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Abstract: Achieving adequate margins during tumor margin resection is critical to minimize 
the recurrence rate and maximize positive patient outcomes during skin cancer surgery. 
Although Mohs micrographic surgery is by far the most effective method to treat 
nonmelanoma skin cancer, it can be limited by its inherent required infrastructure, including 
time-consuming and expensive on-site histopathology. Previous studies have demonstrated 
that Raman spectroscopy can accurately detect basal cell carcinoma (BCC) from surrounding 
normal tissue; however, the biophysical basis of the detection remained unclear. Therefore, 
we aim to explore the relevant Raman biomarkers to guide BCC margin resection. Raman 
imaging was performed on skin tissue samples from 30 patients undergoing Mohs surgery. 
High correlations were found between the histopathology and Raman images for BCC and 
primary normal structures (including epidermis, dermis, inflamed dermis, hair follicle, hair 
shaft, sebaceous gland and fat). A previously developed model was used to extract the 
biochemical changes associated with malignancy. Our results showed that BCC had a 
significantly different concentration of nucleus, keratin, collagen, triolein and ceramide 
compared to normal structures. The nucleus accounted for most of the discriminant power 
(90% sensitivity, 92% specificity – balanced approach). Our findings suggest that Raman 
spectroscopy is a promising surgical guidance tool for identifying tumors in the resection 
margins. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Nonmelanoma skin cancer is by far the most common malignancy worldwide. Among more 
than 5 million new cases diagnosed annually in the US, approximately 80% are basal cell 
carcinoma (BCC) [1]. Currently, Mohs micrographic surgery (Mohs) is the most effective 
method for the treatment of BCC. The 5-yr recurrence rate of Mohs (1 – 3% for primary BCC 
and 5 – 7% for recurrent BCC) is much lower than standard surgical excision (3 – 10% in 
primary BCC and >17% in recurrent BCC) [2]. Mohs involves iterative excision of surgical 
margins of each stage, followed by frozen section histopathology. If the histopathological 
diagnosis indicates tumor still exists, further tissue layers will be removed until the margins 
are clear. 

Although effective, Mohs has several limitations, including time, expense, training 
requirements and lab infrastructure. Most tumors require 1 to 3 stages (sometimes as many as 
5 – 6) for complete removal, with patients waiting under local anesthesia between each stage 
[3]. The total time for Mohs surgery can be anywhere from one to five hours. Infrastructure 
requirements may also be limiting, including the building and maintenance of histology lab, 
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staff training and physician training. As these requirements pose significant barriers to its use, 
Mohs is used in less than half (~40%) of cases, and less effective treatments such as standard 
surgical excision are more frequently employed [4]. Moreover, disparities in access to care, 
such as in among different geographic regions and racial and ethnic groups, leads to 
substantial underutilization of Mohs in underserved populations [4,5]. Therefore, a critical 
unmet need exists for low-infrastructure technologies that would enable general 
dermatologists to perform resections with high accuracy. 

Raman spectroscopy is a nondestructive and label-free optical technique, and has 
demonstrated great clinical merits for tumor margin assessment in numerous types of cancer, 
including skin [6], brain [7,8], oral cavity [9,10], breast [11,12], and stomach [13]. Those 
studies either use fiber-optical Raman probe for single point sampling or Raman microscopy 
(also called Raman microspectroscopy) for optical imaging. One major advantage of Raman 
microscopy is that it has high resolution and sectioning comparable with that of conventional 
histology. Moreover, it provides an objective diagnosis with minimal tissue processing. 
Previous studies have demonstrated Raman microscopy can discriminate BCC from normal 
skin tissues with sensitivity of 90 – 100% and specificity of 85 – 93%. Nijssen et al. was 
among the first to discriminate BCC from surrounding normal tissue using Raman 
spectroscopy and reached 100%/93% sensitivity/specificity (15 patients, 59 spectra) [14]. 
Lieber et al. developed an in vivo Raman microscopy and achieved 100%/91% 
sensitivity/specificity (19 patients, 42 spectra) in classifying BCC and squamous cell 
carcinoma from paired normal skin tissues [15]. Larraona-Puy et al. demonstrated the ability 
of Raman microscopy in discriminating BCC from surrounding normal tissue with 90%/85% 
sensitivity/specificity (20 patients, 329 spectra) [16]. Kong et al. combined Raman 
microscopy with autofluorescence imaging to increase acquisition speed and achieved 100% 
sensitivity and 92.9% specificity for discriminating BCC [6]. 

