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Small area and subnational population projections are important for understanding long-term demographic
changes. I provide county-level population projections by age, sex, and race in five-year intervals for the
period 2020–2100 for all U.S. counties. Using historic U.S. census data in temporally rectified county
boundaries and race groups for the period 1990–2015, I calculate cohort-change ratios (CCRs) and cohort-
change differences (CCDs) for eighteen five-year age groups (0–85+ ), two sex groups (Male and Female),
and four race groups (White NH, Black NH, Other NH, Hispanic) for all U.S counties. I then project these
CCRs/CCDs using ARIMA models as inputs into Leslie matrix population projection models and control the
projections to the Shared Socioeconomic Pathways. I validate the methods using ex-post facto evaluations
using data from 1969–2000 to project 2000–2015. My results are reasonably accurate for this period. These
data have numerous potential uses and can serve as inputs for addressing questions involving sub-national
demographic change in the United States.

Design Type(s) source-based data analysis objective

Measurement Type(s) population characteristics

Technology Type(s) computational modeling technique

Factor Type(s) age • biological sex • ethnic group • Socioeconomic Factors

Sample Characteristic(s) Homo sapiens • United States of America

1Department of Sociology, Florida State University, 600 W. College Avenue, Tallahassee, USA. 2The Center for
Demography and Population Health, Florida State University, Tallahassee, USA. Correspondence and requests for
materials should be addressed to M.E.H. (email: mehauer@fsu.edu)

OPEN

Received: 19 June 2018

Accepted: 12 December 2018

Published: 5 February 2019

www.nature.com/scientificdata

SCIENTIFIC DATA | 6:190005 | https://doi.org/10.1038/sdata.2019.5 1

mailto:mehauer@fsu.edu


Background & Summary
Population projections have a long history in the social and physical sciences as a means of examining
demographic change, planning for the future, and to inform decision making in a variety of
applications1–7. Scholars typically produce detailed population projections for countries6,8, but growing
demand for small-area demographic analysis, especially as it relates to climate change, highlights the
importance of subnational projections9–14.

Despite the growing demand for subnational population projections, relatively few subnational
population projections in the United States exist. County-level population projections are typically only
available through the gray-literature (such as through the Federal and State Cooperative for Population
Projections) or through for-profit companies and oftentimes only comprise several states rather than the
whole United States. These projections, while incredibly useful, tend to employ a variety of methods,
input data, time horizons, and demographic groupings making inter-state and inter-projection
comparisons difficult. Other research has turned to gridded-population projections for subnational
analysis14. Such data are useful, but lack demographic details by age, sex, or race and utilize geographies
uncommon to other United States statistical reporting. The lack of rigorous small-area population
projections by detailed demographic subgroups has likely hampered our understanding of subnational
demographic change in the United States.

The Cohort-component method for population projection, the typical demographic projection
methodology, requires oftentimes difficult-to-obtain (if not impossible) data on each population
component process (fertility, mortality, and migration), and this data limitation generally limits
population projections to the nation scale where such data are commonly available6,8. Using a
parsimonious cohort-component alternative15, I overcome the data issues associated with a typical
cohort-component projection to produce a set of U.S. county-level population projections by detailed
demographic characteristics (eighteen age groups, two sex groups, and four race groups) controlled to the
five Shared Socioeconomic Pathways (SSPs)8 and make both the R code and subsequent population
projections available for dissemination to a wide audience. These projections can be used to understand
small-area demographic change in the United States.

The Hamilton-Perry method16,17 is a simple, parsimonious technique for producing population
projections directly from multiple age-sex distributions using cohort-change ratios (CCRs)15 and
is a common alternative to cohort-component. The minimal data requirements to produce CCRs and the
ability to implement CCRs in Leslie matrix projection methods18 make CCRs attractive in the production
of small-area demographic projections. However, CCRs suffer from two major disadvantages over the use
of cohort-component: 1) short-term rapid population growth can create impossibly explosive growth in
long-range projections due to the nature of compound growth and 2) small cell sizes can create
impossibly large CCRs with very small numeric change (ie 2 persons –>4 persons yield a doubling each
period).

