PrCas12a, and PxCas12a) could all facilitate genome editing
in both human and mouse genomes with the 5′-TTTN
PAM (Fig. 1b and Additional file 2: Figure S3b) or 5′-TTN
PAM (Additional file 2: Figure S3c). Sanger sequencing
results further confirmed the capacity of these 6 Cas12a
nucleases to introduce insertions or deletions (indels) at
target sites in the mammalian genomes (Additional file 2:
Figure S3d-f). We next focused on exploring the in vivo
PAM requirement of HkCas12a, which owned the simplest
PAM (5′-YYN) in vitro (Additional file 2: Figure S2d). By
targeting the human AAVS1, CD34, and RNF2 loci in
293FT cells (Additional file 4: Table S4), we showed that
HkCas12a induced indels at target sites with the 5′-YTN
and 5′-TYYN PAMs (Additional file 2: Figure S4a, b).
Then, we compared the genomic coverage ability of
HkCas12a with the previously reported AsCas12a [1], by
targeting the endogenous loci containing requisite PAMs in
mammalian genomes. Notably, HkCas12a possessed an ex-
panded genomic coverage capacity than did AsCas12a
(Fig. 1c and Additional file 2: Figure S4c). These data dem-
onstrated that we harnessed new Cas12a nucleases for
mammalian genome editing with their PAMs determined
as 5′-TTN, 5′-YTN, or 5′-TYYN in vivo, which markedly
increases the targeting range of Cas12a nucleases in mam-
malian genomes.
Interestingly, our in vitro DNA cleavage results showed

that the crRNA scaffolds carrying nucleotide (nt) substitu-
tions had variable effects on the cleavage activity of Cas12a
nucleases (Additional file 2: Figure S2c), which is consistent
with the previous report [1]. To test such effects in mam-
malian cells, three naturally existed crRNA scaffolds (scaf-
fold 1, 2, or 5) and two artificial scaffolds (scaffold 6 or 7)
were individually transfected into mouse ESCs with each of
the six functional Cas12a nucleases to target the mouse
MeCP2 gene (Additional file 2: Figure S5a, Additional file 4:
Table S5, and Additional file 5: Supplementary Sequences).
Indel frequency analysis by T7EI assay showed that the
highest cleavage efficiency was achieved by the Cas12a
nuclease with its cognate crRNA scaffold in most cases
(Additional file 2: Figure S5b), consistent with the previous
report [13, 18]. Surprisingly, the Cas12a nuclease with
artificial crRNA scaffolds could also induce high indel
frequency at target sites, such as LpCas12a/crRNA 6 and
PrCas12a/crRNA 7 (Additional file 2: Figure S5b),

