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Abstract: We present a new optical coherence tomography (OCT) angiography method for 
imaging tissue microvasculature in vivo based on the characteristic frequency-domain flow 
signature in a short time series of a single voxel. The angiography signal is generated by 
Fourier transforming the OCT signal time series from a given voxel in multiple acquisitions 
and computing the average magnitude of non-zero (high-pass) frequency components. Larger 
temporal variations of the OCT signal caused by blood flow result in higher values of the 
average magnitude in the frequency domain compared to those from static tissue. Weighting 
of the signal by the inverse of the zero-frequency component (i.e., the sum of the OCT signal 
time series) improves vessel contrast in flow regions of low OCT signal. The method is 
demonstrated on a fabricated flow phantom and on human skin in vivo and, at only 5 time 
points per voxel, shows enhanced vessel contrast in comparison to conventional correlation 
mapping/speckle decorrelation and speckle variance methods. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Angiography has provided a valuable means to investigate and assess the vasculature in 
normal and diseased tissue [1]. It has been performed using invasive, high-resolution (sub-
micrometer) microscopy with 100 µm-1 mm field of view (FOV) and using non-invasive 
methods that have worse resolution but broader FOV, such as magnetic resonance imaging, 
computed tomography and position emission tomography [1–3]. Bridging these two extremes 
is an extension of optical coherence tomography (OCT) [4], optical coherence tomography 
angiography (OCTA), which offers label-free, non-invasive imaging of small blood vessels, 
including arterioles, capillaries and venules, at intermediate resolution and FOV [5]. Whereas 
OCT image contrast is determined by the level of backscattering in tissue, OCTA images the 
microvascular network via motion-induced changes in the OCT signal. OCTA achieves a 
resolution and FOV in the ranges of 2-20 μm and a few mm to ~20 mm, respectively [6], and 
an imaging depth limited to <1 mm, due to the strong scattering of OCT light in tissue. Thus, 
in vivo applications in humans focus mainly on transparent or superficial tissues, including 
the eye (largely the posterior retinal and choroidal microvasculature) [7–9], and the dermal 
skin [10,11]. 

OCTA has been widely applied in clinical ophthalmology with commercially available 
imaging systems [12,13]. It has also been used to study cutaneous microvasculature and its 
temporal alteration in normal human subjects and patients with cutaneous conditions, such as 
wounds and burn scars [11,14,15], psoriasis [16], and skin cancer [17,18]. The clinical 
applicability of OCTA imaging will likely be further improved by extending the FOV to 
image larger tissue areas [6], extending the imaging depth to visualize deeper vessels [19], 
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improving the sensitivity of detection of the smallest vessels with low flow contrast [20], and 
improving the processing speeds to achieve real-time visualization. 

OCTA identifies blood vessels by differences in the OCT signal versus time between that 
arising from moving scatterers in blood and that due to the surrounding largely static tissue. 
Such flow-induced differences are encoded in both the amplitude and phase of the complex 
OCT signal [5]. OCTA variants utilize one of: temporal changes in the OCT amplitude signal 
(e.g., speckle variance and correlation mapping/speckle decorrelation) [10,11,21–23]; the 
phase signal (e.g., Doppler OCT and phase variance) [24–26]; or the complex OCT signal 
(e.g., complex differential variance and OCT-based microangiography (OMAG)) [27–29]. 

Related methods that exploit the vasculature signature in the detected signal in the 
frequency domain, the main topic of interest here, have been explored for both velocimetry 
and angiography [30–33]. In early work on velocimetry, Barton et al. [30] analyzed the 
frequency content of the OCT intensity signal using a sliding window. The ratio of the highest 
to the lowest frequencies was used to determine flow velocities in cross-sectional images. 
Also for velocimetry, Szkulmowski et al. proposed a joint spectral and time domain method 
to process multiple OCT A-scan spectra (n = 40) acquired from the same locations, estimating 
flow velocities via independent Fourier transformations in time and in the optical frequency 
domain [31]. Szkulmowska et al. extended the method to three-dimensional (3D) velocimetry 
and angiography, and reduced the number of spectra acquired (n = 16) from each lateral 
location [32]. For angiography, Matveev et al. recently utilized the fast-changing OCT signal 
components to visualize vessel structures by Fourier transform of closely adjacent, but not co-
located, complex A-scans (acquired at a density of 16,384 A-scans/mm) to extract the 
frequency spectrum. This was followed by high-pass filtering to eliminate the low frequency 
(static) components and inverse Fourier transformation to highlight the vessel structures [33]. 
The exceptionally high number of samples acquired within each B-scan practically limits the 
area that can be analyzed. 

