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Abstract

Colocalization single-molecule methods can provide a wealth of information concerning the 

ordering and dynamics of biomolecule assembly. These have been used extensively to study the 

pathways of spliceosome assembly in vitro. Key to these experiments is the measurement of 

binding times—either the dwell times of a multi-molecular interaction or times in between binding 

events. By analyzing hundreds of these times, many new insights into the kinetic pathways 

governing spliceosome assembly have been obtained. Collections of binding times are often 

plotted as histograms and can be fit to kinetic models using a variety of methods. Here, we 

describe the use of maximum likelihood methods to fit dwell time distributions without binning. In 

addition, we discuss several aspects of analyzing these distributions with histograms and pitfalls 

that can be encountered if improperly binned histograms are used. We have automated several 

aspects of maximum likelihood fitting of dwell time distributions in the AGATHA software 

package.
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1. Introduction

The spliceosome is an extremely complex and highly dynamic molecular machine found in 

eukaryotes [1]. It carries out precursor mRNA (pre-mRNA) splicing by concerted removal of 

intronic sequences and ligation of the flanking exons. The splicing process requires the 

coordinated action of five small nuclear ribonucleoprotein particles (snRNPs): U1, U2, U4, 

U5 and U6. Each snRNP contains a uridine-rich small nuclear RNA (U snRNA) and several 

snRNP-specific proteins [2]. In addition to large-scale conformational rearrangements of the 

snRNPs, numerous other splicing factors assemble, rearrange and/or dissociate from the 

spliceosome during each step of splicing [2–5]. Single-molecule fluorescence microscopy 
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methods such as single-molecule FRET (smFRET) and colocalization single-molecule 

spectroscopy (CoSMoS) have revealed the transient behaviors of the spliceosome that are 

often obscured by ensemble techniques. In fact, splicing was first discovered through single-

molecule imaging of RNA/DNA hybrids using electron microscopy [6, 7]. Recent high 

resolution cryo-EM structures have revealed the overall structure, and detailed inner-

workings of the several key states of the spliceosome [4–6]. The structural rearrangements 

observed in these different states have revolutionized our understanding of splicing 

mechanism as well as validated key single-molecule results concerning juxtaposition of the 

sites of splicing chemistry prior to 5’ splice site cleavage [8–11].

In addition to pre-mRNA splicing, CoSMoS and other colocalization approaches have been 

used to study many other multistep biochemical processes including transcription, 

translation, DNA replication, and actin filament branching [12–18]. In general, 

colocalization experiments involve observation of the binding and release of fluorescent 

molecules from a surface-tethered substrate. Often this is enabled by the use of spectrally 

distinguishable fluorophores (e.g., Cy3 and Cy5), which can be individually excited and 

detected [15]. This has allowed multiple fluorescent species to be followed simultaneously, 

providing unique insights into biomolecular assembly and disassembly pathways. Early 

work on the S. cerevisiae (yeast) splicing machinery revealed that spliceosomes assemble on 

pre-mRNA in a partially ordered pathway with multiple reversible steps, potentially 

identifying points of regulation [19, 20]. Critically, these experiments also revealed 

quantitative kinetic information about several discrete steps in splicing—something which 

was not possible using earlier approaches such as native gel electrophoresis of cellular 

splicing extracts.

In this article, we discuss and compare statistical methods that are used to obtain the fit 

parameters associated with CoSMoS data of spliceosome assembly. We also introduce the A 

GATHering of Analyses (AGATHA) software package that we have developed to facilitate 

maximum likelihood fitting of single-molecule data and its statistical analysis. We illustrate 

the use of AGATHA in fitting data related to assembly of splicing factors on RNAs; 

however, these maximum likelihood methods are generally useful and can be used to 

analyze single molecule data originating from many different types of experiments beyond 

pre-mRNA splicing.

2. Example Data and Initial Analysis

2.1. RNA Binding Dynamics of a Yeast Splicing Factor

In order to demonstrate the methods used in statistical analysis of binding times obtained 

from single-molecule experiments, we will use two recently published data sets describing 

the binding of the yeast splicing factor branchpoint bridging protein (BBP) to pre-mRNA 

substrates containing or lacking the branch site (BS) [21]. In these experiments, Larson et. al 
showed that the presence of a BS promotes longer binding of a fluorescently-tagged BBP 

molecule to a surface-immobilized RNA. CoSMoS experiments were performed using a 

custom built, micromirror TIRF microscope in which the laser excitation beams enter and 

exit through the objective. The workflow for constructing this microscope has already been 

published [22]. Pre-mRNAs, labeled with a red laser-excited Cy5 fluorophore, were first 
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immobilized on a functionalized glass slide. Whole cell extract containing BBP protein 

labeled with a green-laser excited Dy549 fluorophore was then added. This experimental 

set-up for two color CoSMoS is schematically illustrated in Figure 1A. Individual 

fluorophores were visualized as discrete spots of intensity, allowing the locations of the 

RNA and splicing factors to be determined. Images were then recorded from the camera 

over time, creating movies of “red” immobilized RNAs and “green” dynamic BBP proteins. 

