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Abstract: Current conventional clinical OCT systems image either only the anterior or the 
posterior eye during a single acquisition. This localized imaging limits conventional OCT’s 
use for characterizing global ocular morphometry and biometry, which requires knowledge of 
spatial relationships across the entire eye. We developed a “whole eye” optical coherence 
tomography system that simultaneously acquires volumes with a wide field-of-view for both 
the anterior chamber (14 x 14 mm) and retina (55°) using a single source and detector. This 
system was used to measure retinal curvature in a pilot population and compared against 
curvature of the same eyes measured with magnetic resonance imaging. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Optical coherence tomography (OCT) has revolutionized clinical observation of the eye since 
its inception [1] and is an indispensable part of the modern ophthalmic practice. Part of 
OCT’s appeal is its ability to rapidly provide non-contact, high resolution, three-dimensional 
(3D) anatomical information about the imaged eye [2–5]. If these 3D OCT representations of 
the eye covered both the anterior and posterior eye, then it should be possible to use OCT in 
lieu of a variety of other imaging devices to characterize ocular biometry and morphometry 
[6–9]. Ocular biometry and morphometry are important tasks in clinical practice such as for 
modern cataract surgery planning (currently using multi-modal partial coherence 
interferometry and keratometry [10,11]) or for research applications such as for correlating 
myopia and eye shape (currently using magnetic resonance imaging [12,13]). In this latter 
research application, MRI has been used to show that pathologic myopia is correlated with 
asymmetries in posterior eye shape; translation of these findings to routine clinical use would 
be substantially aided if OCT could be used in lieu of MRI. Early efforts to examine ocular 
shape with OCT have been performed (e.g. Shinohara, et al. [14], Ohno-Matsui, et al. [15], 
among others); however the shape analysis has been restricted to qualitative descriptors of the 
morphometry with limited comparison to MRI due to disparities in the separate and distinct 
qualitative descriptors used for each modality. Quantitative analysis of retinal or ocular shape 
using OCT has been limited owing to multiple optical distortions inherent to posterior 
segment OCT that alter the image of the posterior eye such that the image is not at 1:1 copy 
of anatomical morphometry; knowledge of the scanning system and the whole eye is required 
to remove these distortions to recreate the actual shape of the imaged posterior eye to allow 
for quantitative analysis from OCT [16–19] 

Though “whole eye OCT” has been demonstrated for ocular biometry and morphometry 
in animal models with relatively small eyes [20,21], current- research and clinical OCT 
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systems image only the anterior or posterior of the human eye fully during a single 
acquisition. This localized imaging limits conventional OCT’s use in human subjects for 
characterizing global ocular morphometry and biometry which requires knowledge of spatial 
relationships across the entire eye. 

The limited localized imaging in human eyes is due to technical and optical constraints 
which limit OCT’s ability to image the human eye as a whole. One constraint is the depth or 
axial range of OCT. As an interferometric imaging technique, the detected signal in OCT is a 
result of the interference of path length matched light from the sample and reference arms. In 
a time domain OCT system, the reference arm could be stepped across the entire 
approximately 23 mm depth of the eye so that sample reflectors from the anterior eye all the 
way to the posterior eye would be within a coherence length of the reference arm to produce a 
signal for each sample reflector at each step. However, moving the reference arm across this 
large distance came at the expense of increased scan time (hence increasing motion artifacts) 
and decreased sensitivity compared to more modern Fourier domain (FD) systems [22–24]. 
Fourier domain systems are much faster with better sensitivity but still suffer from sensitivity 
roll-off, wherein reflectors spatially distant from the corresponding reference arm position 
(higher frequencies in Fourier space) are attenuated. The image depth is further halved by the 
presence of the complex conjugate artifact in FD processing. For the spectrometer designs 
currently employed by the majority of clinical FD OCT systems, the axial range of these 
systems is typically limited to approximately 2 mm – an order of magnitude smaller than the 
axial length of the human eye. 