In this paper, we propose an alternative method that analyzes the frequency spectrum of 
the detected OCT signal taken from multiple acquisitions at a given voxel. The higher 
average magnitude of non-zero frequency components in the short-time series OCT signal 
intensity induced by the blood flow is used to identify vessels. Weighting by the OCT signal 
is incorporated to improve the contrast of blood vessels with low OCT signal and mitigate 
surface reflection artifacts. We characterize the method by studying the vessel contrast 
achieved from a flow phantom and from human skin tissue in vivo. We compare the short-
time series OCTA method to commonly used intensity-based OCTA methods, including 
speckle decorrelation (correlation mapping) and speckle variance [11,21,34]. The results 
demonstrate, for a modest increase in acquisition times for a given A-scan rate, improved 
vessel contrast and visibility, in particular, for small vessels. Further, its simplicity lends itself 
to rapid calculation. These advantages suggest its potential for future applications. 

2. Methods 
2.1 Short-time series OCTA algorithm 

The basic assumption underlying the method is that blood flow induces stronger non-zero 
frequency components in the OCT signal than those induced by the surrounding static tissue 
[31,33]. As with other OCTA methods, the method first requires the acquisition of co-located 
B-scans (i.e., B-scans from the same lateral location) at multiple time points, throughout an 
acquisition volume. The OCT intensity signal (i.e., the modulus of the complex amplitude of 
the OCT signal) at the same voxel locations comprises a discrete time series with the nth 
sample at location (x, y, z) denoted by: 

 1( , , ; ) ( , , ; ( 1) ),nI x y z t I x y z t n T= + −  (1) 
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where (x, y, z) is the voxel coordinate in the fast scanning, slow scanning and depth axes, 
respectively; I represents the OCT intensity signal as a function of the voxel coordinate with 
time point tn for n, an integer ranging from 1 to 2N + 1, where 2N + 1 is the total number of 
co-located B-scans (i.e., total number of time samples) acquired from the same lateral 
location; and T is the time interval between co-located B-scans. 

The time series at each voxel in Eq. (1) is discrete Fourier transformed to obtain the 
complex frequency signal with the frequency components F denoted by: 

 0( , , ; ) ( , , ; ),mF x y z f F x y z mf=  (2) 

where f0 is the interval between neighboring discrete frequencies, determined by 1/[(2N + 
1)T]; and m is the index of the (two-sided) frequency components ranging from -N to N. The 
average magnitude of the complex frequency signal at non-zero frequencies is then calculated 
as 

 , 0
( , , ; )
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 (3) 

Alternatively, if many B-scans are acquired for analysis (i.e., 2N + 1 ≥ 29 for the scanning 
parameters used in this study), instead of a single frequency component, a narrow band 
centered on the zero-frequency component is excluded (i.e., high-pass filtered). This narrow 
band should be optimized for a particular tissue and setup, and will depend on the frequency 
spectrum recorded from static tissue. The optimization for human skin tissue, recorded using 
our system parameters, is shown in the Results section. However, there, we demonstrate that 
only a small number of co-located B-scans (~5) is required for practical imaging of the vessel 
network with our method. Thus, the elimination of only the zero-frequency component, as 
shown in Eq. (3), applies. 

After Fourier transformation, voxels with low OCT signal intensity lead to a 
correspondingly low magnitude of the complex non-zero frequency components, even if there 
is flow. To enhance the flow detectability at low OCT signal levels, we incorporate weighting 
by the inverse of the OCT signal intensity (i.e., zero-frequency component scaled by the 
number of co-located B-scans), given by: 
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where ( , , )I x y z  is the mean OCT signal intensity and ( , , ;0)F x y z  is the zero-frequency 

component of the 2N + 1 time samples at the same location. To avoid division by zero and 

over-emphasizing the signal in regions with excessive noise, ( , , )I x y z  is first averaged, and 