Detailed descriptions of the experimental set-up and data collection can be found elsewhere 

[19, 21–26].

2.2. Obtaining a List of Dwell Times from Movies of Single Molecules

In the above experiments with BBP, the fluorescence signal from the surface tethered pre-

mRNAs was then used to define Areas Of Interest (AOIs). AOIs were then mapped from the 

>635 nm field of view (FOV) corresponding to the “red” pre-mRNA locations to the <635 

nm FOV in which the “green” BBP was imaged [25]. This was then followed by pixel 

intensity integration over each AOI, which produced a BBP fluorescence intensity trajectory 

at each pre-mRNA location (Figure 1B). In this example, the peaks in fluorescence intensity 

were identified by changes in signal that exceeded a threshold value of 3.2σs, where σs 

represents the baseline noise of the fluorescence trajectory. In effect, the association/

dissociation of BBP on an individual RNA corresponds to the appearance/disappearance of 

fluorescence peaks from the AOI. The details about mapping and spot discrimination 

methods that can be used to obtain the fluorescence intensity trajectories has been previously 

described [25].

Often a single AOI will show multiple binding events (cf. Figure 1B), and each binding 

event is characterized by its own binding or dwell time. The dwell times observed will 

depend on the biochemical properties of the system studied. For example, inspection of 

individual fluorescence trajectories of BBP binding to a pre-mRNA containing a BS reveals 

both short and long events (Figure 1B). However, when a pre-mRNA lacks a BS, 

fluorescence trajectories of BBP binding reveal primarily short events (Figure 1C). This is 

expected since BBP should most strongly associate with RNAs containing the 5’-

UACUAAC-3’ BS sequence [27].

2.3. Plotting the Single-Molecule Data as a Distribution of Dwell Times

A single CoSMoS experiment can yield hundreds of dwell times derived from many 

different binding events occurring on many different molecules. It is often beneficial to first 

plot the dwell time distribution as a probability density (PD) histogram. In this method, 

dwell times are first binned, and the population in each bin (Nbin) is then divided by the 

product of the bin width (w) and total number of events [Ntot; PD = Nbin/(w × Ntot)]. The 

probability density histograms of dwell times for BBP on RNAs with or without a BS are 

compared in Figure 1D. The dwell time distribution for BBP binding on RNA that lacks a 

BS (dark green) is narrower (shifted towards shorter dwell times) than that obtained from 

BBP binding to RNA containing a BS (light green). This arises due to the scarcity of long-

lived binding events in the absence of the BS. The simplest binding mechanism of BBP on 

pre-mRNA (R) without a BS can be described as a single-step process:
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R + BBP R . BBP (1)

In contrast, the broader distribution of BBP dwell times on the wild-type RNA could be due 

to the presence of two or more populations of BBP-RNA complexes.

A more quantitative and theoretical analysis of the dwell time distributions can provide 

additional information about kinetic features of the BBP-RNA complexes. The probability 

density function (PDF) for the lifetime in an individual state can be described as an 

exponential distribution [28]. For mechanisms with multiple states, the probability density 

function is the sum of the exponential distributions [28]. A general expression for PDF with 

k states can be written as:

PDF(t) = ∑
i = 1

k ai
τi

e
− t

τi  for t > 0 (2)

where τi, and ai, are the time constant and relative amplitude of the ith state respectively, 

such that ai satisfies the constraint ∑ai = 1 It is of significant interest to know the 

characteristic time constants, τi, for each complex as they provide information about the 

interconversion of the complexes and their relative kinetic stabilities. The values of these 

time constants can be extracted by fitting an appropriate equation to the measured data as 

discussed below.

3. Methods for Fitting Distributions of Dwell Times

3.1. Obtaining the Fit Parameters and Associated Errors

The method of least squares is frequently used to estimate the best fit parameters. Although 

this approach is straightforward and powerful, it can have its pitfalls if not used carefully 

[29–32]. This is particularly apparent when used to fit data which are not normally 

distributed. An alternative approach is the Maximum Likelihood (ML) estimation [33, 34]. 