Prior studies mostly utilized statistical algorithms to extract the spectral differences 
between BCC and normal tissue, such as principal component analysis [6,14], linear 
discriminant analysis [17] and maximum representation and discrimination feature [15]. 
Although such methods provided high diagnostic accuracy, they did not elucidate the nature 
and biochemical processes responsible for the spectral differences. Understanding the 
biophysical basis of the discriminatory power of Raman spectroscopy would increase 
fundamental knowledge of cancer processes as well as lay the groundwork for improving the 
diagnostic performance of the technology [18]. Therefore, our aim in this study is to obtain 
biophysically relevant markers from Raman spectra of BCC and surrounding normal tissue, 
and then build diagnostic model to guide BCC tumor margin delineation. 

Our group recently proposed a biophysical human skin cancer model, an inverse model 
that infers the skin’s biochemical makeup from its Raman spectrum [19]. Different from 
previous studies that selected a number of Raman bands as “fingerprints” to discriminate 
between healthy skin and tumor regions [16,20], our method is based on the fitting of pure 
spectral components. We validated the model using previous in vivo human skin cancer 
screening data [21], and demonstrated the feasibility of Raman spectroscopy to capture 
relevant biophysical changes accounting for the in vivo diagnosis [22]. Later, we presented a 
preliminary study of BCC tumor margin detection using the biophysical model based on a 
small data set from 14 patients [23]. This study demonstrated the feasibility of detecting 
biophysical changes between BCC and five primary normal structures (epidermis, dermis, 
hair follicle, sebaceous gland and fat), but has several limitations: firstly, the number of 
patients is small; secondly, inflamed dermis was not included in the study, which may be 
confused with BCC in histopathological diagnosis [6,16]; finally, a more comprehensive 
analysis is needed to link our biophysical approach with molecular vibrational approaches 
[24,25]. 

Here, we demonstrate that Raman spectroscopy is highly sensitive in capturing the 
biochemical differences between BCC and surrounding normal skin structures. Based on 
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these biochemical differences, we can develop diagnostic algorithms to accurately 
discriminate BCC in Mohs excisions, which supports the future development of intraoperative 
assessment of tumor margins. 

2. Materials and methods 

2.1 Patients and sample preparation 

This study was approved by the Institutional Review Board (IRB) at The University of Texas 
at Austin and the Seton Healthcare Family. A total of 30 frozen tissue blocks were collected 
from 30 patients who had undergone Mohs at Austin Dermatologic Surgery Center. 18 
samples were found to have both BCC tumors and surrounding normal tissue, and 12 samples 
contained only normal tissue. Before the Raman experiment, 20μm tissue sections were sliced 
from frozen tissue blocks at −22C and transferred onto low Raman background glass slides 
(MgF2 substrates). Serial sections were transferred onto microscope slides for hematoxylin 
and eosin (H&E) staining. The H&E technique stains cell nuclei in purple (hematoxylin), and 
intracellular or extracellular protein in red (eosin). Tissue structure identification and 
histopathological diagnosis were provided by a board-certified dermatologist. 

2.2 Raman imaging experiment and data preprocessing 

Raman imaging was performed using a custom-built confocal Raman microscope. We used a 
longer wavelength laser (830nm) to minimize tissue autofluorescence. Reflectance confocal 
and bright-field images are also collected simultaneously. A detailed system description can 
be found elsewhere [19]. The lateral, axial and spectral resolution of the system was 
approximately 1 μm, 8 μm and 8 cm−1, respectively. The power delivered to the sample was 
approximately 45mW. Raman images were collected from “tissue-level” regions varying 
from 60 × 60 μm2 to 100 × 100 μm2 (2μm steps, 2s per step). The “tissue-level” regions 
consist of ~10 – 100 cells, approximating the resolution of a dermatologist reading an H&E 
slide. 

Raw Raman spectra underwent wavenumber calibration, dark noise removal, cosmic ray 
removal, smoothing, and a fifth-order polynomial fitting [26] to remove tissue fluorescence 
background. Spectral response calibration was conducted using a tungsten halogen lamp (LS-
1-CAL, Ocean Optics, FL, USA). The effective spectral range was 800 to 1790 cm−1. Data 
were normalized to the area under curve. 

2.3 Clustering analysis 

Raman pseudo-color images were generated by k-means clustering. K-means is an 
unsupervised algorithm for cluster analysis and can easily handle large amounts of Raman 
spectroscopy data for cell [27] and tissue [14] imaging. The first 100 principal components 
accounting for 95% - 99% of the variation in the data set served as input for K-means. The 
number of clusters was determined by visual comparison of the pseudo-color image and 
histopathology. Each cluster was represented by a centroid Raman spectrum and assigned a 
different color. To eliminate spectral outliers, any spectrum that belonged to a cluster that was 
more than three times the standard deviation from the mean of that cluster was omitted [14]. 
We then annotated the centroid Raman spectrum of each cluster as either BCC or normal skin 
structures: inflamed dermis (Inf), epidermis (Epi), dermis (Der), hair follicle (HF), hair shaft 
(HS), sebaceous gland (SG), and fat. HS is a long filament in the center of the follicle 
extended above the surface of epidermis (also called hair). HF is the sheath of cells and 
connective tissue that surrounds the root of a hair. HF and HS were separated because they 
had heterogenous biochemical composition [17]. While muscle tissue can be present in Mohs 
sections and has been studied in other Raman studies [6,20], it generally appears in a small 
minority of cases; thus, we have excluded it from this study. 
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Table 1. Peak positions of the main Raman bands in the Raman active components 