I use an alternative to CCRs, which I call cohort-change differences (CCDs), which create linear rather
than exponential growth in a blended model where county-race groups projected to grow utilize CCDs
while county-race groups projected to decline utilize CCRs. Blended linear/exponential demographic
projections tend to outperform both linear and exponential models, respectively19. This technique has all
of the advantages of CCRs by remaining just as simple and parsimonious with minimal data
requirements while producing projected populations without impossibly explosive growth. I use
autoregressive integrated moving average (ARIMA) models to project the CCRs/CCDs. All individual
CCRs/CCDs (CCRasrc) over all series are modeled (n = 336024) in individual ARIMA models that
populate the Leslie matrices for projection. I then control the resultant projected age-sex structures to the
five SSPs8.

Out-of-sample validation reveals errors on par with or better than cohort-component population
projection models undertaken at the national and sub-national scale18–22.

Methods
The cohort-component method is the most accepted methodology to produce population projections1,23.
The method makes use of all three population component processes (fertility, mortality, and migration)
and applies them across varying population cohorts to arrive at a future population. Equation 1 outlines
the basic structure of a cohort-component model.

Ptþ1 ¼ Pt þ Bt -Dt þMt;in -Mt;out ð1Þ
Where Pt is the population at time t, Bt is the births at time t, Dt is the deaths at time t, and Mt,in/out refers
to in- or out-migration at time t.

Cohort-component requires data on each component process disaggregated by the dimensionality of
the population to be projected. To produce detailed projections by age, sex, and race, detailed data by age,
sex, and race for each component of change must be available. Certain elements of the components of
change data can be difficult to obtain for complete national coverage of sub-national geographies. For
example, there is no comprehensive data set of both in- and out-migration estimates by age, sex, and race
for all U.S. counties. Birth and death data are typically obtained through the National Center for Health
Statistics (NCHS) vital events registration databases24. Birth data, however, are only available for counties
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with populations greater than 100 k and Death data are only available for cells with more than
10 deaths25. These limitations surrounding fertility, mortality, and migration render a universal
county-level population projection difficult, if not impossible, to complete using publicly available data
sets using a traditional cohort-component model.

An alternative to cohort-component is the Hamilton-Perry method15,17, which uses cohort-change
ratios (CCRs) in place of components to project populations. The general form of the CCR equation is
found in Equation 2.

CCRx;t ¼ nPx;t

nPx - y;t - y
ð2Þ

nP̂x;tþy ¼ CCRx;t U nPx - y;t ð3Þ
Where nPx,t is the population aged x to x + n in time t and nPx-y,t is the population aged x − y to x + n − y
in time t where y refers to the time difference between time periods. These CCRs are calculated for each
age group a, for each sex group s, for each race group r, in each time period t, in each county c. Thus to
find the population of ten to fourteen year olds (5P10) in five years (t + 5), we multiply the ratio of the
population aged 10–14 in time t (5P10,t) to the population aged 5–9 five-years prior in time t-5 (5P5,t-5) to
the population aged 5–9 in time t (5P5,t). ie, if we have 100 5–9 year olds five years ago and we now have
125 10–14 year olds and 90 5–9 year olds, we can project the number of 10–14 year olds in 5 years to be
(125/100∙90 = 112.5).

CCRs offer several advantages and disadvantages over the use of a cohort-component model. CCRs
are considerably more parsimonious than cohort-component. Calculation of CCRs for use in population
projections requires data as minimal as an age-sex distributions at two time periods – data ubiquitous
across multiple scales, countries, and time periods. However, this parsimony comes at a relatively steep
price: CCRs can lead to impossibly explosive growth in 1) long-range projections due to the natural
compounding of the ratios and 2) in small cell sizes with impossibly large CCRs due to a small numeric
change in population. Consider the growth presently occurring in McKenzie County, North Dakota (FIPS
code = 38053) driven by the shale oil boom. In 2010 McKenzie had a population of 6,360 that had
ballooned to 12,792 by 2015, according to the Vintage 2016 population estimates from the US Census
Bureau, with a CCR for the 20–24 year old population of 2.46 (416 to 1,027 persons). Implementing a
50-year population projection using that CCR would create a projected population that is approximately
8,000 times larger (2.4610) – clearly an improbable number given the small, rural nature of its
population – yielding a potential population of approximately 8,000,000. As another example, Loving
County, Texas (FIPS code = 48301) has 2017 estimated population of just 134 persons. Large numeric
change in any given age group could lead to impossibly large CCRs in a county as sparsely populated as
Loving County.

