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Abstract

Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new 

technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100–

200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large-scale 

analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images 

generally contain many more nuclei than are needed for analysis. Therefore, we developed an 

integrated workflow that selects, following automatic segmentation, a subpopulation of accurately 

delineated nuclei for positioning of fluorescence in situ hybridization-labeled genes of interest. 

Segmentation was performed by a multistage watershed-based algorithm and screening by an 

artificial neural network-based pattern recognition engine. The performance of the workflow was 

quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as 

well segmented and by the boundary accuracy of the well-segmented nuclei relative to a 2D 

dynamic programming-based reference segmentation method. Application of the method was 

demonstrated for discriminating normal and cancerous breast tissue sections based on the 

differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out 

of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing 

the accuracy and robustness of the proposed approach.
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Introduction

Breast cancer is the second most common cancer in woman. It is estimated that 

approximately one in eight women in the US will be diagnosed with breast cancer and it is 

the primary reason behind the death of approximately 40,000 women, annually (1). 

Nevertheless, there have been major improvements in the past decade that have caused these 

numbers to decline, largely, due to: (i) increased awareness,(ii) early detection/screening, 

and (iii) treatment advances. Early detection has been the focus of extensive research and 

there is accumulating evidence that if breast cancer is diagnosed early, the average survival 

rate can be extended to 98%, from only 23% if the cancer has already metastasized before 

being diagnosed (1).

Recently, it has been shown that genetic alterations to normal cells play a significant role in 

causing cancer (2). Concurrently, due to improvements in optical microscopy and 

fluorescent labeling, it has been shown that the cell nucleus is compartmentalized into well-

defined subregions and that the spatial position of genes in the nucleus correlates with their 

expression and cellular activities (3–5). Furthermore, the positioning of certain genes, such 

as HES5 and FRA2, has been shown to differ between normal and cancer cells in a cell 

culture model of cancer (6) and in patient tissue sections (7). This novel discovery could 

emerge as a diagnostic and/or prognostic tool for breast cancer.

Determining gene positioning begins with multichannel optical microscopic imaging of 

nuclei with fluorescence in situ hybridization (FISH)-labeled genes of interest in DNA-

counterstained nuclei, where the FISH signals appear as punctate spots. Since discerning 

preferential gene positioning is virtually impossible by visual examination, quantitative 

analysis of the images is required. This involves: (i) accurate nuclear segmentation, (ii) 

detection of FISH signals, and (iii) spatial localization of the FISH signals with respect to 

the nuclear center and boundary. Using manual image analysis of 100–200 nuclei per 

sample, Meaburn et al. showed that this method reliably detected breast cancer across a 

panel of 11 normal and 14 cancer samples (7), using the nonparametric Kolmogorov–

Smirnov (KS) test to distinguish spatial gene localization between samples. Scaling up this 

approach for high-throughput clinical studies involves analysis of several thousands of 

nuclei across hundreds of normal and cancerous tissue samples. Analysis of this nature 

would be too time consuming, subjective, and tedious if done manually, thus warranting 

automation. Hence, the goal of this study was to automate the procedure of Meaburn et al. 

The first step to automate was nuclear segmentation in tissue samples, which in itself is a 

challenging task.

Cell and nuclear segmentation in histopathology and fluorescence microscopy is an active 

area of research, resulting in the development of several automatic (8,9) and semiautomatic 

(10,11) strategies. The majority of these methods, in general, use preprocessing for noise 

reduction and intensity/gradient-based thresholding for foreground identification. This is 

followed by independent or combined application of segmentation algorithms (e.g., 

gradient-based methods (12,13), active contours, watershed, and dynamic programming 

(DP) (10,14)) for delineation of individual objects within the foreground. Watershed-based 

algorithms (15,16), which split thresholded objects into fragments, are often referred to as 
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“universal segmenters,” but over-segmentation is a common problem requiring subsequent 

merging strategies (17). Active contours are generally considered state-of-the-art due to high 

accuracy, adaptability to image topology, and ability to incorporate regularity features 

(18,19). However, computational load, correct initialization, and numerical instability are 

major concerns.

Most of the aforementioned segmentation techniques yield desirable results for specific cell 

culture images, but their extension to complex tissue sections has been less promising, 

especially for cancer tissue where there is considerable variation in the morphological and 

textural properties of nuclei along with severe nuclear clustering. However, the nuclear 

segmentation requirements for our application are different because thousands of nuclei are 

available for imaging in each tissue section, of which less than 10% (100–200 per sample) 

are needed for detecting cancer based on gene positioning. Thus, our requirement is highly 

accurate segmentation of only a subset of nuclei rather than attempting to segment as many 

nuclei as possible. Therefore, we built a computational framework that uses a supervised 

pattern recognition engine (PRE) to perform the task of selecting accurately delineated 

nuclei from a robust, multistage segmentation algorithm.