For a sufficiently large dataset, different methods should ideally yield the same estimates for 

the fit parameters. However, in practice, the extracted fit parameters can often depend on the 

chosen method. This will be illustrated in Section 3.3 by comparing the fit results obtained 

from two independent methods. For simplicity, we will focus the discussion below on fitting 

and error estimates of kinetic parameters using the ML approach since it is likely less 

familiar to most biochemists.

Using Equation (2), the probability density for observing the first data point, t1, reads as

PDF t1 = ∑
i = 1

k ai
τi

e
−

t1
τi (3)
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As the measurement of one dwell time is independent of any other dwell time observation 

within an experiment, the probability density for observing all the n measured data points, t1, 

t2…and, tn can be written as a product of the individual probability densities. This total 

probability density defines the likelihood function (Lik (τi, ai)):

Lik τi, ai = ∏
j = 1

n
∑
i = 1

k ai
τi

e
−

t j
τi (4)

In other words, the likelihood function characterizes the probability to observe a particular 

set of dwell time values obtained from an experiment. Maximizing the function, Lik (τi, ai), 

with respect to the parameters τi and ai will make the observed data most probable. Hence, 

the values of τi and ai that yield a global maximum of Lik (τi, ai), are the best fit parameters 

of the PDF to the experimentally observed distribution.

It is important to note that the experimental conditions set limits on the measured dwell 

times (t), tm ≤ t ≤ tx, such that nothing shorter than tm can be measured in an experiment of 

duration tx. The parameter tm is often limited by the camera frame rate. These constraints on 

the dwell times calls for a conditional PDF instead of Equation (2), which can be defined as

PDF(t) = a

e
−

tm
τ − e

−
tx
τ

e
− t

τ

τ ,  where a = 1. (5)

Similarly, one could obtain the conditional PDF for bi-exponential distribution,

PDF(t) = a1 e
−

tm
τ1 − e

−
tx
τ1 + a2 e

−
tm
τ2 − e

−
tx
τ2

−1
a1
τ1

e
− t

τ1 +
a2
τ2

e
− t

τ2 , (6)

with a1 + a2 = 1.

To obtain the best fit of Equation (5) to the dwell time distribution of BBP on RNA without 

a BS (Figure 1D), we maximize the logarithmic likelihood function:

L(τ) = ln(Lik(τ)) = − n . ln e
−

tm
τ − e

−
tx
τ − n . ln(τ) + ∑ j = 1

n −
t1
τ . (7)
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Optimizing the product of the probabilities (Equation 4) is often computationally inefficient 

since this product can yield a very small number. With increasing number of data points, this 

product can run out of precision very quickly due to the floating-point arithmetic used by 

computers. Therefore, it is better to maximize the log of the likelihood function as it 

converts the product of the individual probability densities to summation and preserves the 

fitting results.

Figure 2A shows the plot between L(τ) vs τ in which L(τ) gets a maximum value of −909.6 

at τmax = 8.6s. This τmax value is the ML estimate for the fit parameter τ for BBP on RNA 

without BS. In other words, this parameter indicates that BBP has a characteristic dwell time 

of 8.6 s when associating with RNAs lacking a BS sequence.

Similarly, one could obtain the ML estimates for a1, τ1, a2, and τ2 of the double exponential 

PDF [Equation (6)], which is useful for describing the dwell time data set of BBP on WT 

RNA. In this case, the more complicated equation is necessary to correctly fit the appearance 

of both long and short dwell times in the data set when BBP binds RNAs containing a BS 

sequence. A contour plot of the logarithmic likelihood function, L(τ1,τ2) [corresponding to 

the double exponential PDF, Equation (6)], is plotted as a function of τ1 and τ2 by holding 

a1 constant (Figure 2B). L(τ1,τ2) obtains a maximum value of −1639.5 at τ1 = 12.9 s and τ2 

=119.3 s with the ML estimate for a1 = 0.74.