The recent advent of sources with unique coherence length properties have overcome 
some of these depth limitations. Wavelength tunable vertical cavity surface emitting lasers 
(VCSEL) with long coherence lengths can have axial imaging ranges on the order of a meter 
[25,26]. Using a VCSEL source, “whole eye OCT” for ocular biometry length measurements 
has been demonstrated [27]. However, though this source overcame the interferometric 
limitations of imaging the whole eye, the demonstrated imaging system did not overcome the 
optical limitations of imaging over the length of the eye. In described VCSEL systems, the 
anterior segment can be fully visualized but only a tiny area on the retina was imaged from 
the initially telecentric light passing through the anterior eye optics. This imaging topology 
has also been used in a spectrometer based system that switched between reference arms to 
increase effective imaging depth but still with the same limitation in field of view of the 
posterior eye [28]. Producing useable OCT scans of both the anterior and posterior eye 
comparable to a dedicated OCT system for each region requires consideration of system 
depth of focus over the eye length as well as different scanning requirements for each region 
of the eye: telecentric for the anterior eye and collimated for the posterior eye which needs to 
pass first through the anterior eye optics. 

Aside from combining two independent systems into a shared set of terminal optics 
[29,30], “whole eye OCT” with both anterior and posterior segment B scans comparable to 
dedicated OCT systems for each has been shown using a single swept source by either 
switching between imaging planes [31,32] or polarization multiplexing [33–35]. With 
polarization multiplexing, optical limitations are addressed by splitting the light into 
orthogonal polarization states and creating a dedicated anterior and posterior eye optical 
system channel for each polarization. In these early implementations, though, the field-of-
view in the posterior eye only encompassed a small region around the fovea (approximately 
<20°) limiting their use for full ocular morphometry studies. 

Building on the polarization encoded optical design and utilizing a coherence revival 
detection scheme, in this work we describe the development of the first whole eye OCT 
system with wide field of view OCT for both the anterior and posterior eye simultaneously. 
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optical model, we transformed and scaled each A-scan to match the angle and position of the 
chief ray as well as to have isotropic scaling of physical dimensions. This can be seen in Fig. 
7 with the uncorrected image in Fig. 7(A) and the corrected image in Fig. 7(B). These 
corrections were also applied to the RPE segmentation. We fit a circle to the RPE 
segmentation for each dewarped radial and used the mean value of those circles as the retinal 
curvature estimation. We validated the above methods utilizing the eye phantom described in 
Section 2.2.2. For estimating the curvature of the eye phantom, we replaced the Polans eye 
model with the optics of the eye phantom within our ZEMAX model but kept all other 
methods the same. 

To validate our curvature measurements in vivo, we estimated the subject’s retinal 
curvature using MRI. The primary advantages of MRI are that it can image the subject’s 
entire ocular globe and does not require dewarping of images acquired from an optically 
based, commercial imaging system. However, MRI has several drawbacks that limit its use 
for ocular imaging including cost, limited resolution, long acquisition time, and subject 
suitability. 

We calculated retinal curvature measurements for MRI along the vitreous-eyewall 
interface (Fig. 7(C)) [49]. For each subject, the MRI slice containing the optic nerve and the 
ocular lens was located. The outer vitreous boundary within this slice was segmented using 
active contours which generates a simple closed curve. To better match the OCT imaging 
scenario which is aligned to the subject’s visual axis by fixation, the MRI volumes were 
rotated to align with the visual axis of the eye. Due to the low resolution of the MRI volumes, 
the visual axis was defined as 3.5° temporal to the optical axis of the eye which was identified 
as the line fitting manually identified corneal apex, anterior lens apex, and posterior lens pole 
within the MRI image [50]. After rotation, the anterior 120° of the ocular globe was removed 
to exclude anterior eye components from the posterior segment fitting [51]. The remaining 
posterior globe was then fit to a sphere by least squares to determine its radius of curvature. 

2.3 Patient imaging 

Informed consent was obtained from each subject under a Duke University Medical Center 
Institutional Review Board approved protocol prior to any imaging. The study was performed 
in accordance with HIPAA regulations. 