Pattern recognition and machine-learning principles have been proven useful in several 

quantitative imaging applications related to cell biology (20,21), and more specifically in 

breast cancer (e.g., Wisconsin Breast Cancer Database (22,23)). Some of the relevant 

biological applications of PREs at the cellular and subcellular levels include classification of 

cells and nuclei based on their morphological, textural, and appearance features (24,25), and 

interpreting and analyzing localization of proteins, antibodies, and subcellular structures 

within the cell (26–29). For instance, Hill et al. (30) assessed the impact of imperfect 

segmentation on the quality of high-content screening data using a support vector machine 

(SVM)-based PRE to identify accurately delineated nuclei. In a similar line, to make the 

segmentation algorithm itself intelligent and data driven, Gudla et al. (31) used classifiers 

interleaved with the segmentation algorithm to identify optimal parameters for segmenting 

and selecting accurately delineated nuclei in cell culture images.

In this work, we mimicked, as closely as possible, the manual analysis procedure (7) in the 

form of an integrated workflow to automatically segment nuclei in tissue-section images 

using a multistage watershed-based method, followed by an artificial neural network 

(ANN)-based supervised PRE to screen out well-segmented nuclei, with a high degree of 

confidence. Because of large morphological and textural variations, standard segmentation 

algorithms (e.g., graph cuts and watershed on gradient-magnitude) failed to accurately 

segment a significant number of nuclei in each dataset. The nuclear segmentation algorithm 

reported here could handle the significant nuclear variations among datasets in a robust way, 

resulting in a satisfactory yield of well-segmented nuclei for analyzing the spatial 

positioning of the genes.

The rest of the article is organized as follows. The next section provides a description of the 

samples and images, followed by an explanation of the analytical methods: (1) segmentation 

of nuclei, (2) the PRE for selecting accurately delineated nuclei, and (3) boundary accuracy 

assessment of selected nuclei. The following section reports the performance results of the 
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PRE and the boundary accuracy assessment in comparison to a 2D DP-based segmentation 

algorithm (14) which serves as a reference. Subsequently, the proposed method is applied to 

tissue section images for detecting breast cancer based on gene localization in the nuclei. 

The final section provides discussion, draws conclusions, and comments on the future 

directions for the work.

Materials and Methods

Samples and Images

Sample preparation and labeling were described in Ref. 7. Four to five micrometer thick 

formalin-fixed, paraffin-embedded human breast tissue sections were imaged using an 

Olympus IX70 microscope controlled by a Deltavision System (Applied Precision, Issaquah, 

WA) with SoftWORX 3.5.1 (Applied Precision), and fitted with a charge-coupled device 

camera (CoolSnap; Photometrics, Tucson, AZ), using a 60×, 1.4 oil objective lens, and an 

auxiliary magnification of 1.5. Nonconfocal 3D Z-stacks were acquired with a step size of 

0.2 or 0.5 μm. The image size was 1,024 × 1,024, with a pixel size of 0.074 μm in both X 
and Y directions. For this study, the fields of view to be acquired were manually selected 

and focused. Large regions of interconnective tissue were not imaged, to increase the 

number of epithelial nuclei acquired. Beyond this, the fields of view were randomly selected 

over the tissue to reduce bias based on FISH signals or tissue morphology/heterogeneity. For 

experiments, 23 datasets (500 images) were used, of which four contained normal (N1–N4), 

14 contained cancer (C1–C14), and the rest contained noncancerous breast disease (NCBD) 

(fibroadenoma and hyperplasia) tissue section images (B1–B5).

The red and green FISH channels were deconvolved using SoftWORX 3.5.1 to reduce 

background noise. The deconvolved version of the 4′,6-diamidino-2-phenylindole, 

dihydrochloride (DAPI) channel, although available, was not used due to increased texture 

that deteriorated segmentation. All three channels were reduced from 3D to 2D using 

maximum intensity projection (MIP). By manual analysis and manual inspection of the 

resulting MIPs, the increased step size of 0.5 μm gave identical results to 0.2 μm. Although 

3D analysis would provide more accurate gene position measurements, the image 

acquisition method adopted here had been shown to produce accurate results from manual 

analysis (7).

Overview of Image Analysis

Figure 1 illustrates in block diagram form the computational framework for nuclear 

segmentation and the associated PRE for the identification of “well-segmented” nuclei used 

in spatial FISH analysis. The nuclei channel of the original images (Fig. 1-1) were first 

wavelet preprocessed (Fig. 1-2) and segmented (Fig. 1-3). A small portion of the dataset was 

manually processed and used as the training set (Fig. 1-4) for the PRE (Fig. 1-5). The set of 

accurately segmented nuclei were then used for spatial analysis of the gene (Fig. 1-6).