Apart from estimating the optimized fit parameters, it is equally important to quantify the 

errors associated with the fit parameters. There are many possible ways to estimate the 

errors: a standard approach to assess the standard deviations corresponding to the parameters 

estimates is by finding the diagonal elements of the covariance matrix of Lik (θi) with 

respect to fit variables, θis [35]. Here, the covariance matrix can be written as C (θ) = I (θ)
−1, where

I θi, θ j = − ∂2 Lik (θ)
∂θi∂θ j θimax, θ jmax

(8)

θimax, and θjmax are the ML estimates for θi, and θj respectively. For a single exponential 

distribution, it is straightforward from Equations (5) and (8) to obtain an analytical 

expression for standard deviation, σ ≈ τmax/ n, where τmax is the ML estimate of τ. With a 

total of 288 binding events/dwell times, and τmax = 8.6 s. (data corresponding to Figure 2A) 

the standard deviation turns out to be ~0.5 s. It is more difficult to obtain the analytical 

expressions for the standard deviations associated with all parameters of higher order 

exponential distributions. As a result, one can approach these problems using numerical 

analysis.

Another way of estimating the error in fit parameters is by finding likelihood intervals. The 

likelihood intervals (i.e., the ranges for the fit parameters) are the values most probable 

within certain neighborhoods around the maxima [29]. For example, consider the line, 

L(τmax) − m plotted against the likelihood curve. The points of intersection of these curves, 

τlow and τhigh, will provide a good estimate for the uncertainty in τmax (Figure 2A). The 
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error estimate, in this particular case, depends solely on the value of m. The likelihood 

intervals for m = 0.5, and m =2 correspond to one and two standard deviation limits 

respectively [35]. For higher order exponential distributions, a similar procedure can be 

employed by estimating the error on one parameter while keeping the other parameters 

constant. Likelihood intervals estimates for a1, τ1 and τ2 are shown in Table 1 for a 

distribution containing two exponential terms. Likelihood intervals estimates are relatively 

easy to obtain for a single exponential fit but can become laborious with increasing numbers 

of variables.

In many cases, the statistical method of bootstrapping is advantageous over the 

aforementioned methods in estimating the errors of the fit parameters [36]. Bootstrapping is 

a resampling method in which a new data set is generated from the observed data by random 

sampling, with the new and original data sets being of the same size. Ideally, this resampling 

method preserves the actual distribution of the parameters present in the observed data set. 

An example of the bootstrap analysis is illustrated in Figure 2C, where 1000 data sets were 

simulated from the dwell times for BBP on RNA without a BS. The ML estimates for τ were 

obtained for all 1000 data sets. The distribution of ML estimates for τ was analyzed by 

plotting a probability density histogram and then fitting to a Gaussian distribution. The 

Gaussian fit yields a mean value of 8.6 s and standard deviation of 0.7 s for τ, which are 

comparable to the ML estimate and 0.5-unit likelihood intervals (Figure 2A). In a similar 

fashion, one could obtain the uncertainty in the estimates for a large number of parameters in 

a fit. A direct comparison of the error estimates for fit parameters obtained from the 

likelihood intervals, and the bootstrap analysis can be found in Table 1.

3.2. Determining the Goodness of the Fit

Although ML is a powerful technique, care should be taken in assessing the goodness of the 

fit to the unbinned data. This can be done by using statistical tests such as the likelihood 

ratio or Akaike Information Criterion (AIC) for model selection based on the likelihoods 

[37, 38]. For example, a log likelihood ratio test can identify if the dwell time distribution 

for BBP association with WT RNA is better described by single or double exponential 

PDFs. The MATLAB function Iratiotest efficiently implements this procedure and, in this 

example, results in rejection of the model based on a single exponential PDF. For fitting of 

data sets with unknown kinetic features, it is often advisable to begin fitting to a single 

exponential PDF. The log likelihood ratio test or AIC can then be used to test if the simplest 

model is sufficient or if more complicated PDFs are needed to model the data. Figure 2D 

shows good agreements between the data and the fit curves for BBP dwell times on RNAs 

with and without a BS.

Critically, it is important to consider the histogram binning since one could easily bias the fit 

if the histogram is not binned properly. For example, we created a histogram with six bins of 

equal width (100 s each) for the dwell time data set of BBP binding to WT RNA along with 

the curve obtained using a ML fit of the unbinned data (Figure 3A). It is evident that the ML 

fit curve (red) deviates significantly from the equally binned histogram as well as the curve 

obtained from least squares fitting of the bin centers (blue line and black points). To correct 

this, one can construct an unequally binned histogram with narrow bin widths for shorter 
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intervals. We have plotted the same ML curve along with unequally binned histograms of 

the same data set in Figures 3B and C. The agreement between the ML fit and the histogram 

gets better with increasing number of unequal bins.