suggesting the potential of increasing Cas12a cleavage effi-
ciency by optimizing the loop sequences of crRNA scaf-
folds. To test this hypothesis, we synthesized 256 crRNA
scaffolds bearing all the possible nucleotide substitutions at
the 4-nt loop (Fig. 2a and Additional file 4: Table S5). Next,
we used these crRNA variants with PrCas12a and
BsCas12a, respectively, to target the mouse Nrl locus, and
compared the targeting efficiencies of these crRNA variants
with that of the crRNA scaffold 1. The results showed that
the crRNA scaffold 4n96 (loop region: UAUG) exhibited an
enhanced targeting efficiency compared with the original
scaffold 1 when working together with both PrCas12a and
BsCas12a (Additional file 2: Figure S6a, b). To confirm
these findings, we used 10 crRNA scaffolds with nucleotide
substitutions in a 3-nt loop, 25 crRNA scaffolds with nu-
cleotide substitutions in a 5-nt loop, and 25 crRNA scaf-
folds with a 4-nt loop including the 4n96, to target another
site within the mouse MeCP2 gene locus (Additional file 4:
Table S5). Consistent with the above results, the scaffold
4n96 was identified to exhibit a higher targeting efficiency
compared with other crRNA scaffolds (Additional file 2:
Figure S6c, d). Moreover, we further employed the GFP dis-
ruption assay to analyze the effect of crRNA scaffold 4n96
on the genome cleavage efficiency of Cas12a nucleases. The
crRNA scaffolds 1 and 4n96 were transfected with
PrCas12a and BsCas12a, respectively, to target the inte-
grated GFP reporter. Compared with crRNA scaffold 1, the
scaffold 4n96 substantially increased the Cas12a targeting
efficiency at two sites of the GFP gene (Fig. 2b and
Additional file 2: Figure S7a). Next, we tested the generality
of this enhanced genomic cleavage activity mediated by
scaffold 4n96 by examining more target sites and Cas12a
nucleases. We targeted six independent sites from both hu-
man and mouse genomes by PrCas12a and BsCas12a indi-
vidually. The results showed that compared with the
crRNA scaffold 1, the scaffold 4n96 significantly increased
the cleavage activity of both PrCas12a and BsCas12a at all
these six sites (Fig. 2c and Additional file 2: Figure S7b).
Moreover, the genome cleavage activity of the other three
Cas12a nucleases (ArCas12a, HkCas12a, and PxCas12a)
was increased using the crRNA scaffold 4n96 compared
with using scaffold 1 (Additional file 2: Figure S7c). These
results strongly suggested that the effect of enhanced
Cas12a-mediated genome editing by the scaffold 4n96 was
universal. Taken together, our results demonstrated that the
crRNA scaffold 4n96 carrying nucleotide substitution at the
loop region can markedly increase the Cas12a-mediated
genome editing efficiencies.
We further characterized the targeting efficiency and

specificity of these newly identified Cas12a nucleases.
First, we directly compared the relative targeting activ-
ities of Cas12a and SpCas9, the efficiency of which is
considered as the current gold standard for genome
editing. By performing T7EI analyses of targeted indels
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of endogenous genomic sites, we found that the average
targeting efficiencies of these Cas12a proteins (ArCas12a,
BsCas12a, HkCas12a, and PrCas12a) are lower than
SpCas9, although these Cas12a proteins could achieve
higher targeting efficiencies when directed by crRNA
4n96 than crRNA 1 (Additional file 4: Table S7). Mean-
while, to address the off-targeting risks of Cas12a, we per-
formed off-target predictions using Cas-OFFinder [19]
followed by targeted deep sequencing. The results showed
that both Cas12a (BsCas12a and PrCas12a) and SpCas9
exhibited a low incidence of off-target mutations at the
endogenous DNMT1 site 1 in targeted human 293FT cells
(Additional file 4: Table S8). Moreover, the genome-wide
off-target analysis by whole genome sequencing (WGS)
also showed a low incidence of off-target mutations for
both Cas12a and SpCas9 (Additional file 4: Table S9). All
these data indicated the minimal off-target risks of
Cas12a, which is consistent with previous reports [13, 14].
In this work, we report the identification of six new

Cas12a nucleases for genome editing in mammalian
cells, including one Cas12a ortholog (HkCas12a) recog-
nizing more flexible 5′-YTN and 5′-TYYN PAMs that
can provide broader genome coverage. However, the
precise PAM sequences of these orthologs still need to

be determined in the future using high-throughput ap-
proaches. The non-canonical PAM recognition by
HkCas12a was possibly due to the variation of L642 resi-
due, which was equivalent to K592 of LbCas12a and was
responsible for the non-canonical PAM recognition
(Additional file 2: Figure S8) [20, 21]. As previous
studies indicated, crRNA scaffolds could affect or even
enhance the targeting activities of CRISPR-Cas systems
[1, 12, 13, 18]. Through engineering the nucleotide sub-
stitutions at the loop region, we identify a crRNA scaf-
fold that markedly improves the Cas12a-mediated
genome editing efficiency. The crystal structures of
Cas12a-RNA-DNA complex have shown that the nucle-
otides in the loop region of crRNA scaffold interact with
Cas12a residues [6, 22], indicating nucleotide substitu-
tions in the loop region of crRNA scaffold would affect
the activities of Cas12a-crRNA complex [18]. Further
structural characterization of Cas12a-crRNA-DNA com-
plexes with different crRNA scaffolds will help the eluci-
dation of the exact mechanisms of this improvement in
the future. Collectively, our findings expand the
CRISPR-Cas12a genome editing toolbox and may en-
hance their application in mammalian genome engineer-
ing and human gene therapy.
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Methods
Identify new CRISPR-Cas12a loci
PSI-BLAST program [16] was applied to identify Cas12a
homologs in the NCBI non-redundant protein sequence
database using AsCas12a and LbCas12a protein se-
quences [1]. Cas12a loci not yet harnessed for mamma-
lian genome editing were chosen as candidates for
analysis. CRISPR repeats were identified using CRISPR-
Finder [23].