Preprocessing

To improve nuclear segmentation accuracy, boundaries of foreground objects (e.g., cell 

nuclei) were enhanced using a modified version of Mallat-Zhong’s extrema algorithm 
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(31,32). This wavelet preprocessing step involved: (i) using a bicubic spline wavelet to 

decompose and identify the extremas in the DAPI-channel up to 5 scales; (ii) multiplying the 

chain-coded extremas (edges) in scales 2–4 by a factor of 3; (iii) and using the enhanced 

extremas in the wavelet reconstruction step. As this processing was isotropic, noise and 

structures orthogonal to nuclear boundaries were also enhanced. This undesirable effect was 

ameliorated by smoothing with an edge-preserving adaptive Gaussian filter (33), of standard 

deviation of 2 pixels and 0 pixels, along the direction of edges and in the perpendicular 

direction to the edges, respectively. Figure 2(a) shows an original nuclei channel image and 

Figure 2(b) shows the same after preprocessing.

Segmentation of Nuclei

The multistage watershed nuclear segmentation algorithm is outlined in Figure 3. It first 

identifies nuclear foreground regions to be used for watershed in subsequent steps, by 

performing an entropy-based texture filtering followed by iterative isodata thresholding (34).

A seeded watershed algorithm (35) was used on the thresholded preprocessed intensity 

image to split the nuclear foreground regions into individual objects. Although the intensity-

based watershed found object boundaries accurately, it over-segmented most of the objects. 

The seeds were identified from the same image using an extended-maxima transform, which 

was the regional maxima of the morphological reconstruction-based H-maxima transform 

(36). Intensity variations within nuclei made it very difficult to identify unique local maxima 

for each individual nuclei, resulting in over- or under-segmentation. Hence, for more reliable 

segmentation, we performed maxima identification using multiple values of H followed by 

seeded watershed. Watershed boundaries that appeared at all H values were retained as the 

prospective edges (Fig. 2(c)). To remove spurious fragments in the background, a k-means 

intensity-based clustering (37) with five cluster centers was performed on the watershed 

output, and the cluster having the lowest intensity average per pixel was rejected.

To merge nuclei fragments from the first watershed, we took advantage of the known 

morphology of nuclei through the use of the gray-weighted distance transform (GDT) (38). 

After applying the GDT (Fig. 2(d)), the aforementioned seeded watershed was repeated to 

identify high-intensity GDT-transformed nuclei regions. However, in this case, edges that 

appeared for more than 40% of the H values were retained as prominent edges. Although 

this method identified the general location and extent of the high-intensity objects, boundary 

accuracy of the segmented objects was low since the method was not performed directly on 

the preprocessed image. Hence, the output of the GDT and intensity watershed was 

combined as follows. Each intensity-based watershed fragment was associated with the 

GDT-based watershed fragment to which it had highest overlap. Then intensity-based 

watershed fragments associated with the same GDT-based fragments were merged into a 

single object. The resulting segmentation (Fig. 2(e)) was more accurate compared to the 

segmentation results from either the intensity or GDT watershed, which was visually 

verified for a large subset of the data.

The previous steps often failed to segment nuclei in large clusters. Thus, the next step 

identified such clusters using size and shape factor (normalized perimeter squared-to-area 

ratio (P2A) that is 1.0 for a perfect circle) values. It was observed that the average size of a 

Nandy et al. Page 5

Cytometry A. Author manuscript; available in PMC 2019 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nucleus across datasets was around 10,000 pixels, with considerable variation among 

datasets, and the average P2A value was 1.2 for well-segmented nuclei and ranged between 

1 and 1.4. A large and irregular cluster was hence defined as one having a size ≥10,000 

pixels and P2A > 1.4. Clusters were split by application of the nonseeded watershed to the 

cluster region of interest (ROI) of the preprocessed image.

Because of nuclear size variations across datasets, the watershed algorithms, which partially 

depend on size criteria, over-segmented potentially good nuclei. Therefore, a tree-based 

hierarchical merging strategy (refer to Fig. 1 Supporting Information) coupled with nuclear 

shape modeling (39) was used to merge over-segmented fragments. Briefly, the procedure 

built a region adjacency graph of neighboring fragments from which a merging tree was 

created, for a given node (Fig. 4a). From the merge tree, each combination of fragments was 

merged and an optimal ellipse fitting was performed (Fig. 4b). If the overlap of the object 

and the optimal ellipse (1-[Nonoverlapping area (Exclusive OR [XOR])(Fig. 4c)/area of 

merged object (Fig. 4b)]) was more than 80%, the objects were merged. The final output of 

the segmentation module after merging is shown in Figure 2(f).