thresholded at an empirically chosen signal level of 16 dB above the noise floor to replace the 
low signal with the threshold. We used an averaging window of 3 × 3 pixels in the cross-
sectional plane, approximately 1.4 and 1.9 times the lateral and axial resolutions, respectively. 
It is used both for our method and for the accompanying speckle decorrelation calculation, 
empirically chosen to improve the signal-to-noise ratio (SNR) of angiography without 
significantly degrading the imaging resolution. We assume that an odd number of co-located 
B-scans are acquired for each lateral location for simplicity, but even numbers are applicable 
as well. The vessel contrast created by Eq. (3) and the further improvement introduced by 
weighting according to Eq. (4) will be demonstrated and discussed in Section 3. 

2.2 OCT scanning of flow phantom and human skin 

OCT scans were acquired using a commercial spectral-domain scanner (an upgraded 
TELESTO II, Thorlabs Inc., USA) to demonstrate the short-time series OCTA method on 
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both a flow phantom and in vivo on normal human skin. The system has a center wavelength 
of 1300 nm and provides an imaging resolution of 5.5 µm (in air) and 13 µm, respectively, 
axially and laterally (as defined by the vendor). The scanner was operated at 76 kHz (A-
scan/s), below its maximum of 146 kHz. Scans were acquired in one of two modes: 2D 
scanning by acquiring 200 co-located B-scans from a single lateral location with a FOV of 6 
× 3.6 mm (1024 × 1024 pixels) in x and z directions, respectively; and 3D scanning with a 
FOV of 6 × 1.8 × 3.6 mm in x, y and z directions. In 3D scanning mode, 240 lateral (y) 
locations were scanned with a set of 5 co-located B-scans acquired from each location, using 
the same pixel sizes in x and z directions as in the 2D mode. It took approximately 4 and 21 s 
to acquire a scan, respectively, in the 2D and 3D scanning modes. In addition, the time 
interval between B-scans was 17.8 ms (~56 B-scans/s) for both 2D and 3D modes, leading to 
a discrete frequency spectrum with components up to 28 Hz. 

For comparison to short-time series OCTA, speckle variance in the same 3D scans was 
calculated over the 5 co-located B-scans using the method presented by Mariampillai et al. 
[21]. Speckle decorrelation was determined for each adjacent pair of co-located B-scans using 
the formula described in [15] with a window of 3 × 3 pixels in the fast scanning and depth 
axes. This led to 4 decorrelation B-scans from each lateral location, which were then averaged 
to generate a single enhanced decorrelation B-scan. In addition, the speckle decorrelation and 
speckle variance was weighted by the averaged and thresholded OCT signal at the 
corresponding pixels to reduce the noise [10]. The same threshold level used in short-time 
series OCTA was used here. The same lateral averaging window (3 × 3 pixels) was applied to 
the short-time series and speckle variance images to ensure a fair comparison. 

Blood vessels were mainly compared over a depth range of 300 µm from the skin tissue 
surface (determined from the OCT depth scan by assuming an average refractive index of 1.4) 
to ensure sufficiently strong signals from all three methods. For each method, the maximum 
OCTA signal of each A-scan in this depth range was used to generate a projection image of 
vessels. For visualization, the same colormap was used in the projection and cross-sectional 
OCTA images. The lower and upper thresholds were set at, respectively, the 50% and 99.5% 
points of the cumulative distribution function of the OCTA signal in the image. These 
thresholds were empirically chosen to maximize the vessel contrast without loss of vessels 
with low signal. The thresholds were then used to normalize the vessel signal for each method 
to the same range (0-1). For quantification, each projection image was processed to measure 
the vessel area density, defined as the ratio of the total vessel area to the total tissue area in 
the thresholded vessel image. The threshold was set using Otsu’s method for each image [35]. 
This method assumes two classes of pixels (i.e., foreground and background pixels) following 
a bi-modal histogram to calculate the optimal threshold to separate the two classes of pixels. 
The vessel images were thresholded using the optimal threshold estimated by this method to 
determine the vessel area and density. 