crRNA scaffold library construction
Paired degenerate primers were synthesized and annealed to
form a duplex with 5′ overhangs (Additional file 4: Table S5).
Then, they were constructed into an U6 promoter-
driven expression vector (Additional file 5: Supple-
mentary Sequences). The scaffold variants were ran-
domly picked out from cultured plates and then
sequenced.

Cell culture, transfection, and fluorescence-activated cell
sorting
Human embryonic kidney cell line 293FT and human
cervical cancer cell line HeLa were cultured in Dulbec-
co’s modified Eagle’s medium (DMEM, Gibco) supple-
mented with 10% fetal bovine serum (FBS, Gibco) and
1% Antibiotic-Antimycotic (Gibco). Mouse embryonic
stem (mES) cell line was maintained in N2B27 medium
plus 2i (Stemgent) and mLIF (Millipore). The N2B27
medium consists of DMEM/F12 (Gibco) and Neurobasal
(Gibco) at a ratio of 1:1 and was supplemented with 1%
N-2 supplement (Gibco), 0.5% B-27 supplement (Gibco),
20 ng/ml BSA (Sigma), 10 μg/ml insulin (Roche), 1%
GlutaMAX (Gibco), 5% knockout serum replacement
(KOSR, Gibco), 0.1% β-mercaptoethanol (Gibco), and
1% Antibiotic-Antimycotic (Gibco). 293FT cells were
transfected using Lipofectamine LTX (Invitrogen) follow-
ing the manufacturer’s recommended protocol. mES cells
were transfected via electroporation using Neon™ transfec-
tion system (Invitrogen) following the manufacturer’s rec-
ommended protocol. For each well of a 24-well plate, a
total of 750 ng plasmids (Cas12a-2AeGFP: crRNA = 2: 1)
was used. Then, 48 h following transfection, GFP-positive
cells were sorted using the MoFlo XDP (Beckman
Coulter).

T7 endonuclease I assay for genome modification
Cells were collected after 48 h post-transfection for gen-
omic DNA extraction. GFP-positive cells sorted by FACS
were lysed directly using Buffer L (Bimake). The gen-
omic region flanking the Cas12a targeting site of each
gene was PCR-amplified (Additional file 4: Table S6),
and products were purified using DNA Clean & Concen-
trator (ZYMO Research) following the manufacturer’s
protocol. A total of ~ 200 ng purified PCR amplicons

was mixed with 1 μl NEBuffer 2 (NEB) and diluted in
ddH2O to 10 μl, then subjected to a re-annealing process
to form a heteroduplex according to our previously re-
ported procedure [24]. After re-annealing, the products
were treated with T7EI (NEB) following recommending
protocol, and 2.5% agarose gels (Takara) were used for
further analysis. Indels were calculated via band inten-
sities based on previously reported method [25].

GFP disruption assay
Human 293FT.eGFP cells harboring a single-copy, inte-
grated AAVS1-eGFP gene were generated by our lab.
These cells were transfected with Cas12a expression
plasmid and crRNA expression plasmid, or Cas12a ex-
pression plasmid and an U6 promoter-driven empty
plasmid as a negative control using Lipofectamine LTX
(Invitrogen). Three days post-transfection, cells were an-
alyzed on the MoFlo XDP (Beckman Coulter). For each
sample, transfections and flow cytometry measurements
were performed in triplicate.
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