PRE: Feature Measurement and Selection

Well-segmented nuclei were selected from the segmented objects using an ANN-based 

supervised PRE. The problem was posed as a two-Class classification problem, with Class-1 

and Class-2 representing accurately segmented nuclei and remaining segmented objects, 

respectively. The workflow for the PRE is shown in Figure 5.

In order for the PRE to perform well, the feature set must capture pertinent characteristics of 

accurately segmented nuclei, which was done using a 64-dimensional feature set (refer to 

Feature Set in Supporting Information). The features are composed of 3 groups: shape-based 

(e.g., Feret diameters, P2A, PodczeckShapes (40), size, and ratio of object area to convex 

hull area), intensity-based (e.g., gray inertia, mean intensity, intensity standard deviation), 

and texture-based (e.g., Haralick texture features) (41).

As ANNs require feature normalization to ensure numerical stability and to overcome 

problems such as neural network saturation while training with the backpropagation 

algorithm (37,42), features were processed in the following three steps (Fig. 5b). In step one, 

five normalization techniques (43) were tested, namely (i) linear scaling to unit range, (ii) Z-

Score scaling, (iii) linear scaling to unit variance, (iv) transformation to uniform distribution, 

and (v) rank normalization (refer to Table 1 in Supporting Information). In step two, 

dependency ranking (44) was used to select features that to some extent correlated with the 

output classification. Dependency ranking was calculated using:

D i = ∬ p xi, y log
p xi, y

p xi p y
dxidy,

where D(i) is the dependency ranking score, xi is the value of the ith feature, and y is the 

vector of output labels. The ranking provided a correlation score (dependency values) for 

each feature relative to the output classes, which are based on the mutual information 
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between the feature vectors and the output label vector (refer to Fig. 2 Supporting 

Information). The third step reduced the number of features selected from dependency 

ranking using principal component analysis (PCA). This step removed redundancies caused 

by strong correlation between features.

Object Classification Using an ANN

We had observed in 3D space considerable overlap of the three most significant features 

from PCA between correctly and incorrectly segmented nuclei (refer to Fig. 3 Supporting 

Information), which in turn meant that a nonlinear discriminant function was required to 

discriminate between the two object classes. Hence, we used an ANN that comprised three 

layers: an input layer, a single hidden layer containing neurons with tansigmoidal transfer-

function, and an output layer with a linear transfer-function. ANN training used 45 images 

(10% of the entire data), where correctly segmented nuclei had been manually identified. 

Training was performed by the Levenberg-Marquardt back propagation training algorithm 

(45), the conjugate gradient backpropagation with Powell-Beale restarts(46), or Resilient 

backpropagation (47) from the Neural Network Toolbox in MATLAB 2008a (48).

Performance Assessment

Performance of the processing pipeline was assessed in two ways. The first measured the 

accuracy of identifying well-segmented nuclei in a validation set of images using precision 

recall plots for all 1,620 configurations of the PRE by varying the number of neurons in the 

hidden layer of the ANN (nine settings), the normalization method (five normalizations and 

no-normalization), the number of PCA dimensions (five settings), and the number of 

features selected using dependency ranking (six settings). Precision and recall were defined 

as TP/TP + FP), and TP/(TP + FN), respectively, where TP = true positive, FP = false 

positive, and FN = false negative. As ideally both precision and recall should equal 1, the 

PRE configuration closest (in terms of Euclidean distance) to the point (1,1) was selected as 

the best possible configuration. This implicitly decided the cut off for the features used from 

the feature selection procedure.

The second way measured the boundary delineation accuracy of automatically segmented 

nuclei by comparison to control segmentations generated by human interaction. However, 

given the notorious tedium in precisely delineating nuclei by hand, an efficient 2D DP-based 

semiautomatic algorithm (SAA) (14) was used to generate control segmentations. Thus, the 

initial task was to validate the accuracy of SAA using synthetic control images of nuclei. 

Images of 20 synthetic nuclei were created by starting with 20 manually segmented nuclei 

from tissue sections, to capture the typical morphology of actual nuclei. Then known 

distortions of the image acquisition process, such as blurring and noise, were estimated from 

the actual tissue images and were used to distort the idealized nuclei images. Background 

and nuclear intensities were set to 16 and 90, respectively. Next, these bilevel images were 

Gaussian blurred by the lateral resolution of the microscope given by 0.51 λ/NA, where λ is 

the emission wavelength of the DAPI channel (450 nm) and NA (1.4) is the numerical 

aperture of the objective lens. Taking into consideration a pixel resolution of 74 nm, the 

standard deviation of the Gaussian was 0.9407 pixels. The noise level in tissue images was 

estimated by subtracting a Gaussian blurred version of the images from original images and 
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calculating the variance, resulting in a standard deviation of 3.3, which was added to the 

synthetic images as Poisson noise.