Volunteers were imaged with both whole eye OCT and MRI. The OCT system described 
in Section 2.1 was mounted to a repurposed ophthalmic imaging stage providing translation, 
pitch and yaw. Subjects were seated, and a standard interface consisting of a chin rest and 
forehead rest was used to stabilize each subject while they were asked to fixate on the 
integrated fixation target reticle. Volumes, averaged B-scans, and repeated radials were then 
acquired with the following scan densities: rectangular volumes (2592 samples x 700 A-scans 
x 700 B-scans; depth x width x length; 6.38 seconds at 100 kHz), repeated B-scans in a single 
location (1200 A-scans x 100 repeated B-scans; 1.61 seconds), and radial volumes with 
repeated scans at each radial location (1000 A-scans x 8 repeated B-scans x 18 radials; 2.03 
seconds). Scans with repeated B-scans were registered and averaged to improve image 
quality. Repeated radial volumes were utilized for ocular measurements described in Section 
2.2. 

Two optical safety standards were used during the study. Initial subjects were imaged with 
the ANSI Standard for Safe Use of Lasers (ANSI Z136.1-2014). Optical power was measured 
to be 1.7 mW prior to the eye which is below the standard’s 8 hour limit for 1045 nm light. 
The power was split through the use of fiber polarization controllers with 0.7 mW focused 
onto the retina and 1.0 mW focused onto the anterior segment. Later subjects were imaged 
under the newer ANSI Standard for Light Hazard Protection for Ophthalmic Instruments 
(ANSI Z80.36-2016). This standard allows for increased optical power exposure for imaging 
under scanning beam and one hour exposure limit assumptions, both conditions met during 
our imaging sessions. Using this standard, optical power was measured to be 3.6 mW prior to 
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4. Discussion 

While there have been previously developed OCT systems capable of imaging the anterior 
and posterior regions of the human eye [25,28–35], none thus far can simultaneously image 
both the anterior chamber and the retina with large fields of view using a single source and 
single detector. Previous systems were capable of imaging the entire anterior chamber or 
anterior segment but have been limited in their ability to image the retina. Single source 
systems that image both regions simultaneously have achieved only ~18° FOV [33–35] on the 
retina with some limited to only ~1° [25]. Systems that switch between imaging planes (thus 
increasing acquisition time) have been limited to 25° FOV or less [31,32]. In contrast, the 
system presented here images the retina with a 55° FOV and is comparable to current 
generation clinical imaging systems that are dedicated to imaging only the retina. 
Simultaneously acquiring the anterior and posterior regions of the eye allows correction of 
optical distortions present within the posterior imaging plane using only one set of data [18] 
with retinal curvature being only one potential morphometric measurement. 

Creating a system that images both regions simultaneously comes with trade-offs, 
however. To maximize the area in which we could measure retinal curvature, during our 
design we optimized for retinal field-of-view. However, to accommodate the physical 
presence of the cube beamsplitters in the imaging optics (required for imaging the anterior 
chamber), 55° retinal FOV became our upper limit which is significantly smaller than the 
ultra-wide FOV retinal-only OCT systems that achieve between 80 and 100° FOV [53,54]. 
The last of the cube beamsplitters utilized a wire grid polarizer and introduced an additional 
compromise. An advantage of these splitters is their wide acceptance angle for a broad 
wavelength range over the conventional dielectric cube splitters used elsewhere in the system, 
± 30° versus ± 2.5°. However, one significant drawback is that their reflection efficiency is 
only 80% compared to greater than 99% for the dielectric cubes, and thus we limited its use to 
only where we needed large angles of incidence. 

We utilized linear polarization multiplexing to generate two distinct optical paths in the 
sample arm and the coherence revival effect present within both lasers to frequency multiplex 
both imaging planes into a single OCT scan. However, it should be noted that these 
techniques are not dependent on one another. With changes to either the sample arm path 
lengths or the addition of a second reference arm, one could use a laser with a narrower 
instantaneous line width [25] and the polarization multiplexing topology described in Section 
2.1 to achieve similar results. It should be noted that because the anterior chamber and retinal 
imaging planes and corresponding imaging paths were polarization multiplexed, this allowed 
us to independently control their respective path lengths. Following initial alignment and 
calibration the reference arm and anterior chamber imaging path remained static but the 
retinal arm Diopter control optics of the sample arm were located on a highly repeatable, 
linear, motorized stage. This allowed us to account for subjects with different ocular lengths 
without the need of adjusting the reference arm or recalibrating the system between imaging 
sessions. 

