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Abstract: Two-photon excitation fluorescence microscopy is widely used to study the 
activity of neuronal circuits. However, the fast imaging is typically constrained to a single 
lateral plane for a standard microscope design. Given that cortical neuronal networks in a 
mouse brain are complex three-dimensional structures organised in six histologically defined 
layers which extend over many hundreds of micrometres, there is a strong demand for 
microscope systems that can record neuronal signalling in volumes. Henceforth, we 
developed a quasi-simultaneous multiplane imaging technique combining an acousto-optic 
deflector and static remote focusing to provide fast imaging of neurons from different axial 
positions inside the cortical layers without the need for mechanical disturbance of either the 
objective lens or the specimen. The hardware and the software are easily adaptable to existing 
two-photon microscopes. Here, we demonstrated that our imaging method can record, at high 
speed and high image contrast, the calcium dynamics of neurons in two different imaging 
planes separated axially with the in-focus and the refocused planes 120 µm and 250 µm 
below the brain surface respectively. 

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. 
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, 
journal citation, and DOI. 

1. Introduction 

With the advancement of ultrafast laser technology, two-photon excitation fluorescence 
(2PEF) microscopy is becoming a common imaging tool in life science research. In 
particular, 2PEF microscopy is well suited for studying the neuronal activity in awake, 
behaving animal models. Cortical circuits process information in a highly distributed, parallel 
manner in three-dimensional (3D) space distributed over six anatomically distinct layers. 
Precisely how neural activity in these different layers enables information processing remains 
a key question in the field of neuroscience. Neural network models highlight the importance 
of quantitative understanding of the relationship between the activities in the input and the 
output layers on a trial-to-trial, rather than on an averaged basis [1,2]. In view of that, various 
techniques have been developed to enable fast 3D scanning in multiphoton microscopy. For 
example, several groups have developed versatile 3D random excitation for functional neural 
imaging with ultrafast acquisition rate based on the free beam steering capability afforded by 
pairing acousto-optic deflectors (AODs) [3–5]. Electrically tunable lens (ETL) is another 
useful device to aid the axial optical scanning without direct mechanical interference on the 
specimen. Because of the ease of use, ETL appeals to many scientists in developing new 
imaging techniques. Its applications cover not only the widefield and the confocal microscopy 
fronts [6,7] but also extend further to enhance multiphoton imaging techniques enabling the 
rapid excitation within volumes [8–11]. The remote focusing technique can assist high axial 
scan rates in a high numerical aperture (NA) condition without introducing aberrations [12–
14]. This is particularly favourable for in vivo optical imaging in which: (1) high photon flux 
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at the focus is crucial for the non-linear fluorescence excitation; (2) mechanical agitation of 
the specimen must be avoided. Apart from that, wavefront shaping devices such as spatial 
light modulators (SLM) and deformable mirrors (DM) have played important roles in brain 
imaging. For instance, their applications can be found not only in the aberration correction for 
in vivo imaging [15,16] but also in the multi-site targeted excitation of neurons [17,18] and 
the rapid spatiotemporal remote focusing [19]. Also, in conjunction with the DM based axial 
refocusing, concurrent multifocal detection can be realised through multiplexing the laser 
pulse train [20,21]. Similar time multiplexing via pulse delay but with added spatial beam 
separation through multiple beamsplitters has been reported to enable simultaneous 
multiplane 2P calcium imaging [22]. While the aforementioned techniques have various 
technical merits, their complexity hampers easy incorporation into existing multiphoton 
microscopy systems. 

In order to capture the fluorescence of genetically encoded calcium indicators GCaMP 
[23] from axially separated neurons, we set out to develop an imaging technique that 
overcomes the slow axial scanning in a standard multiphoton microscope while retaining the 
planar image quality at minimal cost. This was achieved based on the idea of creating 
instantaneous optical switching of the laser propagation towards different beam pathways 
constructed with and without the remote focusing system. Thus, an AOD was integrated into 
the multiphoton microscopy system to obtain fast, inertia-free optical path switching. This 
permitted beam steering within microseconds to access different optical pathways that were 
configured to refocus the beam. One beam path entered the microscope in the conventional 
manner, whereas the other beam path passed through a remote focusing system that could 
translate the focal plane by up to few hundreds of micrometres away from the nominal focal 
plane. In attaining a high NA refocusing over an extended volume for an existing commercial 
microscope, we adopted the remote focusing technique by incorporating a pair of high NA 
lenses outside the microscope body with one lens allowed to translate in the z direction. This 
technique allows the axial translation of the focal spot along the optical axis without 
introducing substantial aberrations and circumvents the mechanical interference on both the 
animal specimen and the focusing objective lens. Integration of both the AOD switching and 
the remote focusing techniques can be easily implemented to convert a standard single plane 
scanning microscope into a fast switching multiplane microscopy system for studying 
stimulated responses in a 3D neuronal circuit at a fraction of the cost of more complex 
multiplane imaging methods. 