Three parameters were used to measure boundary delineation accuracy. The first measured 

the overlap between test and control segmentations using area similarity (AS) (49–52) 

defined as (2 × A[T ∩ C])/(A[T] + A[C]), where A[·] is the area of an object, ∩ is the 

intersection of two objects, T is the test segmentation mask, and C is the control 

segmentation mask. Thus, AS ranged from 1 for perfect agreement between test and control 

segmentations, down to 0 for no overlap between test and control and for cases where either 

the test or control segmentation did not exist. This metric provided a combined accuracy 

from all the automatically selected nuclei including the false positives. Consequently, it was 

the true accuracy measure for the automatic analysis procedure. Figure 6a shows a sample 

nucleus and Figure 6b shows the two boundaries (control and test) overlaid on it. Figure 6c 

shows the overlap area used to calculate AS. The second parameter was a Euclidean distance 

transform (EDT)-based boundary metric explicitly designed to measure error at the nuclear 

boundary. For each nucleus, the EDT was performed on the control segmentation, with 

progressively higher values assigned to pixels farther from the control boundary. Pixel 

values in the EDT image at the position of the test segmentation boundary were averaged to 

calculate boundary error. Figure 6d shows boundaries superimposed on the EDT image 

calculated with respect to the control segmentation boundary. The third parameter measured 

the normalized mean spatial deviation of all pixels in the overlapping area of the control and 

test segmentations of a nucleus. It was used to assess the effects of nuclear segmentation 

inaccuracies on the gene localization measurement. The EDT assigned a value of 0 to the 

boundary locations of the nucleus and increasing values to points farther within the nucleus 

(Fig. 6e). The parameter was the mean of the absolute differences between the EDT images 

of the control and test segmentations where the two segmentations overlapped. Figure 6f 

shows a heat map of the differences. Correlation analysis was performed between the three 

parameters to determine whether the parameters measured independent features of 

segmentation errors or alternatively whether one parameter would suffice.

Results

The proposed image analysis steps were implemented in MATLAB (Release 2008a, 

Mathworks, Natick, MA), except for wavelet-based edge enhancement, which was 

implemented in LastWave (32). All the necessary code is available online (http://

ncifrederick.cancer.gov/atp/omal/flo/Ann.aspx) through a license agreement with the 

National Cancer Institute. Raw datasets (2D MIP, R-G-B images only) and the output from 

the proposed workflow are also available through a material transfer agreement with the 

National Cancer Institute (contact corresponding author).

Classification Performance

We assessed the accuracy of identifying well-segmented nuclei from precision-recall plots 

(Fig. 7) for 1,620 different configurations of the PRE using a manually annotated 

verification set of 133 images that were acquired from the same patient samples as the 

training set. The three ANN training algorithms mentioned earlier provided similar results in 
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terms of performance and training time. The backpropagation algorithm was used for the 

ANN training. Prior to selection by the PRE, segmentation output had a precision of only 

17% of segmented objects accurately representing individual nuclei based on visual 

inspection. The best PRE configuration used the 15 top features from dependency ranking, 

all 15 dimensions from PCA, rank normalization, and 15 neurons in the hidden layer, 

resulting in a precision = 71.5% and recall = 73.6%. Some false positive errors (debris, 

nuclear clusters, etc.) closely resembled well-segmented nuclei in shape, size, and other 

morphological features. Figure 4 in the Supporting Information shows samples of objects 

screened by the PRE as well segmented and rejected.

Segmentation Accuracy of Selected Nuclei

The first step in assessing the segmentation accuracy of automatically selected nuclei was to 

ensure that the SAA was at least as accurate as hand delineation of nuclei using synthetic 

control images. Measurements over 20 nuclei showed this was the case for all three 

segmentation accuracy parameters (Table 1 and Fig. 5, Supporting Information). Therefore, 

the SAA was used as the control for subsequent assessments of automatic segmentation 

accuracy.

For assessing segmentation accuracy of the proposed workflow, AS was measured for all 

automatically selected nuclei, setting the value 0 for false positive nuclei. The mean value 

was 76%, which, as expected, was lower than other reported accuracies that were measured 

over only true positive objects. When we evaluated AS for true positive objects only, to be 

consistent with other reported results, we obtained91.3% (Table 1), which is equivalent to 

the accuracy we have achieved for nuclei in cell culture (31) and is significantly improved 

over reported accuracy in cancer tissue of 80% (53).

