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ABSTRACT
Nutrition and food are one of the most complex aspects of human lives, being influenced by biochemical, 

psychological, social and cultural factors. The Western diet is the prototype of modern dietary pattern and is 
mainly characterized by the intake of large amounts of red meat, dairy products, refined grains and sugar. 
Large amounts of scientific evidence positively correlate Western diet to acne, obesity, diabetes, heart disease 
and cancer, the so-called “diseases of civilization”. The pathophysiological common ground of all these 
pathologies is the IGF-1 and mTORC pathways, which will be disscussed further in this paper. 
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INTRODUCTION

Food is an important environmental fac-
tor that can also influence the human 
genome (1). The most common pro
ducts which are found, often insepara-
ble, in the Western diet are milk and 

sugar. Milk and dairy products are recommended 
by most nutritional societies as important protein 

sources and for their effects on calcium metabo-
lism and bone mineralization (2). 

Milk has remarkable characteristics, and by 
far, the most important of all is that milk is the 
only nutrient that has the ability to sustain post-
natal growth in all mammals (3). Recently, milk 
has been identified to activate mTORC1 in the 
cells of the recipient, therefore inducing con-
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trolled species-specific growth (15). As a conse-
quence, milk is no longer regarded as “just food” 
but an important factor of mammalian evolu-
tion (3, 4).

Historically, milk consumption and signaling 
was limited to the nursing period of different 
mammals. The Neolithic Homo sapiens was the 
first to introduce milk into his food chain be-
tween 8000-10,000 years ago (5, 6). Nowadays, 
milk and dairy products are important elements 
in the Western society’s diet, consumed by chil-
dren and adults well after the age of weaning (2). 

New emerging data highlight the negative ef-
fects of the Western lifestyle (stress, sedentari-
ness and imbalanced diet) on health and its pro-
found implications on disease states, compared 
to various populations living natural (7-9).

The main characteristics of the Western diet 
are a high glycemic load, increased intake of 
animal proteins and milk and its derivates, all of 
these being known to overstimulate mammalian 
target of rapamycin complex 1 (mTORC1) (10). 
The state of increased activation of (mTORC1) 
has been linked to obesity, T2DM, metabolic 
syndrome, cancer, neurodegenerative diseases 
and early aging (11-17). 

Milk contains high amounts of growth-stimu-
lating hormones, such as IGF-1, whose concen-
trations have been shown to remain high even 
after the milk is being processed (pasteurization, 
homogenization, and digestion) (18). 

The amino acid sequences are the same for 
human and bovine IGF-1, therefore bovine 
IGF-1 can bind to the human IGF receptor (19). 
In addition, IGF-1 digestion in the gut is being 
protected by milk’s proteins, therefore the IGF 
remains active in the serum after milk consump-
tion (2).

Milk is often consumed in association with 
whey protein-based products, and this combina-
tion elevates postprandial insulin levels and basal 
IGF-1 plasma levels (20). 

Interestingly, the consumer’s serum IGF-1 le
vels are not augmented by the cow’s milk IGF-1 
content itself, but by the hepatic IGF-1 produc-
tion stimulation via amino acid transfer induced 
by the milk (4).  

Despite their low glycaemic indexes (GI), 
both fermented and non-fermented milk pro
ducts induce three to six fold higher insulinaemic 
responses (21). q 

MILK, INSULIN AND  
INSULIN GROWTH FACTOR 1 (IGF 1)

Milk exerts its signaling mechanisms by in-
ducing long-lasting increase in serum IGF-1 

levels and postprandial fast upregulation of insu-
lin secretion (22, 23).

Interestingly, milk and its derivates have been 
shown to increase IGF-1 levels more than other 
dietary protein sources (9–16). IGF-1 has mainly 
metabolic and proliferative functions, acting like 
a hormone with distinct metabolic effects and 
specific IGF-1 receptors, which are present in al-
most every cell in the human body. IGF-1 is the 
mediator of the growth stimulating activity of 
GH (2).

Serum IGF-1 is mainly produced by the liver, 
with more than 90% of the molecules being 
bound to IGF-binding protein-3 (IGFBP-3) (18). 
The synthesis of IGF-1 is subject of hormones, 
nutrition, age, sex and genetic variability.

IGF-1 is a strong mitogenic factor, promoting 
cell growth and proliferation and inhibiting 
apoptosis (24). Cell growth and proliferation is 
induced by the activation of the IGF-1 receptor 
(IGF1R) and the subsequent upregulation of the 
phosphoinositol-3-kinase (PI3K)–protein kinase B 
(AKT) signalling cascade (24).

The insulinotropic amino acids, residing pre-
dominantly in the whey fraction of soluble milk 
proteins, are the main factors responsible for the 
stimulation of insulin secretion, therefore exer
ting the strongest insulin tropic effects, and not 
the carbohydrate content of milk (3). 