Here, we characterised the performance of this system using a 3D bead sample and 
demonstrated its application through multiplane recording of neocortical circuit activity with 
neurons expressing GCaMP6s. 

2. Design principles and validation 

2.1 Quasi-simultaneous multiplane imaging system design 

2.1.1 Acousto-optic deflector for fast switching and its dispersion compensation 

An AOD affords a motion-free laser beam steering capability. However, the diffractive nature 
of the tellurium dioxide (TeO2) crystal that constitutes the main driving component of the 
AOD is wavelength sensitive. Depending on the spectral bandwidth of the laser source used, 
the beam may experience appreciable spatial and temporal dispersion propagating through the 
AOD. In most cases in multiphoton microscopy, where a Ti:Sapphire ultrafast laser with the 
spectral bandwidth of ~10 nm is the preferred excitation source, the beam will be stretched 
spatio-temporally by the AOD leading to a significant reduction in the 2P excitation power 
and adverse distortion in the acquired fluorescence images. Therefore, pre-compensation for 
the AOD spatio-temporal dispersion has to be taken into account. Here, we used a SF11 
equilateral dispersive prism (PS859, Thorlabs, USA) to recover the initial laser beam shape 
and its pulse duration [24–27]. Because the AOD functions as the fast horizontal beam 
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scanner in the quasi-simultaneous multiplane imaging system, the prism was placed before 
the AOD so that the incident beam at the prism remained stationary introducing the negative 
group delay dispersion (GDD) required to cancel the positive dispersion induced in the AOD 
(see Fig. 1(a)). However, to compensate for the dispersion utilising a prism, the procedures of 
positioning the prism can be divided into two stages. The first stage is to determine the 
correct incident angle of the laser at the prism to compress the distorted beam shape, while 
the second stage is to determine the correct separation between the prism and the AOD to 
minimize the broadened pulse duration. 

To function in the Bragg regime as an optical scanner, the first order diffraction angle of 
AOD is defined as [28] 

 1st

f

V

λθ =  (1) 

where θ1st is the first order diffraction angle, λ is the laser wavelength, f is the carrier 
frequency of the acoustic wave and V is the velocity of the acoustic wave. From Eq. (1), we 
can derive the spatial dispersion constant, σAOD to be 

 1st
AOD

d f

d V

θσ
λ

= =  (2) 

For the AOD model chosen (DTSX-400-980, AA Optoelectronic, France) in developing 
the multiplane functional imaging system, the corresponding central carrier frequency, Fc at 
the laser wavelength 900 nm is 87.5 MHz and the acoustic velocity, V is 650 ms−1. All 
analyses for the spatial and temporal dispersion compensation were conducted with reference 
to this central frequency of the AOD and the ultrafast laser wavelength of 900 nm. Based on 
Eq. (2), the calculated spatial dispersion constant, σAOD is 0.00771°/nm. By rotating the prism 
and thus defining the angle of incidence of the laser, the spatial dispersion induced by the 
AOD can be cancelled out based on the condition that [26] 

 0AOD prismσ σ+ =  (3) 

where σprism is the negative spatial dispersion constant of prism. σprism being [27] 

 prism

d dn

dn d

βσ
λ

= ⋅  (4) 

where β is the exit angle of the laser from the prism, n is the refractive index of the prism and 
dn

dλ
 is the prism chromatic dispersion. The detailed derivation of 

d

dn

β
 can be found in Ref 

[27]. At 900 nm, the corresponding values of n and 
dn

dλ
 for SF11 glass are 1.760 and 

−0.427°/nm respectively. Here, in our prism-AOD compensation analysis, we consider only 

the magnitude of 
dn

dλ
. At the given apex angle, α, of the prism, i.e. 60°, the progression of 

the spatial dispersion constant with increasing incident angle can be plotted to find the 
intersection point at which both the values of σprism and σAOD equate and thus, helping to 
establish the correct angle of incidence of the laser at the prism for beam shape recovery. In 
our instance, the optimum laser incident angle estimated is 55.6°. 
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where τout is the output pulse width after the prism-AOD, τin is the input pulse width, GDDAOD 
is the positive GDD of the AOD and GDDprism-AOD is the resultant negative GDD generated by 
the prism-AOD pre-compensation unit with incremental L distance as expressed by Eq. (6). 
On the basis that the value of GDDAOD parameter was 6250 fs2 as provided by the 
manufacturer and the τin value was fixed at 131.5 fs, the final output pulse duration was 
calculated. In this instance, we momentarily discounted the difference in the pulse width 
between the initial and the optimal pre-compensation conditions as it did not contribute to the 
variation in the final pulse width with the increment in the prism-AOD distance. As depicted 
in Fig. 5(c), the change in the pulse duration with increasing prism-AOD distance as observed 
experimentally is in good agreement with the predicted trend, albeit there is a small offset 
between the trough positions at which the minimum pulse width was measured. This is 
because it can be difficult, in practice, to precisely measure the actual distance between the 
prism and the AOD. 