Cohort Change Differences
The implementation of CCRs naturally implies a multiplicative model, typically utilizing Leslie matrices.
It is possible, however, to implement an additive model by using the difference in populations rather than
the ratio of populations.

CCDx;t ¼ nPx;t - nPx - y;t - y

nP̂x;tþy ¼ CCDx;t þ nPx - y;t
ð4Þ

Thus to project the population of ten to fourteen year olds (5P10) in five years (t − 5), we take the
difference between the population aged 10–14 in time t (5P10,t) and the population aged 5–9 five-years
prior in time t-5 (5P5,t-5), and add this difference to the population aged 5–9 in time t (5P5,t). ie, if we have
100 5–9 year olds five years ago and we now have 125 10–14 year olds and 90 5–9 year olds, we project
the number of 10–14 year olds in 5 years to be (125 − 100 + 90 = 115). Figure 1 demonstrates the
similarities of using CCRs and CCDs in a lexis diagram.

CCDs are just as parsimonious as CCRs but have the additional advantage of producing linear growth
rather than exponential growth. Using the same example as McKenzie County, ND, a numeric change of
611 persons in the 20–24 year age group (416 to 1,027) yields a potential population change of
approximately just 6,000 persons over 50 years rather than 8,000,000 (when using a CCR) – much more
realistic growth. However, for areas experiencing population declines, CCDs have the potential of
creating impossible negative populations through linear decline. In this work, I use a blended approach in
which CCDs in areas projected to increase and CCRs in areas projected to decrease create more utility in
the projections, limiting impossible negative populations and explosive population growth, and previous
research has shown blended linear/exponential population projections outperform both linear and
exponential models, respectively19.

Projecting CCRs and CCDs
To project the CCRs/CCDs, I employ the use of an autoregressive integrated moving average (ARIMA)
model for forecasting equally spaced univariate time series data. I use an ARIMA(0, 1, 1) model which
produces forecasts equivalent to simple exponential smoothing. All projections were undertaken in R26

using the forecast package27.
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Where an ARIMA(0, 1, 1) model is

Yt ¼ Yt - 1 þ et - θet - 1 ð5Þ
Ŷ tþ1 ¼ Yt - θet - 1 ð6Þ

where et is independent and identically distributed as Nð0; σ2eÞ. It can be shown that Ŷ tþ1 is an
exponentially weighted moving average of the observations Yt;Yt - 1; ::: with weights θk1ð1 - θ1Þk ¼
0; 1; :::; and that the additional forecasts Ŷ tþj for j > 1 remain constant at Ŷ tþ1

28, [p.158].
I model all individual CCRs/CCDs (CCRasrc) over all series (n = 336024) in individual ARIMA

models. I then input the projected CCRs and CCDs into Leslie matrices to create projected populations29.
There must be special consideration for two specific age groups: the populations aged 0–4 (5P0) and the

population comprising the open-ended interval (∞P85). The populations aged 0–4 (5P0) and 85+ (∞P85) must
have special consideration since the preceding/proceeding age groups do not exist for these age groups.

To project 0–4 year olds, I use the child-woman ratio (CWR)

CWRt ¼ 5P0;t

35W15;t

5P̂0;tþy ¼ dCWRtþy U 35Ŵ15;tþy ð7Þ
Where 35Ŵ15;tþy is the projected population of women in childbearing ages 15–49 at time t + y. I use the
state/race-specific CWRs for member counties.

The population aged 0–4 in time t + 5 are projected by assuming a 1.05 sex ratio at birth (SRB) for the
projected children born of women of childbearing age [15, 50), in time t + 5.