The glutamine and the essential branched-
chain amino acids (BCAAs), such as leonine, iso-
leucine, and valine, promote mTORC1-media
ted insulin synthesis and secretion in the 
pancreatic cells (3).

Thus, milk and dairy, which are enriched in 
essential BCAAs, inhance mTORC1 levels (25, 26). 
mTORC1 activation is also promoted by leucine, 
an insulinotropic amino acid found in milk pro-
teins (4).

Interestingly, the highest amount of leucine is 
not found in animal protein sources (8%), but in 
whey proteins (14%) (27).

The development of insulin resistance and 
type 2 diabetes mellitus can be accurately pre-
dicted by the persistence of elevated BCAA le
vels (28-32).

Diseases of civilization - the implication of milk, IGF-1 and mTORC1
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A major factor for hepatic IGF-1 synthesis is 
tryptophan, which is mainly found in α-lactalbu
min, an abundant whey protein (33, 34).

Another important factor critically involved in 
mTORC1 activation is glutamine, because it pro-
motes cellular leucine uptake (35), while also 
being a crucial precursor of the glutaminolysis 
pathway (36-38).

The fatty acid palmitate, which comprises ap-
proximately 32% of milk’s triglycerides (39, 40) 
is also able to activate mTORC (41) and enhance 
its lysosomal translocation (41), in the same place 
where BCAAs activate mTORC1 (42, 43).

As a consequence, the typical Western diet, 
mainly consisting in combinations of milk pro-
teins and high glycaemic index products, has an 
important stimulating effect on serum insulin 
and IGF-1 levels, therefore promoting mitoge
nesis and antiapoptosis (3). Moreover, milk also 
transfers an epigenetic signalling “software” to its 
consumer, under the form of microRNAs, which 
are transported to their target cells via extracellu
lar secretory nanovesicles called exosomes (44). q 

ACNE AND WESTERN CIVILISATION

Acne has become an almost universal disease 
in Western societies, with prevalence rates 

of 79-95% in the adolescent population, 40-54% 
in individuals over 25 years of age and 3-12% in 
middle aged persons (45). Acne is currently con-
sidered an obvious result of imbalanced nutri-
tion induced by Western diet, a well known fac-
tor that exaggerates insulin/IGF-1 signalling (23).  

Acne has not been found in non-Western so-
cieties (Inuits, Okinawan Islanders, Ache hunter-
gatherers, Kitavan Islanders), whose populations 
continue the adhere to Paleolithic dietary condi-
tions (45). In contrast, acne has evolved to an 
almost epidemic disease in Westernized socie
ties, highlighting the tremendous role played by 
environmental factors in its pathogenesis (45). 

The knowledge regarding the link between 
acne and nutrition has culminated with the dis-
covery that increased intake of both hyperglyce-
mic carbohydrates and milk is a major factor in 
mTORC1 activation (18, 46, 47). 

Environmental factors seem to be the most 
important pillars in the development of acne in 
modernized societies, and the identification of 
these factors might be the key for acne treatment 
in Western populations (45, 48).

Western diet could be regarded as a maxi-
mized Neolithic diet, characterized by increased 
consumption of hyperglycemic carbohydrates 
and dairy products, which are known to increase 
insulin levels, IGF-1 production and mTORC1 
signalling, key elements of acne pathogenesis 
(23, 49).

In 1885, Bulkley, following an extensive di-
etary study which included 1500 patients with 
acne, was one of the first investigators who raised 
the suspicion regarding the link between milk 
consumption and acne (50).

More recently, Harvard epidemiologists 
Adebamowo et al (51-53) provided the first epi-
demiological evidence on the link between milk 
consumption and acne, after evaluating the data 
collected from the retrospective Nurses’ Health 
Study II and the prospective Growing-up Today 
Study.

Later on, other controlled clinical studies 
highlighted the correlation between dairy con-
sumption and acne vulgaris (54-57), indentifying 
milk, saturated and trans fat consumption and a 
hyperglycemic load as major factors inducing or 
aggravating acne vulgaris (58). q

MILK CONSUMPTION, IGF-1 SERUM LEVELS 
AND ACNE

Even though acne is considered to be a derma-
tosis directly induced by the effects of andro-

gen on the pilosebaceous follicle, its course is 
much more strongly correlated with GH and 
IGF-1, than to plasma androgen levels (59). 
These alterations in IGF-1 serum levels have 
been identified especially in adult acne patients 
(60, 61).