3.3. Comparison Between Maximum Likelihood and Least Square Fitting

The data plotted in Figure 3 also illustrate a potential pitfall of least squares fitting of dwell 

time distributions. In this case, the least squares fits were obtained using the curve fitting 

application of MATLAB (Table 2). With least squares fitting, it is possible to obtain ill-

defined fit parameters with large standard deviations despite having reasonable R2 or 

adjusted R2 values. In this case, the least squares fitting is improved by increasing the 

number of bins and by using variable bin sizes. If the bin number is large, the least squares 

predictions for the parameters approach those obtained by ML estimates (compare 

parameters in Table 1 vs. Table 2). However, the least squares method results in broader 

confidence intervals as compared to the ML error estimates.

Additionally, least square fits can be highly sensitive to user inputs for upper and lower 

bounds for the fit coefficients as well as sample size. To see the effect of the latter, we 

simulated data sets of different sizes with a1 = 0.75, τ1 = 10.0 s, and τ2 = 100.0 s. As sample 

size increases, ML estimates gets very close to the input parameters with narrower 

confidence intervals (Table 3). However, increasing the number of bins with these large data 

sets does result in overestimated values of τ2 in least squares fits (Table 3). This can be 

attributed to the fact that the least squares method is very sensitive to outliers, assumes the 

variables to be independent, and the error to be normal. In cases where error terms are not 

normal, the confidence intervals of the least square estimates are not reliable [24–26]. In our 

simulation, maximum likelihood outperforms the least squares method for typical “single 

molecule”-sized data sets of 100–1000 data points.

4. Use of AGATHA Software for ML Fitting

Here, we introduce “AGATHA” (A GATHering of Analyses), a MATLAB-based software 

package that provides tools for the analysis of the dwell times obtained from CoSMoS 

experiments (https://github.com/hoskinslab/AGATHA). AGATHA includes a number of 

subprograms including those for ML analysis (Plotting Histogram), identifying patterns of 

signal appearance (Sequential Arrival, Simultaneous Arrival, and Short Counter), 

photobleaching analysis (Counting Photobleaching Steps), and data visualization (Two 

Color Plot). These programs are accessed via the AGATHA GUI (Figure 4). The Sequential 

Arrival and Simultaneous Arrival programs are useful for deducing pathways of signal 

appearance and disappearance in three color CoSMoS experiments (i.e., determining 

pathways of biomolecular assembly or disassembly [15]). These programs classify binding 

events into various categories depending upon times of signal appearance or disappearance. 

The Counting Photobleaching Steps program counts the number of bleaching steps present 

in a fluorescence intensity trace by fitting the data to a step function. This is useful for 

counting the number of fluorophores (biomolecules) present in a molecular assembly. 

Instruction manuals for each of these programs are found in their respective GUIs. Here, we 

restrict ourselves to the Plotting Histogram program as the others are beyond the scope of 
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this article. We also note that Woody et. al have independently developed a similar program, 

MEMLET (MATLAB Enabled Maximum Likelihood Estimate Tools), that utilizes the ML 

approach to fit data by providing a variety of general or user defined PDFs [34].

4.1. Plotting Histograms

The Plotting Histogram program (PH) facilitates plotting of dwell time data using various 

methods for bin size selection as well as ML fitting of the unbinned data. PH calculates the 

appropriate number of bins from the chosen method (described below) and also can remove 

empty bins by combining neighboring bins. Along with the histogram, it displays the error 

in the counting statistics of each bin center by calculating the binomial distribution variance, 

σ bin
2 , as, σbin = nP(1 − P), where n is the total number of the data points, and P is the 

probability of the binding event [39]. Finally, it returns the fit parameters and associated 

standard deviations by using ML and bootstrap analysis. AGATHA simplifies ML data 

analysis by requiring the user to supply the relevant inputs to entry widgets in the PH GUI 

(Figure 5, numbers 1–7). Fitting results are also displayed in widgets once the program has 

been run (Figure 5, numbers 8 and 9). Below we describe data entry and use of each of the 

widgets in the PH GUI.

4.2. Instructions for Using the Plotting Histogram Program

1. Mode: In this widget, the user either instructs the software to automatically 

calculate the number of bins plotted in a histogram (Automatic) or the user can 

manually input the bin edges in increasing order (Manual).

2. Histogram: When Automatic is selected in widget 1, the user then selects one or 

more of the listed methods for calculating the number of bins in the histogram.

Sturges: According to the Sturges rule, the number of the bins for a 

histogram are estimated based on the range of the given data. This calculates 

the number of bins, m as m = (1 + log2 (n)), where n is the total number of 

data points [28, 40]. It will perform poorly if the number of data points is 

less than 30 and the points are not normally distributed [41]. As dwell times 

often follow an exponential distribution (similar to Figure 3A), this method 

may fail to show an appropriate trend in the data.