We calculated the mean error at the boundary and the mean normalized internal error for 

only true positive objects (Table 1) because these metrics are indeterminate for false positive 

objects. Both the mean boundary and internal errors of 3.6 pixels and 7.3%, respectively, are 

approximately equivalent to the optical resolution limit.

Comparing the segmentation accuracy metrics showed correlations of 96% between AS and 

the internal pixel difference, 33% between AS and the boundary parameter, and 33% 

between the internal pixel difference and boundary parameter. This shows that only one of 

the parameters AS or internal pixel difference is needed, while the boundary parameter does 

provide extra information not provided by either AS or internal pixel difference. However, 

depending on the application, either AS or the internal pixel difference may be more useful 

than the other.

Application to Gene Localization for Breast Cancer Detection

The set of nuclei identified as well segmented by the PRE were used for discriminating 

normal and cancer tissue sections using spatial analysis of the FISH signals. In this study, we 

only analyzed HES5, a gene in the NOTCH pathway (54) that occupies different nuclear 

positions in normal and cancer tissues (7).
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Spatial Analysis of FISH Signals

Figure 8a shows the procedure for spatial analysis of FISH signals in segmented nuclei. The 

spot-like FISH signals (Fig. 8b) were segmented (Fig. 8c) using a derivative scale-space 

method (55). The position of the spots with respect to the nuclear center and periphery was 

calculated using a shape-independent EDT-based metric and was normalized relative to the 

highest EDT value in the nucleus (Fig. 8d). The KS test was used to compare the 

distributions of gene positions in the nuclei of normal versus cancer specimens. Two 

samples were considered significantly different if the probability of them being from the 

same distribution obtained via the KS test was less than or equal to 1%.

Manual Analysis

For manual analysis, individual cell nuclei were manually delineated using the lasso tool in 

Photoshop 7.0 (Adobe Systems Incorporated, San Jose, CA) and were saved as separate 

image files. The red and green channels (FISH channels) of each nucleus were adjusted to 

reduce the background. After 130 nuclei were segmented, no further tissue images were 

processed for a dataset. Spatial FISH analysis was performed using the same procedure that 

was used for the automated analysis. Data from the manual analysis of these tissues have 

previously been reported (7).

Results for Gene Localization

Twenty-three tissues were analyzed, consisting of four normal (N1–N4), five NCBD (B1–

B5), and 14 cancer samples (C1–C14). The set of nuclei selected by human experts and the 

PRE did not have a 100% correspondence. Table 2 shows the number of well-segmented 

nuclei selected both manually and automatically.

As expected, the copy number distribution of detected FISH signals per nucleus showed that 

the cancer samples had significantly more than two copies per nucleus (refer to Table 2 in 

Supporting Information). However, as it was rare for nuclei to have more than 10 FISH 

spots, such nuclei were rejected as potentially having spuriously detected spots.

Performance of the proposed processing pipeline was assessed by its ability to discriminate 

between normal, NCBD, and cancer, and its agreement to manual analysis. Figure 8e shows 

the automatically calculated distribution of gene positions aggregated for all cancers, for all 

normal, and for three individual cancers (C1, C10, and C12), and Figure 8f shows the 

equivalent cumulative distributions. From Figure 8e, we observe that cancer samples have 

significantly more nuclei where the HES5 gene is closer to the periphery (normalized EDT 

0.2) than in normal samples. This is consistent with findings of the manual analysis of these 

tissues (7).

Comparison of normals with each other and with NCBD showed no significant differences 

when analyzed automatically. Manual analysis reported similar results except that one pair 

of normal samples (N2 vs. N3) was significantly different and one normal sample (N3) was 

significantly different from two (B1 and B5) out of five NCBDs (green cells in Table 3). The 

red cells in Table 3 denote the cases where cancer samples were not significantly different 

from the normal samples. Among 56 cancer versus normal comparisons, the results of the 
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manual and the proposed method are in accord for more than 80% of cases. When the 

majority vote of normal specimens versus a cancer specimen was used, manual and 

automatic analyses concur for 11 out of 14 cancers. In the remaining three cases (C2, C10, 

and C14), either manual or automatic analysis gave an uncertain result and there were no 

outright contradictions.

Discussion and Conclusion

We have demonstrated an integrated workflow featuring an automatic nuclei segmentation 

and a supervised ANN-based PRE for nuclei screening, which, along with statistical analysis 

of the spatial localization of the HES5 gene in cell nuclei, has the potential to detect breast 

cancer from tissue sections. As manual analysis of tissue sections is subjective and time 

consuming, our supervised method is essential and opens up the possibility of a future 

procedure for diagnosis and/or prognosis of breast cancer through reliable and robust 

automation.