To calculate the CCD/CCR for the open-ended age group,

CCR85;t ¼ 1P85;t

1P80;t - y

1P̂85;tþy ¼ dCCR85;tþy U 1P80;t ð8Þ

CCD85;t ¼ 1P85;t -1P80;t - y

1P̂85;tþy ¼ dCCD85;tþy þ 1P80;t ð9Þ
dCCRx;tþy , dCCDx;tþy , and dCWRtþy refer to the projected values obtained from the individual ARIMA

models (Equation 5).
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If a given race/county combination is projected to increase, I use CCDs and if a given race/county
combination is projected to decline, I use CCRs.

Group quarters
The Group Quarters (GQ) population is a relatively small % of the US total population (just 2.6% of the
US population resided in GQ in Census 2010) but still requires extra consideration. Prisons, college
dormitories, nursing homes, and military barracks are some examples of GQ. I also include those without
permanent living facilities (i.e., the homeless population) in my estimate of GQ. Unlike the resident
population, the typical demographic structure of a GQ oftentimes remains constant and the underlying
populations lack exposure to typical demographic processes in the same manner as the resident
population. College dormitory populations do not age, are nearly always between the ages of 18 and 22,
and fertility rates among college students are very low, for instance. Rather than demographic processes
that change GQ populations, change is often the result of local, state, and federal policymaking resulting
in a new prison, military base realignment, a new college dormitory, etc. These structural changes are
difficult to predict without detailed knowledge of local decision-making. For this reason, I hold GQ
constant throughout the projection horizon.

I calculate GQ as the difference between the household population and the total population in each
age/sex/race/county group from Summary File 1 of the 2000 Decennial Census for the out-of-sample
validation and from Summary File 1 of the 2010 Decennial Census for the population projections. This
difference is the Group quarters population.

I project the household population using my methodology where the household populations are
projected such that the populations at launch year are equal to the total population minus the group
quarters population. Group quarters populations at time t are then added back into the projected
household population to obtain the projected resident populations at time t + 5. This effectively projects
the GQ population of each county as constant at its base value.

Data
Data used to project the populations consist of a single primary data source: the National Vital Statistics
System (NVSS) U.S. Census Populations with Bridged Race Categories data set (https://seer.cancer.gov/
popdata/download.html). These data harmonize racial classifications across disparate time periods to
allow population estimates to be sufficiently comparable across space and time. All county boundaries are
generally rectified as well. The National Center for Health Statistics bridge the 31 race categories used in
Census 2000 and 2010 with the four race categories used in the 1977 Office of Management and Budget
standards.

There are two primary bridged-race data sets. The first covers the period 1969–2016 and utilizes three
race groups: White, Black, and Other. The second covers the period 1990–2016 and uses four race groups
(White, Black, American Indian/Alaska Native, and Asian/Pacific Islander) as well as two origin groups
(Hispanic and Non-Hispanic). Due to small cell sizes, I convert the eight possible race classifications in
the 1990–2016 bridged-race data to just four race groups (White NH, Black NH, Hispanic, and Other
NH). Out-of-sample validation makes use of the three-race-group data set covering 1969–2016 while the
actual population projections use the 1990–2016 data.

In the Technical Validation, I only consider counties that existed prior to year 2000 and are contained
in the NVSS data. NVSS aggregated all counties in Hawaii to the state-level in the 1969–2016 NVSS
bridged race data and I exclude them from the out-of-sample validation. Several counties were created
after 2000 (most notably is Broomfield County, Colorado). The 15 counties excluded from the technical
validation due to boundary changes or other reasons are Hoonah-Angoon Census Area AK 02105,
Kusilvak Census Area AK 02158, Prince of Wales-Outer Ketchikan Census Area AK 02201, Skagway-
Hoonah-Angoon Census Area AK 02232, Wrangell-Petersburg Census Area AK 02280, Adams County
CO 08001, Boulder County CO 08013, Broomfield County CO 08014, Jefferson County CO 08059, Weld
County CO 08123, Hawaii County HI 15001, Honolulu County HI 15003, Kalawao County HI 15005,
Kauai County HI 15007, and Maui County HI 15009.

