Skip to main content
. 2018 Oct 25;103(2):167–175. doi: 10.1136/bjophthalmol-2018-313173

Table 2.

Summary table for the different DL systems in the detection of retinal diseases using OCT

DL systems Year Disease OCT machines Test images CNN AUC Accuracy (%) Sensitivity (%) Specificity (%)
Lee et al 13 32 2017 Exudative AMD Spectralis 20 613 VGG-16 0.928 87.60 84.60 91.50
Trader et al 33 2018 Exudative AMD Spectralis 100 Inception-V3 0.980 100 NA NA
Kermany et al 34 2018 CNV Spectralis 1000 Inception-V3
DMO
Drusen
1. Multiclass comparison 0.999 96.50 97.80 97.40
2. Limited model 0.988 93.40 96.60 94.00
3. Binary model
CNV vs normal 1 100 100 100
DMO vs normal 0.999 98.20 96.80 99.60
Drusen vs normal 0.999 99 98 99.20
De Fauw et al 43 2018 Urgent, semiurgent, routine and observation only Topcon 997 patients 1. Deep segmentation network using U-Net Urgent
referral
0.992
94.5
Normal, CNV, macular oedema, FTMH, PTMH, CSR, VMT, GA, drusen, ERM Spectralis 116 patients 2. Deep classification network using a custom 29 CNN layers with 5 pooling layers Urgent referral
0.999
96.6

The diagnostic performance is not comparable between the different DL systems given the different data sets used in the individual study. AUC for specific conditions: CNV 0.993; macular oedema 0.990; normal 0.995; FTMH 1.00; PTMH 0.999; CSR 0.995; VMT 0.980; GA 0.990; drusen 0.967; and ERM 0.966.

AMD, age-related macular degeneration; AUC, area under the receiver operating characteristic curve; CNN, convolutional neural network; CNV, choroidal neovascularisation; CSR, central serous chorioretinopathy; DL, deep learning; DMO, diabetic macular oedema; ERM, epiretinal membrane; FTMH, full-thickness macula hole; GA, geographic atrophy; NA, not available; OCT, optical coherence tomography; PTMH, partial thickness macula hole; VMT, vitreomacular traction.