Aspects of the analysis strategy adopted in this study warrant further discussion. Although 

the use of 2D MIPs from the original 3D DAPI channel showed that the segmentation 

algorithm could potentially be used for segmenting nonconfocal 2D images acquired on 

conventional fluorescence microscopes, a future, separate study will answer which is the 

best acquisition mode. Confocal, nonconfocal 3D followed by deconvolution (done in this 

case), and nonconfocal 2D are all technically feasible. We would want to first determine 

which is the most accurate and then determine how much performance degrades using 

conventional fluorescence microscopy. Given the fact that the method works successfully in 

a 2D setting, as shown by the reported experiments, a full 3D analysis, which is more 

accurate, will be considered next.

We compared methods to assess the boundary accuracy of nuclei screened by the PRE in 

terms of the unique requirements for gene localization analysis. The assessment was aided 

by a DP-based semiautomatic segmentation to rapidly and accurately generate validation 

data. Several methods have been devised previously to assess the boundary accuracy of 

segmented objects, of which manual identification of over-, under-, and correctly segmented 

nuclei (10,11) is the most common. However, as reported earlier, utilization of simulated 

objects (10) enables quantitative identification of the performance limits of a segmentation 

algorithm. For our work, we used three accuracy parameters: area intersection between 

control and test segmentation, mean EDT-based boundary deviation of the test segmentation 

from the control segmentation (31), and a novel EDT-based relative distance error per pixel 

to assess the impact of boundary inaccuracies on FISH localization measurements. As 

evident from Table 1, the average error of 0.073 per pixel corresponds to AS of 91.3% and a 

mean boundary error of 3.639 pixels. A close examination of Figure 8e reveals that cancer 

detection results are not adversely affected by an error of 0.073 per pixel. This is further 

justified by the fact that a left-shifted normal cumulative plot or a right-shifted cancer 

cumulative plot (Fig. 8f), by normalized EDT value of0.073, does not affect the statistically 

significant difference between the normals and the cancers obtained by the KS test.
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Sensitivity analysis was qualitative at this stage. Many iterations of the nuclear segmentation 

algorithm were tested during development and, in particular, the method described herein 

out-performed an earlier published method based on a hybrid levelset-watershed-based 

algorithm (56). In general, it was observed that the current segmentation algorithm 

satisfactorily handled significant intensity variations in the DAPI channel, including cases of 

interimage intensity variation across datasets and also internucleus intensity variation within 

a single image. Although we considered that all our samples were of the same quality 

because they had been labeled and imaged under the same protocol, the quality of 

segmentation did depend on certain sample characteristics. As an example, the segmentation 

results for normal datasets were not as good as cancer datasets because normals showed 

significantly more nuclear clustering compared to cancer samples. Although the robustness 

of the multistage watershed algorithm to morphological, textural, and size variations of the 

nuclei was further verified by the consistent results in a much larger tissue micro-array 

dataset containing approximately 1,700 images (results not shown), we envision additional 

opportunities for improvements by merging results from multiple segmentation algorithms. 

Often, different algorithms successfully segment different subsets of nuclei, thus merging 

the output from different algorithms should increase the yield of well-segmented nuclei. As 

mentioned above, the ease of segmentation did correlate to some extent to the disease 

progression. However, we have no evidence that the automated analysis is biasing the data 

using only easily segmentable nuclei. Future studies with the system will address such issues 

further.

In the case of the PRE, the future improvement would involve the use of online learning 

systems (57) to enable the system to learn from its mistakes. Similarly, visual inspection of 

automatically selected nuclei to admit only true positives would further improve 

performance. A small subset of new data can be provided to a user and the manual decisions 

made on that subset can be used to further improve the discriminating power of the PRE. 

Although the supervised PRE was trained on breast cancer tissue images that had a range of 

nuclear morphologies, we expect it would successfully screen other tissue images as long as 

the dominant features identifying well-segmented nuclei remain the same. Conversely, 

cancers from different organ sites likely have a different set of distinctive features, and 

therefore the PRE would need to be retrained. In this study, ANN was used to identify the 

well-segmented set of nuclei. However, other pattern classification methods (e.g., SVM and 

random forests) could provide improved precision-recall performance. Furthermore, to 

enhance the accuracy and effectiveness of this cancer diagnostic system, spatial analysis of 

multiple genes could be combined (7).