Projection Controls
As shown below, any set of population projections using these methods are likely to produce higher than
expected populations (see Tables 1, 2, and Supplementary Figure 1). To prevent runaway population
growth, I control the projected output to the Shared Socioeconomic Pathways (SSPs)8. The SSPs are

TYPE num EVAL 2005 2010 2015

CCD/CCR 336024 Median SAPE 6.2% 8.6% 11.1%

CCD 336024 Median SAPE 6.3% 8.8% 11.6%

CCR 336024 Median SAPE 6.4% 9.1% 12.8%

Table 1. Evaluation of Age/Sex/Race/County joint Errors.
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socio-economic scenarios that derive emissions scenarios coupled with climate policies. They are
designed to evaluate both climate change impacts and adaptation measures in harmony with the
Representative Concentration Pathways (RCPs) for emission scenarios. Scholars have downscaled the
SSPs to incredibly detailed gridded population projections14, but they lack detailed demographic
characteristics.

The five SSPs are colloquially named SSP1 (Sustainability), SSP2 (Middle of the Road), SSP3 (Regional
Rivalry), SSP4 (Inequality), and SSP5 (Fossil-fueled Development)30. These five SSPs cover potential
futures involving various growth policies, fossil-fuel usage, mitigation policies (ie emission reductions),
adaptation policies (ie deployment of flood defenses), and population change31. Figure 2 shows the five
SSPs and their relationship to barriers to mitigation (along the vertical axis) and barriers to adaptation
(along the horizontal axis) and the associated projected US population for the scenarios. SSP1
(Sustainability) describes a future with low barriers to both mitigation and adaptation. Conversely, SSP3
(Regional Rivalry) describes a future with high barriers to both mitigation and adaptation.

Ultimately, SSP1 and SSP5 envision a future with optimistic human development but SSP1 contains a
shift toward sustainability and SSP5 contains a continued fossil fuel-based, energy-intensive future. The
difference in drivers leads to a medium projected population under SSP1 but a very high projected
population under SSP5. SSP3 and SSP4 represent less educational investment and health, leading to
increasing inequality. Population growth is low in industrialized countries under SSP3 and medium-low
under SSP432.

Each SSP contains projected population information in five-year increments for 5-year age groups (0–
100+) and two sex groups (Male and Female) for the period 2020–2100 and I truncate the open-ended

YEAR TYPE POPULATION PRED % ERROR

2005 CCD 292,540,441 295,278,936 0.9%

CCD/CCR 292,540,441 295,648,069 1.1%

CCR 292,540,441 297,006,438 1.5%

2010 CCD 306,383,005 311,439,453 1.7%

CCD/CCR 306,383,005 312,185,612 1.9%

CCR 306,383,005 318,289,491 3.9%

2015 CCD 317,731,270 327,977,760 3.2%

CCD/CCR 317,731,270 329,078,676 3.6%

CCR 317,731,270 359,037,997 13.0%

Table 2. Evaluation of overall total errors for the entire United States.
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Figure 2. The five Shared Socioeconomic Pathways (SSPs). Adapted from29. (a) Shows the relationship
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interval from 100+ to 85+ to be consistent with NVSS population estimates. I control my projected age/
sex/race/county projections to the SSPs by using

Pt ¼
pasrc;t
pas;t

UPas;SSP;t ð10Þ

where pasrc,t refers to the age/sex/race/county specific population projected as outlined above at projected
time t, pas,t refers to the age/sex specific population projection at time t, and Pas,SSP,t refers to the age/sex
specific population projection for each SSP at time t. This control allows preservation of the underlying
age structures, race projections, and sex ratios, while ensuring the populations total the SSPs.

I only introduce the SSPs to control the projections for 2020–2100. The technical validation does not
use the SSPs as controls.

Code availability
All R code used to reproduce this analysis are available at https://github.com/mathewhauer/
county_projections_official.

Data Records
The projected populations by age/sex/race/county/year/SSP for all US counties for the period 2020–2100
are available at the Open Science Foundation (https://dx.doi.org/10.17605/OSF.IO/9YNFC).

Data resulting from these projections can be found in SSP_asrc.zip (Data Citation 1).
Projected populations include each US county, 18 age groups (1 = 0–4, 2 = 5-9, …, 18 = 85+), two

sex groups (1 = Male and 2 = Female), and four race groups (1 = White NH, 2 = Black NH, 3 =
Hispanic, and 4 = Other NH).