The link between acne and diet is therefore 
strongly related to the Western lifestyle, characte
rized by increased consumption of  hyperglycae-
mic carbohydrates as well as insulinotropic milk 
and dairy products, which eventually lead to in-
creased insulin secretion and insulin-like growth 
factor-1 (IGF-1) signalling (22, 45, 47, 62). q

OVERACTIVATED MTORC1 IN  
ACNE VULGARIS

Acne is currently considered a member of 
mTORC1-driven metabolic diseases, a fami-

ly which also comprises type 2 diabetes, obesity 
and cancer (45, 49). Acne, alongside with other 
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diseases of the civilized world, such as obesity, 
arterial hypertension, insulin resistance, type 2 
diabetes mellitus, cancer, and Alzheimer’s di
sease (28, 63-66), is associated with increased 
insulin/IGF-1 signalling, induced by hyper-glyce-
mic diets and increased consumption of dairy 
products (22, 23, 52, 53, 62). These diseases of 
civilization are considered to be an indicator of 
systemically exaggerated mTORC1 signalling, 
acne being the most visible of all due to its loca-
tion on the skin.

mTORC1

The mTORC complex, comprised of mTORC1 
and mTORC2, is a complex system that responds 
to various environmental stimuli in order to con-
trol diverse cellular processes (48). 

mTORC1 is a well known promoter of cell 
growth and proliferation in response to anabolic 
processes (67). In addition, mTORC stimulates 
gene transcription and translation, ribosome bio-
genesis and insulin, protein and lipid synthesis, 
while suppressing autophagic mechanisms (68-73). 
The Western diet acts as a strong metabolic sig-
nal for mammalian target of rapamycin complex 1 
(mTORC1), through glucose (ATP/energy status 
of the cell), essential amino acids (predominantly 
leucine), growth factors (insulin, IGF-1, fibroblast 
growth factors (FGFs) (74).

mTORC activation requires the coexistence 
of five major pathways:

1) The presence of growth factors such as in-
sulin and IGF-1 (69, 75-77);

2) Sufficient cellular energy, provided by glu-
cose and ATP (78, 79);

3) The availability of amino acids, predomi-
nantly essential BCAAs such as leucine (25, 69, 
73, 74, 76, 77);

4) The presence of glutamine (35, 38), and
5) The availability of saturated fatty acids, es-

pecially palmitic acid (41). q 

MILK AND mTORC1 ACTIVATION

Milk Provides BCAAs Activating mTORC1 – 
Milk is an important source of essential BCAAs, 
especially leucine (27), which is a major activator 
of mTORC1 (80). 

Milk Provides Glutamine Activating mTORC1 
– Milk proteins contain 8.09 g of gluta- 
mine/100 g, 70% more than beef, which con-

tains 4.75 g glutamine/100g (81). Glutamine ac-
tivates mTORC1 via glutaminolysis pathway and 
controles cellular leucine uptake via the L-type 
amino acid transporter (LAT) (82-84).  

Milk Stimulates Incretin and Insulin Secretion 
– Despite relatively low glycemic indices of 
whole milk and skim milk, the insulinemic index 
is much higher, for whole cow milk and skim 
milk, respectively (85, 86). The whey protein 
fraction is the major insulinotropic protein frac-
tion in cow milk (87), but whey-derived amino 
acids also exert insulinotropic effects on pancre-
atic cells (82, 88).

Milk Stimulates IGF-1 Secretion Activating 
mTORC1 – Extended research confirmed that a 
diet rich in milk increases serum levels of insulin-
like growth factor-1 (IGF-1) (89). 

Milk Provides Palmitic Acid Activating mTORC1 
– The amount of lipids in bovine milk ranges 
form 3.5 to 5%, with almost 98% of them being 
composed triacylglycerols (39). The major fatty 
acid of milk lipids is palmitate (C16:0) (39, 40), 
which activates mTORC1 at the lysosomal com-
partment, similarly to BCAAs (41). 

 
mTORC1 and General Health

Several studies have revealed the relationship 
between increased BMI, BCAA profile and insu-
lin resistance (90). Elevated plasma concentra-
tions of BCAAs (leucine, isoleucine, valine) have 
been proposed as markers for obesity and future 
insulin resistance in children and adolescents in 
the United States (91). 

Human cancer research recognized mTOR 
activity as a common molecular defect present in 
the majority of human cancers (92) and conse-
quently, the mTORC1 signalling pathway has be-
come a major focus in current studies (93). Be-
sides cancer, increased mTORC1 signalling has 
also been associated with obesity, type 2 diabe-
tes (11, 94) and other diseases of the civilized 
world, such as arterial hypertension and Al-
zheimer’s disease (14, 28, 63-66).

Because of its location on the skin, acne is 
considered a visible indicator of systemically 
exaggerated mTORC1 signalling and a predic
table marker for obesity, arterial hypertension, 
insulin resistance, type 2 diabetes mellitus, can-
cer, and Alzheimer’s disease (28, 63-66). 