One of the strengths of the workflow is that it is modular. That is, each step (e.g., nuclear 

segmentation and pattern analysis) can be substituted by an improved algorithm providing 

scope for continuous improvement of the processing pipeline. The same workflow can be 

applied to a broader spectrum of cell biology applications [e.g., cancer malignancy 

classification and grading from histopathology sections (58) and DNA ploidy analysis (59)], 

where the quality of nuclei segmentation is paramount and where a larger pool of nuclei is 

acquired than is required for drawing a statistically significant conclusion. In this context, 

we point out that the segmentation algorithm required no manual intervention for 

segmenting nuclei in the reported tissue section datasets. The robustness of the algorithm 
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was achieved by the use of multiple stages of watershed-based segmentation and pattern 

classification that can be viewed as the merger of a bottom-up (intensity watershed followed 

by GDT-based and tree-based merging) and a top-down (cluster identification and further 

nuclear segmentation within the clusters) method. For users having minimal experience in 

image analysis and pattern recognition, a user-friendly software tool is being developed, 

which can be used to perform all the analysis steps illustrated in the framework with 

minimal manual intervention. We have made the software for the reported work available at: 

(http://ncifrederick.cancer.gov/atp/omal/flo/Ann.aspx), which will enable image analysis 

experts to further advance the method. However, the value of the work does not lie solely in 

the utility of the software. A key value is the discovery that automatically selecting cell 

nuclei is not only feasible but can lead to valuable biomedical results. Also, another goal of 

this study was to show that a successful manual method can be automated. Further 

characterization, such as quality of nuclei selected/rejected, quality of FISH signal selected/

rejected, and sensitivity analysis, is for a future study.

The results from our workflow, both in terms of cancer detection and nuclei screening, are 

very encouraging. Comparing the spatial distribution of FISH spots for the HES5 gene 

obtained by manual and automatic procedures show very good correspondence, justifying 

the effectiveness of the automation. We have also shown that the system selects almost 70% 

of the well-segmented nuclei and the screened nuclei have high boundary accuracy when 

compared to validated semiautomatic nuclear segmentation. In summary, these very 

promising results show for the first time the potential of a supervised learning-based high-

throughput and objective test for breast cancer using localization statistics of certain genes 

within the cell nucleus. With further validation across large numbers of samples, it could 

have a subsidiary role in diagnosis, prognosis, or further understanding of the mechanisms 

of cancer development.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow diagram showing the computational framework.
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Figure 2. 
Representative image and the corresponding outputs at different segmentation steps. (a) 

Original DAPI channel nuclei image. (b) Preprocessed nuclei channel. (c) Seeded intensity 

watershed output on image foreground. (d) GDT output. (e) Merged output of intensity and 

GDT watershed. (f) Final segmentation output after the cluster-breaking watershed and tree-

based merging.
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Figure 3. 
Multistage watershed segmentation algorithm.
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Figure 4. 
(a) Process of building up the merge tree for a node. (b) Merged fragment and optimal 

ellipse fit. (c) Nonoverlapping (XOR) area.
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Figure 5. 
(a) PRE for identifying accurately segmented nuclei. (b) Details of the feature processing.
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Figure 6. 
(a) Example nucleus for boundary accuracy assessment. (b) Example nucleus with control. 

(C) (Green) and test (T) (Red) segmentation. (c) Overlap area (purple) used to measure AS. 

(d) Distance transform-based boundary accuracy calculation. Distance transform was 

calculated with respect to control segmentation. (e) Normalized EDT calculation on control 

segmentation mask used to measure difference in relative distance measure. Control 

segmentation boundary is shown in white. (f) Difference in normalized EDT-based relative 

distance measure.
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Figure 7. 
PRE precision-recall plot for 1,620 configurations and the best configuration (closest to 

(1,1)). Configurations with high precision and low recall are shown in the red box.
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Figure 8. 
(a) Flow diagram showing steps for spatial gene localization analysis. (b) Original image of 

segmented nucleus showing red and green FISH spots marked by arrows. (c) Nucleus ROI 

showing segmented FISH spots. (d) EDT nucleus ROI showing normalized distance 

transform metric for each FISH spot. (e) Histogram of FISH signal positions binned by 

normalized EDT values for aggregate cancers, aggregate normals, and cancer samples C1, 

C10, and C12. (f) Cumulative distribution of FISH spots against normalized EDT values for 

aggregate cancers, aggregate normals, and cancer samples C1, C10, and C12.
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Table 2.

Manual and well-segmented automatic nuclei count

DATASET
NUMBER OF

IMAGES
MANUAL NUCLEI

COUNT
AUTOMATIC

NUCLEI COUNT

N1–N4 114 536 676

C1–C14 257 1,965 2,588

B1–B5 129 699 736

Total 500 3,200 4,000
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