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ABSTRACT

The Discoidin Domain Receptor 1 (DDR1) receptor tyrosine kinase performs pleiotropic functions in
the control of cell adhesion, proliferation, survival, migration, and invasion. Aberrant DDR1 function
as a consequence of either mutations or increased expression has been associated with various
human diseases including cancer. Pharmacological inhibition of DDR1 results in significant
therapeutic benefit in several pre-clinical cancer models. Here, we discuss the potential implication
in the development of cancer resistance to
chemotherapeutic regimens and speculate on the molecular mechanisms that might mediate such

of DDR1-dependent pro-survival functions

important feature.

In recent years, DDRI1 function has been increasingly
associated to the development of a variety of cancers,
including lung, breast, brain, prostate, liver, head and
neck and pancreas among others [1]. Although DDRI1
shows a pleiotropic nature including context or cell type
dependent antiproliferative functions [1], its expression
is often elevated in solid malignant tumours compared
to neighbouring normal tissue, and high DDRI1 expres-
sion has been correlated with poor prognosis in several
tumour types [2-4]. Furthermore, DDR1 was reported
as the most highly phosphorylated Receptor Tyrosine
Kinase (RTK) in Non-Small Cell Lung Cancer, a strong
indication of its functional implication in this disease
[5]. Finally, DDR1 has been very recently discovered to
be involved in metastatic dissemination phenomenon
[6]. Yet, in spite of these evidences, the exact DDRI1-
dependent molecular mechanisms implicated in cancer
progression are still incompletely understood. This may
be in part due to the complex signalling downstream of
DDR1 as well as to the fact that it can potentially regulate
different and essential features of tumour biology includ-
ing proliferation, survival, differentiation, migration and
invasion [1]. The predominant contribution of DDR1 is
most likely tumour-context dependent and has been
excellently reviewed elsewhere [1]. Evidences from in
vitro studies support the implication of DDRI1 in the
maintenance of important cancer features [7]. Further-
more, DDR1 knockdown in xenograft models of colorec-
tal, lung and pancreatic cancer resulted in a significant
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therapeutic benefit [3,8,9]. Even more interesting from a
pre-clinical perspective, DDR1 inhibition with small
molecule compounds suppressed the tumour growth of
gastric cancer xenografts [10], aggressive KRas-mutant
lung adenocarcinoma (LUAD), both of murine and
human origin [11] and of KRas-driven pancreatic ductal
adenocarcinoma (PDAC) [12].

The findings listed above strongly support the impli-
cation of DDRI function in cancer development. Yet, we
would like to propose that the pro-survival function of
DDR1 might also contribute to an essential cancer fea-
ture that is cell persistence after treatment. This pro-sur-
vival role may be particularly relevant in the context of
genotoxic treatments, which, in spite of the increasing
implementation of targeted therapies, still remain the
standard of care for a substantial number of cancer
patients. In this context, resistance to cancer chemother-
apy is unfortunately the most common clinical output.
Chemoresistance is a truly complex and multifaceted
phenomenon [13] and the discussion of such intricate
scenario is beyond the scope of this article. It is anyway
clear that the deregulation of programmed cell death is
an essential component of this response. As such,
DDRI1-mediated activation of pro-survival pathways
resulting in ineffective induction of cell death may con-
tribute to the onset of a chemoresistant phenotype [8].
Elevated DDR1 expression is associated with particularly
aggressive cancer types and shows a clear correlation
with unfavourable disease prognosis [2-4]. It is therefore
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possible that such high DDRI1 activity may contribute to
the intrinsic chemoresistant phenotype that often
accompanies poor cancer outcome.

Recently, various pre-clinical studies have provided
suggestive evidences of DDRI-dependent functions
cooperating in the onset of the chemoresistant pheno-
type. One of the earliest evidences indicated that DDR1
activation induced NFKB-mediated cyclooxygenase 2
expression resulting in increased chemoresistance of
breast cancer cells [14]. Later on, DDR1 knockdown was
shown to significantly increase the sensitivity of ovarian
cancer cell lines to cisplatin treatment resulting in ele-
vated apoptosis [15]. A similar phenotype was observed
in Hodgkin lymphoma [16]. Likewise, pharmacological
inhibition of DDRI resulted in increased therapeutic
response in PDAC when administered concomitantly
with cytotoxic chemotherapy [12]. Finally, perhaps the
most compelling evidence was recently reported for gas-
tric cancer. In this clinical setting, DDR1 expression was
a prognostic marker only in patients receiving adjuvant
treatment and was significantly correlated with poor sur-
vival [10].