Technical Validation
To evaluate the projection accuracy, I use the base period 1969–2000 to project the population for
eighteen age groups, two sexes, three races (White, Black, Other), and 3127 counties for the projection
period 2000–2015. I utilize an ex-post facto analysis at periods 2005, 2010, and 2015 using a pure CCD
model, a pure CCR model, and blended model (CCD/CCR). The CCD/CCR model utilizes CCDs if
a county is projected to grow and CCRs if it is projected to decline. Blended models have been shown
to outperform both purely linear or purely exponential models in simple extrapolation approaches to
population projections19.

In keeping with demographic tradition1,20,33, I evaluate the projections using three primary statistics.
To determine the overall accuracy of the projections, I use Absolute Percent Errors (APE) and to
determine the bias of the projections I use the Algebraic Percent Error (ALPE). In the overall joint
evaluations (age/sex/race/county) I have substituted the Symmetric Absolute Percent Error (SAPE)
to account for possible zero cells34.

Equations 12 – 13 describe the equations used to evaluate errors. Pi refers to the projected value and Ai

refers to the actual, observed value.

APE ¼ 9
Ai - Pi

Ai
9 ð11Þ

ALPE ¼ Ai - Pi

Ai
ð12Þ

SAPE ¼ 9ðPi -AiÞ9
ðPi þ AiÞ ð13Þ

Age, Sex, Race, County joint errors
Table 1 shows the joint errors associated with all possible Age/Sex/Race/County combinations. Here the
median error for any given ASRC combination (such as Black Females aged 20–24 in Lincoln County
NV) is approximately 11–13% for all three methods after 15 years. These errors are on par with or better
than many cohort-component models, as shown later.

Overall Errors
Table 2 reports the overall errors for the sum of the population for the whole US. Overall the pure CCD
model outperformed the purely CCR model, suggesting CCDs in this model could produce more accurate
results compared to CCRs. All model variants (CCD, CCR, and CCD/CCR) tend to over-project the
overall population in the United States.

Table 3 reports the overall errors for the sum of the population in each of the counties. Here we can
see that for the median county, the CCD and CCD/CCR models produce similar APEs but the CCD/CCR
model tends to produce slightly lower APEs when compared to the purely CCD model. In all cases, the
errors associated with the CCR model are greater than the CCD or CCD/CCR varieties. The ALPEs for all
three methods are also relatively low, with CCD model producing the lowest bias. All three methods
produce positive bias, suggesting the models are likely to overproject.
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Figure 3 shows the absolute percent errors associated with the total population for the CCD/CCR
model in U.S. counties in 2015. Most states and counties see relatively low errors with the median APE of
just 7.7% by 2015, however some isolated pockets of high errors do exist randomly distributed
throughout the United States, specifically in the Western half of the United States in states such as
Colorado and New Mexico.

Age Structure Error
Table 4 reports the overall errors for age groups at the county level. All three models produce similar
APEs. For any given county, the median error is approximately 11% for 2015 with the blended CCD/CCR
model producing the lowest errors. Similar to the overall errors, the bias tends to be for over-projection of
age groups as all of the ALPEs are positive.

Absolute Percent Error

Less than 0.1 0.1 to 0.2 0.2 to 0.3 0.3 to 0.4 0.4 to 0.5 0.5 to 0.6 0.6 or more Missing

Figure 3. Map of county errors of the total population in 2015 using the CCD/CCR model. This figure

shows the geographic distribution of absolute percent errors. Most states and counties have low error rates of

the total population with isolated pockets of large errors. The missing counties in Colorado are due to

geographic boundary changes associated with the creation of Broomfield County in 2001.

