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Abstract: The choriocapillaris is a unique vascular plexus located posterior to the retinal 
pigment epithelium. In recent years, there is an increasing interest in the examination of the 
interrelationship between the choriocapillaris and eye diseases. We used several techniques to 
study choroidal perfusion, including laser Doppler flowmetry, laser speckle flowgraphy, and 
optical coherence tomography angiography (OCTA), but with the latter no standardized 
algorithm for quantitative analysis has been provided. We analyzed different algorithms to 
quantify flow voids in non-human primates that can be easily implemented into clinical 
research. In-vivo, high-resolution images of the non-human primate choriocapillaris were 
acquired with a swept-source OCTA (SS-OCTA) system with 100kHz A-scan/s rate, over 
regions of 3 × 3 mm2 and 12 × 12 mm2. The areas of non-perfusion, also called flow voids, 
were segmented with a structural, intensity adjusted, uneven illuminance-compensated 
algorithm and the new technique was compared to previously published methods. The new 
algorithm shows improved reproducibility and may have applications in a wide array of eye 
diseases including age-related macular degeneration (AMD). 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement  

1. Introduction 

In recent years, there is an increasing interest to study and image the choroid that provides 
oxygen supply to the outer retina including the photoreceptors [1,2]. Imaging the choroid 
using optical imaging modalities is difficult, because of the anatomical location behind the 
retinal pigment epithelium (RPE) that is highly scattering. Laser Doppler flowmetry [3] and 
laser speckle flowgraphy have been used to quantify microvascular flow [4], but 
measurements are limited to the fovea because the inner retina is avascular in this region. 
Laser speckle flowgraphy has also been used to study flow in larger choroidal vessels [5] and 
color Doppler imaging allows for the measurement of blood velocities in the posterior ciliary 
arteries that supply the choroid [6], but these approaches provide limited lateral resolution. 
More recently optical coherence tomography angiography (OCTA) [7–9] was introduced to 
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image the choroid providing volumetric information on the microvasculature, but 
quantification is still challenging. 

Swept-Source OCTA (SS-OCTA) has been used in a wide variety of recent studies as a 
non-invasive tool to visualize the choroid in-vivo [8–11]. Compared to spectral-domain 
OCTA, SS-OCTA offers several advantages including reduced fringe washout, lower 
sensitivity roll-off, increased imaging range with improved detection efficiency and dual 
balanced detection [12]. Commercial SS-OCT/OCTA systems for imaging the posterior pole 
of the eye operate at wavelengths around 1060 nm, which provides improved penetration over 
commercial spectral domain OCT/OCTA systems that operate at wavelengths around 850 nm 
[13]. The advantage of using SS-OCT/OCTA to investigate choroidal thickness has been well 
documented [14–16] and some commercial SS-OCT/OCTA systems have implemented 
automated choroidal segmentation. Enface choroid circulation analysis still remains 
challenging given the lack of distinct boundary between the choroidal layers, as well as low 
signal from choroidal vessels in OCT/OCTA scans, mainly due to the signal loss of the light 
penetrating through the RPE [17]. 

The choriocapillaris is the anterior-most choroidal layer underneath the RPE. This is a 
thin, monolayer vascular network that provides metabolic supply to the photoreceptors, 
carries out waste from the RPE, and regulates the temperature of the posterior retina [1]. The 
geometry of the choriocapillaris perfusion map is non-homogenous and several histological 
studies [18–21] have shown the decrease of vascular perfusion from the posterior pole to the 
periphery. In OCTA images, unlike choroidal vessels, choriocapillaris is seen as bright pixels, 
while the non-perfused areas are shown as dark regions, and referred to as flow voids. The 
sizes and patterns of flow voids can be altered by age-related macular degeneration [22–24], 
myopia [25], and hypertension [26]. However, the knowledge of how to optimally use OCTA 
to evaluate choriocapillaris remains very limited. Different algorithms have been developed to 
quantify the flow voids, but the comparison between these approaches is lacking. There is a 
disagreement in terms of the density of flow void in normal human eyes from various studies 
using OCTA [26–29], which may be related to different segmentation methods, different 
instruments used, the compensation mechanisms for projection artifacts from the superficial 
blood vessels, and the different thresholding algorithms. In addition, most of the studies 
focused on a relatively small region centered at the fovea, and have not provided an insight to 
more peripheral regions of the choriocapillaris. 

In the present study, we used SS-OCTA derived choriocapillaris images from non-human 
primates to evaluate and compare different algorithms. So far, to the best of our knowledge, 
no study has been conducted to image the choriocapillaris in non-human primates using 
OCTA. The rationale behind this approach was two-fold. On the one hand, the similarity of 
ocular vascular network to human, the presence of a macula and cone photoreceptor 
predominance [30] make the non-human primates an attractive animal model to investigate 
the role of the choroid in AMD-like pathology. Importantly, many studies have reported signs 
of AMD in older non-human primates and some studies also observed early onset drusen 
[31]. On the other hand, the images are less influenced by motion artifacts, which can affect 
quantification of flow voids. Motion-related artifacts make comparison of different 
algorithms difficult, because limited reproducibility can either be a result of poor image 
quality or of poor algorithm performance. 

Two different protocols (3 × 3 mm2 and 12 × 12 mm2) were used and a new algorithm was 
developed to analyze the choriocapillaris plexus. This algorithm accounts for the dark 
appearance of deeper choroidal vessels and the uneven illuminance that is particularly 
important when wider fields are used. 
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repeatability test was conducted where each imaging protocol was repeated three times with 
3-minute acquisition interval. The intraclass correlation coefficient (ICC) was calculated and 
reported. Repositioning of the monkey eye was performed through live fundus display 
between volume acquisition cycles to ensure the proper alignment of the imaging beam. 

2.3 Image processing 

The RPE layer was automatically segmented by a built-in segmentation tool from the review 
software (PLEX Elite 9000 Angiography Analysis, Carl Zeiss Meditec, Dublin, CA, USA), 
and manual correction was performed when necessary. The choriocapillaris was then 
segmented within a thin slab (31-40 µm) below the RPE, and a maximum projection in the 
axial direction was performed to extract the enface choriocapillaris map. Both angiographic 
and morphological enface images were exported from the review software and transferred to 
MATLAB for further analysis (MathWorks, Inc., Natick, MA, USA). Indeed, the 
choriocapillaris was found to be thinner than 10 µm in histology [20], but usually it is more a 
question whether it is practical to reliably segment such a thin slab from a commercial 
system. A summary of the thicknesses of choriocapillaris slab segmentations from other 
groups is shown in Table 1, and 10 µm thin slab segmentation used here is lower than the 
average. 

Table 1. A summary of thicknesses of choriocapillaris segmentations from previous 
studies. 

Authors Year 
Choriocapillaris slab 

thickness 

Borrelli et al. [23] 2017 30 µm 

Nicolo et al. [34] 2017 10.4 µm 

Zhang et al. [29] 2018 20 µm 

Nesper et al. [35,36] 2016 29 µm 

Spaide [26,37] 2016 10 µm 

Montesano et al. [28] 2017 29 µm 

Kurokawa et al. [38] 2017 7.8 µm 

Uji et al. [27] 2017 6 µm 
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improved diagnostic performance may be expected, but this needs to be confirmed in future 
studies. 
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