3. Hardware development and experimental methods 

3.1 Quasi-simultaneous multiplane microscopy construction 

The quasi-simultaneous multiplane functional imaging system was built around a Sutter 
Moveable Objective Microscope (MOM, Sutter, USA) that offers a slimline microscope 
frame with accessible window to the resonant scanner, which allows easy hardware 
integration for additional bespoke imaging modalities (see Fig. 6). A femtosecond 
Ti:Sapphire laser (Mai Tai BB, Spectra-Physics, USA) tuned to 900 nm was used as the two-
photon excitation source. The components that made up the add-on multiplane functional 
imaging modality primarily consisted of the DTSX-400-980 AOD for fast inertia-free optical 
switching, the SF11 equilateral prism for pre-compensation of AOD material dispersion and 
the C330TMD-B aspheric lenses for high NA remote focusing. The normal of the prism was 
fixed at ~56° with respect to the incident excitation laser at which angle the focused beam 
spot was detected to be the smallest using the CMOS camera. The prism was placed ~25 cm 
prior to the AOD at which distance the resultant pulse width after propagating through the 
AOD was measured to be the shortest using a collinear autocorrelator. The remote focusing 
system comprised two face-to-face C330TMD-B aspheric lenses with the first lens, AL1 
mounted on a 3-axis fine translation stage (MBT616D/M, Thorlabs, USA) while the second 
lens, AL2 was fixed in position. The acoustic frequency of the AOD was programmed to 
switch between 87.5 ± 4 MHz, i.e. 83.5 MHz and 91.5 MHz respectively, to provide two 
distinct optical paths: (1) one bypassed the remote focusing system leading to the nominal 
focus; (2) the other encompassed the refocusing system leading to the axial focal 
displacement. Both beam paths were then recombined with a polarising beamsplitter. The 
AOD access time in the microsecond range permitted near simultaneous imaging of two focal 
planes at different depths in vivo. A cascade of 4f telescopic imaging systems were 
constructed utilising pairs of achromatic doublets so as to reimage the pupil plane of the 
aspheric lens onto the objective lens. Given that in vivo imaging generally suffers some 
degree of specimen motion, especially in the axial direction, it is desirable to have an 
extension of the depth of focus so that the neurons of interest stay in the image, even in the 
presence of specimen movements. For this reason, the beam was expanded to partially fill the 
back aperture of the objective lens to about 50% of the aperture diameter. This created an 
extended axial focus with an approximate length of 12 µm. The emitted fluorescence was 
captured by the full NA of the objective lens, thus maintaining the detection efficiency. This 
configuration pre-emptively makes the multiplane functional imaging more robust to the 
specimen motion, maintaining the focus on the active neurons during imaging over a period 
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We observed no marked differences in the lateral resolution – the value remained largely 
around ~1.6 µm across various scan depths. Compared to the theoretical estimation of ~1.1 
µm for the half-filled objective lens, the lateral resolution determined empirically appears to 
be lower. From Fig. 7(a), it can be seen that the axial size of the PSF is minimum, i.e. ~13.7 
µm, at the zero refocusing and starts to broaden as the displacement of the focal spot from the 
nominal focal plane increases. The initial axial resolution measured at the zero refocusing is 
slightly lower than the predicted with the value of ~12.5 µm. These experimental 
observations can be attributed to the incomplete cancellation of the higher order phase terms 
at the objective pupil plane by the less perfect reimaging condition between the high NA 
aspheric singlet lens and the water dipping compound objective lens, added to the possible 
presence of the residual spatial dispersion from the AOD. Therefore, the wavefront distortion, 
predominantly the longitudinal spherical aberration, further manifested itself as the spread of 
the axial intensity distribution of the PSF, when the distance between the aspheric lenses in 
the remote focusing system is either increased or decreased to shift the focal spot away from 
the nominal plane. Apart from that, the scattering effect in the 3D bead sample can also lead 
to the elongation of the axial PSF especially when the excitation beam is refocused deeper 
into the sample and thus, contributing to the loss of symmetry in the excitation efficacy over 
the refocusing depth as illustrated in Fig. 7(b). As we intended to create images with an 
extended depth of focus, these extra PSF broadening effects were not considered to be 
detrimental to the imaging task. 

4.2 In vivo quasi-simultaneous multiplane calcium imaging of mouse somatosensory 
cortex 

Here, we demonstrated the usefulness of the quasi-simultaneous multiplane imaging 
technique we developed for fast recording of neuronal activity in two separate neocortical 
layers. 
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