The silicone flow phantom was fabricated in house by mixing Elastosil P7676A and 
P7676B fluid (Wacker Chemie AG, Germany) with titanium dioxide in a 3D-printed plastic 
container [36]. The container was customized with two holes in the sidewalls to hold a small 
glass capillary (outer diameter: 80 µm; inner diameter: 50 µm) that mimicked a vessel 
orthogonal to the incident optical beam. After curing, the result was a capillary embedded in 
the silicone that mimicked the static tissue. The capillary was then connected to a syringe 
filled with a polystyrene microsphere suspension (nominally 0.5-µm or 2-µm diameter) to 
mimic the blood flow. The syringe was connected to a pump (Fusion 200, Chemyx Inc., 
USA) to introduce and control the flow speed. The scattering properties of the phantom were 
adjusted by tuning the ratio of titanium dioxide to Elastosil P7676A and P7676B so that the 
phantom had a signal attenuation that approximately matched the attenuation of normal 
human skin. 

Human subjects (n = 4) were recruited for in vivo OCT scanning with ethics approval 
from the Human Research Ethics Committee of The University of Western Australia. Written 
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in the frequency domain and is not affected by such artifacts, even for as few as 5 time 
samples (i.e., 5 co-located B-scans). In addition, we chose to use co-located B-scans so as to 
avoid the degradation of vessel contrast due to the possibly corrupting spatial frequency-
induced frequency content resulting from analyzing adjacent B-scans. 

The number of co-located B-scans acquired from the same location is an important 
parameter for the practical implementation of the short-time series method. We chose 5 in this 
study so as to minimize the amount of collected data and corresponding total acquisition time, 
whilst still attaining a high vessel/static tissue contrast in skin. A very large number of co-
located B-scans does not significantly improve the vessel contrast, as we showed. This is due 
to the simultaneous increase of the vessel signal in both the static tissue and the flow regions. 
In addition, extraneous motion can become a problem as the acquisition time lengthens. A 
smaller number of co-located B-scans, on the other hand, leads to slightly poorer vessel 
contrast, but can still visualize most vessels for even 3 or 4 co-located B-scans. When the 
minimum number (i.e., 2) is used, the formula in Eq. (3) is then equivalent to the simplified 
OMAG method that generates contrast by subtracting the intensity signal in two co-located B-
scans [40]. This equivalence does not exist as more co-located B-scans are used, and which 
leads to superior vessel image quality, as compared to only 2 co-located B-scans (i.e., the 
subtraction method). The consistent optimization of this sampling parameter is as yet 
unverified and, thus, needs further investigation when applied to imaging microvasculature in 
other tissues, such as the retina. 

One limitation of short-time series used in this study is the small detectable frequency 
range (i.e., up to 28 Hz), set by the B-scan time interval. Blood flow produces a characteristic 
peak typically in the kilohertz-frequency range [31], well outside the range accessed by our 
method. Increasing the OCT scanning speed to shorten the B-scan interval increases the 
maximum detectable frequency, but is limited by the fast-axis scanning speed of our system. 
Alternatively, reducing the sample density (i.e., the number of A-scans) in the B-scan can also 
improve this, but only slightly, as adequate sample density is needed to represent the vessels 
in the projection images. Thus, short-time series OCTA, as proposed in this study, is not 
suitable for velocimetry. In future, faster scanning systems may help address this [41]. 

5. Conclusions 
We have presented a new method, short-time series OCTA, to perform imaging of tissue 
microvasculature in vivo. Our method uses the flow-induced signature in the frequency 
domain via Fourier transform of the time series of the OCT signal in five B-scans from the 
same lateral location. The angiography signal is computed as the average magnitude of the 
non-zero (high-pass) frequency components, clearly differentiating blood vessels and static 
tissue, as demonstrated in a flow phantom and in human skin in vivo. Weighting of the 
angiography signal by the inverse of the mean OCT signal demonstrated improved detection 
of blood vessels. We determined the practical minimum number of co-located B-scans needed 
for analysis, as well as confirming that implementation on the OCT intensity signal is 
practically superior to implementation on the complex signal without motion correction. The 
imaging performance of short-time series OCTA was assessed by comparison to the 
commonly used speckle decorrelation and speckle variance methods, showing consistently 
superior results, evidenced by improved visualization, especially for small vessels, and 
increased vasculature density of the human cutaneous microvascular network. Given the 
requirement for only normal sampling parameters, in combination with fast computing, this 
method should find application as an efficient and straightforward approach to OCTA in 
various biomedical applications to visualize the microvasculature in vivo. 
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