How this contribution to chemoresistance is brought
about in molecular terms is unclear and, taking into
account the pleiotropic DDRI functions, most probably
it will be tumour- and context-dependent. To add an
additional level of complexity, DDR1 interacts with other
signalling pathways with clear pro-survival implications.
These include additional extracellular matrix receptors
such as integrins [7] that not only contribute to the acti-
vation of pro-survival pathways but also to drug
response and chemoresistance [17]. In addition, DDR1
displays a functional crosstalk to cytokines such as TGF-
B, both in homeostasis and cancer [9,18]. Elevated TGEF-
B also correlates with poor cancer prognosis and chemo-
resistance and several combinatorial therapies combin-
ing chemo with TGF-g inhibitors have been recently
proposed [19]. Furthermore, DDR1 association with the
insulin growth factor receptor 1 (IGF-1R) regulates IGF-
IR trafficking and expression levels resulting in collagen-
dependent and independent phosphorylation of DDRI
[20]. Similarly, DDRI and insulin receptor (IR) co-local-
ize and interact upon stimulation with insulin or IGF-2
[21]. As above, the insulin/IGF-R axis has been linked to
chemoresistance in several tumour types [22]. Indeed,
the combination of IGF signalling blockade plus chemo-
therapy has been recently proposed as a treatment for
PDAC and colorectal cancer (CRC) [23,24]. Finally, in
CRC cell lines DDR1-dependent pro-survival effects are
mediated through a direct interaction with Notchl that
is essential to suppress genotoxic-mediated cell death [8].

Although direct interaction, such as that observed for
DDRI1 and IR mentioned above, is not in principle
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mandatory for network co-activity, the formation of
higher order clusters may facilitate co-regulation. De-
regulation caused by RTK overexpression may subvert
spatial compartmentalization control in cancer [25]. The
recent finding that DDR1 forms clusters by lateral associ-
ation upon ligand binding reinforces the importance of
spatial regulation for DDRI signalling [26]. Membrane
clustering is also an important feature for RTK signalling
together with some of the potential chemoresistant co-
actors mentioned above like integrins and TGF-8
[27,28]. Moreover, DDR1 has been described to physi-
cally interact with syntenin 2 and hence PKCa, thus
activating JAK2/STAT3 pathway and sustaining pluripo-
tency factors and self-renewal capacity of metastasis-ini-
tiating cells [6]. It is therefore tempting to speculate that
DDRI overexpression in cancer might facilitate the for-
mation of higher order “signalosomes” that by mem-
brane-proximal co-activation could enhance the pro-
survival properties of cancer cells.

Finally, DDR1 may also be an important mediator in
the acquired chemoresistance, either by the acquisition
of mutations during treatment and/or by chemotherapy-
induced selection of pre-existing mutant subclones.
Indeed, DDR1 mutations can be found in datasets from
several cancer projects [29] (Figure la). We have failed
to identify hotspots within DDR1 when taking into
account the distribution of mutations in several cancer
types. Yet, the mutations so far identified display some
selectivity towards specific protein domains in certain
tumour types. For instance, while most DDR1 mutations
in melanoma tend to cluster in the extracellular and
transmembrane domains those observed in LUAD or
stomach cancer are mainly located in intracellular
regions including the kinase domain (Figure 1b). This
finding could suggest that cancer context may impose
different selective pressures for the accumulation of spe-
cific DDR1 alterations. Whether any of these alterations
might provide a selective advantage during chemother-
apy is unknown. The answer to this question is compli-
cated by the lack of exhaustive clinical records for all
patient data, that would otherwise facilitate the analysis
of any putative correlation between the prevalence of
certain DDRI alterations and the onset of a chemoresist-
ant phenotype. This is further challenged by the paucity
of matched tumour biopsies prior to and following the
chemotherapeutic regimens. Additional studies will be
required to evaluate whether such mutations result in a
relevant impact on DDRI functions and eventually affect
patient response and survival after chemotherapy. Yet, as
indicated in the previous sections, increased DDR1 activ-
ity due to higher expression levels in cancer may suffice
to convey a pro-survival function without the need
of acquired mutations. Interestingly, DDR1 has been
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Figure 1. Schematic summary of DDR1 alterations found in human cancer. a) Frequency of patients showing DDR1 amplification (empty
columns), mutation (grey columns) or deletion (black columns) in the indicated cancer studies. NEP (Neuroendocrine Prostate), MBR
(Metastatic Breast), CSCC (Cutaneous Squamous Cell Carcinoma), MEL (Melanoma), STO (Stomach), PAN (Pancreas), LUAD (Lung Adeno-
carcinoma), CRC (Colorectal), LSCC (Lung Squamous Cell Carcinoma), GLI (Glioma). Data obtained from cBioPortal (www.cbioportal.org).
b) Distribution of mutations with respect to DDR1 domains in patients from the indicated cancer studies. The figure represents single
nucleotide polymorphisms (SNP, red circles), frameshift (grey circles) or mutations within splicing elements (blue circles). The indicated
splice mutant is described as X_58 splice, potentially resulting in a truncated protein. DDR1 domains are indicated as DS (Discoidin
Domain), DS-like (Discoidin Domain Like), TMb (Trans-membrane), JxMb (Juxta-membrane), KD (Kinase Domain). Numbering at the bot-
tom indicates domain boundaries. Data obtained from cBioPortal (www.cbioportal.org).

recently identified as a constituent of a small group of
cancer-associated factors that is maintained after chemo-
therapy treatment, is essential for cell line survival and
elevated in drug-resistant stem-like cancer cells [30].

In conclusion, further experimental work will be
required to evaluate whether, as we hypothesize, the
use of DDRI inhibitors including orally available and
more specific compounds developed recently [10,12],
may provide a much-needed therapeutic benefit for
chemoresistant cancer patients.
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