Freedman-Diaconis: This method is less sensitive to outliers in a given data, 

and might be more suitable for data with heavy-tailed distributions [42]. It 

uses a bin width, h, as h = IQR(X)/(n)1/3 where X is the dwell time data, n is 

number of data points, and IQR is the interquartile range of X.

Scott: This method works better if the data is mostly normally distributed. 

However, this rule is appropriate for other distributions as well. It calculates 

bin width, h, as h = 3.5 * σX /(n)
1 3, where σX is the standard deviation of the 

data set X, and n is number of data points [43].

Middle: This method make use of all three methods mentioned above, then 

choses the middle (median) value for bin numbers.
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Optimal: An optimization principle is used to minimize the expected least 

squares loss function between the histogram and an unknown underlying 

density function [43]. The optimal bin width, h*, is obtained as a minimizer 

of the formula, (2M − V)/h2, where M and V are mean and variance of the 

data points across bins with a width h. Optimal number of bins, m, are 

calculated as, m = (max(X) − min(X))/h*, where max(X) and min(X) are the 

maximum and minimum value of the given data set X. In our experience, 

this method is frequently used for plotting dwell time distributions obtained 

from CoSMoS experiments.

All: This selects all of the above methods and runs them independently.

3. Events: In this widget, the user specifies whether or not the dwell time data is 

reported in units of time or camera frames.

4. Time Units and Intervals: The time units (seconds or milliseconds) are selected 

within this widget as well as the interval type from the drop-down menu. 

AGATHA uses input interval files generated by the GLIMPSE and IMSCROLL 

programs (available at https://github.com/gelles-brandeis/CoSMoS_Analysis) 

[25]. In these programs the dwell times are classified as different types of 

intervals, each assigned an integer value between −3 and +3. Details about event 

classification have been previously described [25] and depend on whether or not 

the binding the event has been observed in its entirety as well as whether or not 

binding events or times between binding events are being analyzed.

5. Function: PH is equipped with single, double and triple exponential probability 

distributions for fitting the measured data. These functions as labelled as 

Expfallone_mxl, Expfalltwo_mxl, and Expfallthree_mxl, respectively. PH 

currently includes equations for processing up to third order PDFs but can be 

expanded to higher distributions if needed.

6. Input PH Parameters: The user should enter the experimentally-constrained times 

Tx (length of the experiment) and Tm (minimum time that can be resolved by the 

experiment) along with a number for Nboot (number of datasets to be simulated 

for bootstrap analysis which is the same as the number of iterations of bootstrap 

analysis). For example, Nboot=1000 was used for Figure 2C. For single 

exponential distributions, the user should enter an initial estimate for Tau [τ in 

Equation (5)]. For bi-exponential PDFs, the user gives initial guesses for Tau1, 

Tau2, and ap. The input value ap is converted to a1 = 1/(1 + ap2) before 

maximizing the log likelihood in order to constrain between 0 and 1. Similarly, 

for tri-exponential distribution fit parameters are extended to Tau1, Tau2, Tau3, 

ap1 and ap2, and the a1, a2, and a3 are deduced using equations a1 = 1/(1 + ap12), 

a2 = (1 − a1)/(1 + ap22) and a1 + a2 + a3 = 1. If the initial guesses are far off, the 

program may crash and fail to find a solution. In which case, new values can be 

chosen and the analysis rerun.

7. Update: Clicking the update button will ask the user to select the intervals file to 

be analyzed and to create an output folder for the results.
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8. Output Fitting: The ML estimates for the fit parameters are returned here.

9. Output Bootstrap data: The mean and standard deviation of the fit parameter 

values are displayed after bootstrap analysis. The histograms before and after the 

fitting will be saved in the same directory with the same name as the input 

interval file. The program also saves the bootstrap results for all the fitting 

parameters.

5. Conclusion

AGATHA and MEMLET facilitate ML fitting of complex single molecule data with user-

friendly capabilities and options that complement standard software programs. MATLAB’s 

DF tool application only provides a single exponential function for fitting and cannot fit 

probability density distributions for multiple exponential or user-defined PDFs. Both 

AGATHA and MEMLET are capable of fitting data with multi-exponential PDFs and 

provide estimates and errors for fitting parameters using ML and bootstrapping techniques. 

Additionally, MEMLET directly provides likelihood ratio model testing, allows the user to 

input any PDF, and can take text or MATLAB variable files as input. On the other hand, 

AGATHA is supplemented with various tools for histogram binning and error calculation. 