TYPE n EVAL 2005 2010 2015

CCD/CCR 3127 Median APE 2.4% 4.8% 7.7%

CCD 3127 Median APE 2.5% 5.0% 8.1%

CCR 3127 Median APE 2.5% 5.2% 8.9%

CCD 3127 Median ALPE 0.8% 0.7% 2.9%

CCD/CCR 3127 Median ALPE 1.0% 1.2% 3.3%

CCR 3127 Median ALPE 1.1% 1.9% 4.6%

Table 3. Evaluation of overall errors for each county.
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TYPE n EVAL 2005 2010 2015

CCD/CCR 56286 Median APE 5.3% 8.0% 10.8%

CCD 56286 Median APE 5.3% 8.2% 11.4%

CCR 56286 Median APE 5.4% 8.2% 11.3%

CCD 56286 Median ALPE 0.7% 0.6% 2.3%

CCD/CCR 56286 Median ALPE 0.9% 1.0% 2.8%

CCR 56286 Median ALPE 1.1% 1.1% 2.6%

Table 4. Evaluation of Age Group Errors.
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Figure 4. Age structures of various county types. This figure compares the projected age structures to the

observed age structures in twelve counties across four county types using the CCD/CCR model.

(a) Demonstrates counties with major universities, (b) demonstrates sample suburban counties, (c)

demonstrates sample retirement counties, and (d) demonstrates sample counties with large cities. All four

county types have age structures largely preserved despite widely different age structures.
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Figure 4 shows projected age structures in twelve sample counties across four county types – college
counties, suburban counties, retirement counties, and large cities. In all four county types the age
structures are mostly preserved in the projections. All four county types exhibit differing age structures
with important considerations. For college counties, the college-age population (those aged 15–24) do not
age in place within those communities. The large population peaks in those counties show great in-
migration at the college ages and then great out-migration afterwards. In suburban counties, a “double
hump” age structure is typically present with large numbers of both adolescents and middle-aged adults.
Most twenty-somethings cannot afford to live in affluent suburban areas, move away for school or work,
or do not have the family reasons for living there. The large numbers of populations over the age of 55
often identifies retirement communities. Large cities typically contain large numbers of young
professionals with few children. The CCD/CCR model is able to mostly reproduce the population
dynamics present in these four archetype communities.

Figure 5 shows the Algebraic Percent Errors and Absolute Percent Errors by age group for all three
evaluation methods. Three age groups tend to have the greatest bias – 0–4 (~−5%), 15–19 and 85 + (~+ 10%,
respectively). Thus, the projections are likely to overproject the number of 15–19 year olds and those
aged 85+ and under project the number of 0–4 year olds. The bias in the projections (measured as the ALPE,
Fig. 5a) is greatly reduced in nearly all age groups when controlling the populations to the age/sex total of the
United States (“RAKE CCD/CCR”). While controlling the projections greatly reduces the bias it does not
greatly reduce the overall error rates across age, as measured by APE (Fig. 5b).

Race Errors
Figure 6 reports the ALPE and the APE distribution by race group for all counties. The White race group
tends to have the lowest errors associated with the projections, followed by Black, and then Other. This is
likely due to the relative population sizes within each race group. Black and Other populations tend to be
located in more isolated pockets due to the effects of both institutional and self-assortive segregation from
the White population leading to many counties with very small Black and Other populations.

Projections
Figure 7 shows county-level numeric and percentage population change for the period 2020–2100 under
all five SSPs. The five SSPs lead to substantial differences in geographic growth patterns. For instance,
most of California is projected to see increases in population in four of the five SSPs; only SSP3: Regional
Rivalry shows projected population declines in southern California. Conversely, the heavily populated
North East is projected to see significant population declines in all SSPs except SSP5: Fossil-fueled
development. The five SSPs represent different pathways by which the United States could be expected to
grow this century.
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Figure 5. Errors by age group. This figure plots the Median Algebraic Percent Error (ALPE) by age group

(a) and the Mean Absolute Percent Error by age group (b).
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Figure 8 shows comparisons to six state-level population projections. These projections are produced
by (a) the Texas Demographic Center produced in 2014 (http://txsdc.utsa.edu/data/TPEPP/Projections/
Index), (b) the Minnesota State Demographic Center produced in 2015 (https://mn.gov/admin/
demography/data-by-topic/population-data/our-projections/), (c) The Weldon Cooper Center for Public
Service produced in 2016 (https://demographics.coopercenter.org/virginia-population-projections), (d)
the Alaska Department of Labor and Workforce Development produced in 2018 (http://live.laborstats.
alaska.gov/pop/projections.cfm), (e) the California Department of Finance produced in 2017 and updated
in 2018 (http://www.dof.ca.gov/Forecasting/Demographics/Projections/), and (f) the Arizona Office of
Economic Opportunity produced in 2016 (https://population.az.gov/population-projections). These
independent state projections utilize different assumptions, methodologies, launch-years, projection-
horizons, etc. Texas, Alaska, and Arizona incoporate uncertainty in their projections via deterministic
scenarios that incorporate “high”, “medium”, and “low” components of change. For Alaska and Texas,
this corresponds to varying migration scenarios and for Arizona this involves varying scenarios of
fertility, mortality, and migration. My projections show good agreement with the state-level projections.