While polarization was used to create two imaging planes, this topology was not suitable 
for conventional polarization sensitive OCT (PS-OCT) [55]. Here each tissue image plane 
was interrogated with only a single linear polarization, S-polarization for the anterior chamber 
and P-polarization for the posterior segment, providing only partially the information needed 
to compute the Jones matrix [55]. Additionally, this system utilized only a single detector and 
not a polarization diversity detection scheme [56–58]; however, there may be some benefit to 
doing so. Each polarization multiplexed channel would have its own detector allowing for 
more reference power being utilized without saturating the detector, and any frequency 
information overlap between the two polarization states would be better separated. 

Imaging both the anterior chamber and posterior segment simultaneously offers a wealth 
of information, however, generating individual ocular optical models required several 
assumptions. One limitation of the system was that it primarily imaged the anterior chamber 
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and not the entire anterior segment including the full crystalline lens. Figure 10(B) does show 
an acrylic intraocular lens present within the image but this was an exception rather than the 
rule. While having the entire lens would be undoubtedly beneficial, differences in modeled 
optical distortion due to the lens between individuals is minimal due to the retinal imaging 
beam pivoting through, instead of across, the lens. This allows the individual beam to be 
focused onto the retina and have little angular change to the beam’s chief ray. An exception to 
this is comparing phakic and pseudophakic eyes, and for pseudophakic eyes, our optical 
model included an acrylic intraocular lens in place of the gradient index lens of the Polans eye 
model [38]. 

It should be noted that current clinical biometers utilize a single averaged group index to 
estimate eye length [59,60]. In our model we included individualized optical parameters such 
as corneal curvature, thickness, a modeled lens, and group indices of the cornea, lens, and 
aqueous/vitreous [43,44]. Because the optical properties of the crystalline lens index and 
shape remain active areas of research [61–64] and due to individual and age dependent 
gradient refractive index and dynamic shape changes in non-mydriatic eyes, this may be a 
source of variability in the measurements that would affect any system imaging through the 
lens. 

The important parameters that affected retinal shape are ocular axial length and system-to-
eye distance. Our group as well as others have previously shown that adjusting the position 
between the subject and system results in a variation of retinal shape [18,53,65]. Estimating 
subject distance along the optical axis with our whole eye system was relatively straight 
forward. We compared the distance between the calibration depth of the anterior chamber 
imaging path to the depth of the corneal apex within a given volume. These distances were 
entirely in air and a group index of refraction was assumed to be ng-air = 1 allowing the optical 
path length difference between the two measurements to directly measure the physical length. 
Lateral shift or rotation away from the optical axis can also cause changes in the retinal field-
of-view. This was mitigated by having the subject fixate on the integrated target and aligning 
the system such that the corneal saturation artifact was centered. Lack of compliance by the 
subject or misalignment by the system operator would introduce error to the optical model. 
This error could be further reduced in the future through automated pupil tracking [65]. 

MRI is currently the standard used to measure posterior eye shape [12,13,49,66] but is 
limited by cost, resolution, and accessibility. In the small pilot study shown in Section 3.2, 
retinal curvature as measured only with whole eye OCT based parameters was found to not be 
statistically significantly different from MRI; a larger, powered study is needed to definitely 
demonstrate the biometric equivalence of the two platforms. If the measurements are shown 
to be equivalent, this could open areas for research in subjects with high myopia [12,13,66] or 
subjects with elevated intracranial pressure where the posterior eye is being pushed in toward 
the vitreous [52]. In addition to these potential applications for retinal shape and because the 
system images the entire anterior chamber as well as the retina, whole eye OCT offers the 
potential for other metrics which could entirely be captured within a single volume as well. 
Other metrics from a single whole eye volume could include corneal shape and thickness 
[7,9], anterior chamber angle and depth [67], and ocular axial length [27,28,32,35] some of 
which we performed as part of the optical distortion correction shown in Section 2.2. 

5. Conclusion 

We have developed and demonstrated a high speed OCT system capable of truly 
simultaneous imaging of both the anterior and posterior eye with sufficient field of view to 
visualize the full anterior chamber width, macula, optic nerve, and retina to the arcades within 
a single acquisition. This has important implications both for clinical and research ocular 
imaging as well as for ocular biometric applications. 
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