Current versions of AGATHA require input in IMSCROLL format [21]; however, these 

types of files can be easily constructed from any data set.

In conclusion, ML fitting of unbinned dwell or binding time data is often preferable 

compared to least squares fitting of binned data sets, which can be skewed based on how the 

histogram has been constructed. Implementation of ML methods in MATLAB can be 

laborious. Fortunately, this is greatly simplified by the AGATHA software.
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Highlights

• Single-molecule methods can measure discrete binding events between 

individual biomolecules

• Maximum likelihood fitting of unbinned binding data can be used to 

determine kinetic parameters

• AGATHA software automates many time-consuming steps in data fitting and 

histogram analysis
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Figure 1. 
Analysis of single-molecule binding dynamics of BBP on RNA substrates. (A) Cartoon 

schematic of the CoSMoS experiment described by Larson and Hoskins [21] in which 

green-labeled BBP binds to and dissociates from a surface-immobilized, red-labeled RNA 

substrate either containing (wild-type, WT) or lacking the BS sequence. (B) Single-molecule 

fluorescence intensity versus time plot showing multiple BBP binding events on a single WT 

RNA molecule. One of such binding event is magnified to highlight a single BBP dwell 

time. (C) Single-molecule fluorescence intensity versus time plot showing multiple BBP 

binding events on a single RNA molecule lacking the BS sequence. (D) Comparison 

between the probability density histograms of dwell times for BBP on either the WT RNA 

or the substrate lacking the BS.
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Figure 2. 
Fitting and statistical analysis of BBP dwell time histograms. (A) The log likelihood 

function, L(τ), for BBP binding times on RNAs without a BS is plotted as a function of 

parameter τ. The τ low and high values, where the L(τmax) −0.5 line intersects the L(τ) 

curve, are the 0.5 unit intervals: 8.1 s and 9.1 s. Similarly, the 2 unit limits are 7.6 s and 9.6 

s. (B) Contour plot of the log likelihood function, L(τ1, τ2)versus τ1 and τ2 for a1 = 0.74. 

L(τ1,τ2) corresponds to the double exponential PDF with dwell times of BBP on WT RNA. 

(C) Probability density histogram of the ML estimates of τ that are obtained from 1000 

random samples (Nboot=1000) of the dwell time dataset for BBP on RNA lacking a BS via 

bootstrapping. The histogram was fit with a Gaussian distribution to obtain a mean value, μ 
= 8.6 s, and the standard deviation, σ = 0.7 s. (D) Probability density histograms of the dwell 

times for BBP are fit with either a single (RNA without BS, black) or double exponential 

(WT RNA, red) PDFs. Fit parameters and their respective error estimates for both data sets 

are given in Table 1.
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Figure 3. 
Bin size-dependent comparison between ML and least squares fits of dwell time 

distributions. The probability density histograms for the dwell times of BBP on WT RNA 

with (A) 6, equally-sized bin widths, (B) 6, variably-sized bind widths, and (C) 9, variably 

sized bin widths. Lines represent the fits to the bin centers (black points) using least squares 

methods (blue) or fits of the unbinned data using ML methods (red). For both methods, the 

fit parameters and their corresponding confidence intervals are given in Tables 1 and 2.
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Figure 4. 
Screenshot of the startup screen for AGATHA software, a collection of programs designed 

to expedite analysis of dwell times and fluorescence intensity trajectories obtained from 

CoSMoS experiments.
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Figure 5. 
Screenshot of the Plotting Histogram GUI. Red numbers indicate widgets which require user 

input, and blue numbers indicate locations of the fitted parameters output. In addition, this 

program also outputs various histograms which are saved in a user-specified folder.
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Table 1

Comparison between the likelihood intervals and the bootstrap confidence intervals for single and double 

exponential fits.

RNA Function Parameter ML estimate Likelihood Intervals Bootstrap
Mean

Confidence Intervals

m = 0.5
68%

m = 2
95%

σ
68%

2σ
95%

Without BS Single τ (s) 8.6 8.1 9.1 7.6 9.6 8.6 7.9 9.2 7.2 10.0

−0.5 0.5 −0.9 1.1 −0.7 0.7 −1.4 1.4

WT RNA Double a1 0.74 0.70 0.77 0.67 0.79 0.74 0.69 0.78 0.65 0.82

−0.03 0.03 −0.06 0.06 −0.04 0.04 −0.08 0.08

τ1(s) 12.9 11.9 13.9 10.9 15.2 12.9 11.6 14.2 10.3 15.5

1.0 1.0 −2.0 2.3 −1.3 1.3 −2.6 2.6

τ2(s) 119.4 107.2 133.9 96.5 151.1 120.9 104.4 137.4 87.8 154.0

−12.2 14.6 −22.9 31.6 −16.5 16.5 −33.1 33.1
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Table 2

Analysis of the double exponential fit to the dwell time distribution for BBP on WT RNA using nonlinear least 

squares fitting of histogram bin centers.