Usage Notes
The dataset generated here provides detailed county-level population projections by age, sex, and race for
US counties for the period 2020–2100 that are controlled to the SSPs. Producing high-quality, highly-
detailed population projections is a challenging endeavor. With such a large need for sub-national
projections and to better understand the changing demographics of the U.S. population, I produced a set
of quality, detailed projections and make both the R code and subsequent projections available for
dissemination to a wide audience. Here, I presented age-sex-race specific population projections for all U.
S. counties, an ex-post facto evaluation of the projection methodology, and details on the calculations of
these projections.

To ensure quality projections, I employed the use of ex-post-facto evaluations of the projection
accuracy for three variant models: purely additive with CCDs, purely multiplicative with CCRs, and a
blended model with CCDs in areas projected to grow and CCRs in areas projected to decline. I report the
accuracy, bias, and uncertainties associated with these variants using absolute percent error and algebraic
percent error.

Overall, the errors reported here are on par with or better than many cohort-component population
projection models18–22. Table 5 summarizes several population projection evaluations.

While the ex-post-facto evaluation showed relatively low errors, but some areas in the United States,
some demographic sub-groups, and some age groups could exhibit greater error rates. These groups
include but are not limited to non-white populations, young children under the age of 5, young adults
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Figure 6. Race group errors. (a) Shows the Algebraic Percent Errors for all three methods and (b) shows the

APE distribution of errors.
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Figure 7. Projected numeric and percentage population changes for the five SSPs between 2020 and 2100

for counties in the continental United States. AK and HI are available in the final projections but are

excluded from these maps due to space considerations and to improve interpretability. (a) Shows the projected

numeric change and (b) shows the projected percentage change.
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Figure 8. Comparisons to various State-level Population Projections. Several states produce timely population

projections. This figure compares six states’ independent population projections to mine produced here. All state-

level projections are the black dotted lines. Texas, Alaska, and Arizona include projections of uncertainty and

their uncertainty (high, medium, low scenarios) is displayed as the gray shaded area on the respective panels.

Authors Location Methods Analysis Metric Projection
Horizon

Errors

Wilson19 New South Wales Ten cohort-component and CCR variants Total population Median APE 10-years 3.6%–6.5%

Rayer21 US counties Seven extrapolation approaches Total population Mean APE 10-years 9.3%–13.7%

Smith & Tayman20 US counties Cohort-component Age Structure Mean APE 10-years 6.7%–10.6%

Smith & Tayman20 Florida counties CCRs/Cohort-component Age Structure Mean APE 10-years 4.9%–15.4%

Sprague18 US Counties CCRs Age structure Mean APE 10-years 6%–16%

Raftery et al.22 Countries Bayesian Cohort-Component Total population Mean APE 20-years 2.7%

Table 5. Comparable Population Projection Errors.
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aged 15–19, older adults over the age of 85, and parts of Western US (Idaho, Nevada, New Mexico, and
North Dakota, in particular).

These projections, like all projections, involve the use of assumptions about future events that may or
may not occur. Users of these projections should be aware that although the projections have been
prepared with the use of standard methodologies, documentation of their creation, open-source
computer code, and extensive evaluations of their accuracy and uncertainty, they might not accurately
project the future population of a state, county, age, sex, or race group. The projections are based on
historical trends and current estimates. Any small error in the projections early in the projection horizon
could cascade into considerable errors decades later in the projection. Caveat emptor – users beware.
These projections should be used only with full awareness of the inherent limitations of population
projections in general and with knowledge of the procedures and assumptions described in this
document.
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