 Moreover, increased serum insulin and IGF-1 
levels are involved in the development of various 
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cancers (95-97), including most types of epithe-
lial neoplasia (98, 99). Daily milk and dairy con-
sumption during adolescence and adulthood has 
been related to higher risk of prostate cancer 
(100, 101). q

MILK AND HEALTH / NEGATIVE IMPACT

Milk and psychosexual development: As 
mentioned above, western nutrition is as-

sociated with acne break-outs, but it is also an 
important inducer of precocious puberty. Studies 
have revealed the fact that adolescent females 
engaged in sports activities who also adopt a low 
glycemic index diet have a delay in menarche 
(102).

In 1835, the median age of menarche was 16 
years of age, whereas in 1970, the onset of pu-
berty has dropped at 12 years (103), possibly 
due to increased milk and milk protein con-
sumption (104, 105). Interestingly, recent studies 
have related precocious puberty to an increased 
risk of type 2 diabetes, metabolic syndrome and 
obesity in adulthood (106-111).	

A new human phenotype, “the milk giant”, 
has emerged as a consequence of the Western 
diet. The modern man phenotype is characte
rized by increased linear growth (112), increased 
BMI and obesity (113-115), juvenile-onset  
myopia (116), insulin resistance (117) and  
increased risk of type 2 diabetes and cancer  
(28, 63,64, 118).  

An important adverse environmental factor 
and promoter of most modern chronic diseases 
is milk protein consumption, because it induces 
post-prandial hyperinsulinaemia and perma-
nently increased IGF-1 serum levels (2).

Secondarily, Insulin/IGF-1 signalling regulate 
fetal and linear growth and T-cell maturation in 
the thymus, while also being involved in acne 
pathogenesis, atherosclerosis, diabetes mellitus, 
obesity, cancer and neurodegenerative diseases 
(2).

Milk consumption and linear growth – Milk 
is the best source of calcium for bone growth 
and mineralization, therefore it is positively 
associated with the accelerated linear growth 
and body height observed in industrialized coun-
tries over the last centuries (119). 

Milk consumption and obesity – Milk intake 
may also be a risk factor for obesity (120, 121), 
since IGF-1 is a key element required for the dif-

ferentiation of pre-adipocytes into adipocytes 
(122, 123). Adolescent obesity is characterized 
by compensatory hyperinsulinaemia, which by 
chronically suppressing IGFBP-1, increases the 
bioavailability of free IGF-1 (124). 

Milk, insulin, IGF-1 and cancer – As previ-
ously mentioned, IGF-1 is a known mitogenic 
hormone, involved in cell growth, differentiation 
and metabolism (125), therefore potentially pro-
moting tumor development and growth (126) in 
the breast, prostate, gastro-intestinal tract and 
lungs (95).

Milk, IGF-1 and cardiovascular disease – 
35 years ago, Popham et al suggested that milk 
consumption and mortality from ischemic heart 
disease could also be related (127), when a li
near correlation between milk protein consump-
tion and male mortality from coronary heart di
sease has been demonstrated  (128). 

IGF-1 signalling and neurodegenerative 
diseases – Aging is considered the major risk 
factor for the development of neurodegenerative 
disease (129). The insulin/IGF-1 signalling path-
way is an important factor that regulates lifespan, 
aging and neurodegenerative disease (130, 131). 
Consequently, milk consumption, due to its ef-
fects on the insulin-IGF-1 pathway, can be con-
sidered a possible accelerator of neurodegenera-
tive disorders.

Research revealed that circulating IGF-1 can 
penetrate the blood-brain barrier and suggested 
the possibility that reduced IGF-1 signalling in 
the brain can lead to an extended mammalian 
life span (131). q

CONCLUSIONS

Milk consumption has well established health 
benefits such as increased bone mineral 

content, reduced risk of protein-deficiency mal-
nutrition and rickets and protects against dental 
caries and fractures (132-137).

Kapahi et al (138) coined the term “with TOR 
less is more”, which summarizes the core of 
treatment and prevention for the majority of di-
et-induced inflammatory skin disease. 

Nowadays, more than 2000 years after 
Hippocrates wrote “Let food be your medicine, 
and let medicine be your food,” his words seem 
more truthful then ever and action must be taken 
as soon as possible.

Diseases of civilization - the implication of milk, IGF-1 and mTORC1
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The most important nutritional challenge for 
the future will be the attenuation of whey pro-
tein-based insulinotropic mechanisms, which re-
quires an interdisciplinary cooperation between 
medicine, nutrition research and milk processing 
biotechnology.

Acne, the mirror of Western diet, can be re-
garded as a useful indicator of appropriate or in-
appropriate human nutrition. 

The future of nutrition research and develop-
ment, with focus on the generation of milk pro
ducts with an insulinemic index of less than 45, 
will have a huge beneficial impact on the pre-

vention of Modern World’s chronic diseases, 
such as acne, obesity, diabetes, neurodegenera-
tive diseases and cancer (2). q
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