No. of Bins Bin Size Parameter Non Linear Least 
Square Fit

Confidence Intervals R2/Adj R2 Corresponding Figure

68% 95%

6 Equal a1 0.91 −1.32 3.14 −5.06 6.88 0.9465/0.9108 3A

τ1(s) 38.5 −29.2 106.1 −142.6 219.5

τ2(s) 116.1 −2399 2631 −6617 6849

6 Variable a1 0.82 0.74 0.91 0.59 1.06 0.9996/0.9994 3B

τ1(s) 15.4 13.5 17.2 10.4 20.3

τ2(s) 104.9 22.1 188.0 −116.7 326.5

9 Variable a1 0.70 0.65 0.75 0.59 0.81 0.9992/0.9989 3C

τ1(s) 12.4 11.6 13.2 10.6 14.2

τ2(s) 107.4 69.3 145.5 21.4 193.5
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Table 3

Dependence of fitting methods on sample size using simulated data with a double exponential PDF.

Data points Number of Bins Bin Size Parameter Maximum Likelihood
Results*

Nonlinear
Least Squares Results*

R2/Adj R2

100000** 1000 Equal (1 s/bin) a1 = 0.75 0.74 (0.74–0.74) 0.72 (0.72–0.72) 0.0.9997/0.9997

τ1 = 10 s 10.9 (10.9–10.9) 10.2 (10.1–10.2)

τ2 = 100 s 101.8 (100.3–103.1) 123.4 (120.6–126.1)

10000** 1000 Equal (1 s/bin) a1 = 0.75 0.75 (0.73–0.76) 0.73 (0.69–0.72) 0.0.9975/0.9975

τ1 = 10 s 10.9 (10.5–11.3) 10.2 (10.1–10.2)

τ2 = 100 s 102.7 (107.5–97.1) 122.0 (114.7–130.1)

10000* 15 Variable a1 = 0.75 0.75 (0.73–0.76) 0.76 (0.74–0.79) 0.0.9999/0.9999

τ1 = 10 s 10.9 (10.5–11.3) 10.8 (10.5–11.1)

τ2 = 100 s 102.7 (107.5–97.1) 116.0 (80.5–151.5)

1000 100 Variable a1 = 0.75 0.76 (0.72–0.80) 0.73 (0.67–0.81) 0.9951/0.9950

τ1 = 10 s 9.5 (8.3–10.7) 10.4 (10.1–12.8)

τ2 = 100 s 102.7 (85.7–119.7) 124.8 (88.3–161.4)

1000 10 Variable a1 = 0.75 0.76 (0.72–0.80) 0.76 (0.72–0.80) 0.9999/0.9998

τ1 = 10 s 9.5 (8.3–10.7) 11.08 (10.6–11.6)

τ2 = 100 s 102.7 (85.7–119.7) 114.4 (60.9–167.9)

100 10 Variable a1 = 0.75 0.79 (0.59–0.99) 0.68 (0.72–1.00) 0.9988/0.9982

τ1 = 10 s 8.9 (3.3–14.5) 6.9 (9.8–14.1)

τ2 = 100 s 90.7 (17.2–193.2) 50.0 (−3.9 to 103.9)

*
Intervals for each fitting method are shown in parentheses.

**
Maximum likelihood fitting results obtained using MEMLET software [34]. MEMLET is more efficient at processing large data sets (≥10000 

data points) than AGATHA software.

Methods. Author manuscript; available in PMC 2020 January 15.


	Abstract
	Introduction
	Example Data and Initial Analysis
	RNA Binding Dynamics of a Yeast Splicing Factor
	Obtaining a List of Dwell Times from Movies of Single Molecules
	Plotting the Single-Molecule Data as a Distribution of Dwell Times

	Methods for Fitting Distributions of Dwell Times
	Obtaining the Fit Parameters and Associated Errors
	Determining the Goodness of the Fit
	Comparison Between Maximum Likelihood and Least Square Fitting

	Use of AGATHA Software for ML Fitting
	Plotting Histograms
	Instructions for Using the Plotting Histogram Program

	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1
	Table 2
	Table 3