Raman 
peaks 
[cm−1] 

Band assignments Components 

835 DNA backbone: O-P-O/tyrosine nucleus 

855 CCH bending (aromatic) of protein 
elastin, 
keratin 

856 C-C vibration of the collagen backbone collagen 

937 C-C stretching of proline and valine and protein backbone keratin 

940 C-C stretching of protein backbone 
collagen, 
elastin 

1003 C-C vibration of phenyl ring 
collagen, 
elastin, 
keratin 

1063 C-C asymmetric skeletal stretching of lipids (trans-conformation) ceramide 

1080 C-C skeletal stretching in lipids triolein 

1093 O-P-O symmetric stretching vibration of the DNA backbone nucleus 

1128 C-C symmetric skeletal stretching ceramide 

1248 Amide III (β-sheet and random coil conformations) 
collagen, 
elastin 

1254 β sheet/ thymine/ cytosine (DNA base/ DNA & RNA base) nucleus 

1269 Amide III (α-helix conformation), C-N stretching, N-H in-plane bending 
collagen, 
elastin, 
keratin 

1301 C-H modes (CH2 twisting and wagging) of lipids; CH2/CH3 bands triolein 

1336 Amide III, C-N stretching, N-H in-plane bending elastin 

1337 adenine, guanine (DNA & RNA base) nucleus 

1440 CH2/CH3 bands 
triolein, 
ceramide 

1450 C-H bending of proteins keratin 

1454 C-H stretching, C-H asymmetric deformation 
collagen, 
elastin 

1577 Adenine/ guanine (DNA base) nucleus 
1645 O-H bending mode of liquid water water 
1653 C-O stretching model of amide I keratin 
1656 C-C lipids triolein 
1663 Thymine/ guanine (DNA base) nucleus 

1665 C-O amide I vibration 
collagen, 
elastin 

2.5 Model fitting and statistical analysis 

Each centroid Raman spectrum was described as a linear combination of the model 
components according to a non-negative linear least-squares fitting criteria. The fit 
coefficients were then visualized using scatter plots. The variation of the fit coefficient is 
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represented by the error bar generated by the 95% confidence interval. The fit coefficients of 
BCC and individual normal tissue structures were statistically compared. To account for 
dependencies in the data inherent from measuring multiple skin structures per patient, linear 
fixed-effects models were employed with the skin structures (epidermis, dermis, etc.) treated 
as a fixed effect and the patient treated as a random effect. The models were fitted using 
restricted maximum likelihood and p-values were derived from t-tests using Satterthwaite 
approximations [29,30]. 

2.6 Diagnostic algorithm 

A logistic regression classifier was built to discriminate BCC from normal tissue structures 
based on their fit coefficients. Leave-one-patient-out receiver operator characteristic (ROC) 
analysis was used to determine the optimum number of input model components., i.e., the 
models were trained using a subset of 29 patients and tested on the remaining one patient. To 
avoid overfitting, the number of input model components was in all cases no more than 4. 
Leave-one-spectrum-out ROC analysis was also performed for inspection of the misclassified 
spectra. The area under the ROC curve (AUC) was calculated to measure the discriminatory 
power of the classification model. The combination of sensitivity and specificity with of 
greatest clinical value was obtained from the ROC curve. Sensitivity determines the ability of 
the model to correctly identify the positive group, whereas specificity is the ability of the 
model to correctly identify the negative group. Positive predictive value (PPV) and negative 
predictive value (NPV) were derived from Eq. (1) and (2), respectively. PPV is the 
probability that the positive group (BCC) identified by the model is truly positive. NPV is the 
probability that the negative group (normal tissue) identified by the model is truly negative. 

 
number of true positives

PPV
number of true positives number of false positives

=
+

 (1) 

 
number of true negatives

NPV
number of true negatives number of false negatives

=
+

 (2) 

3. Results 

3.1 Annotated tissue spectra database 

In total, we obtained 223 centroid Raman spectra from 30 patients, including 50 spectra from 
BCC, and 173 spectra from normal structures (including inflamed dermis (N = 19), epidermis 
(N = 26), dermis (N = 47), hair follicle (N = 31), hair shaft (N = 18), sebaceous gland (N = 
22), and fat (N = 10)). 

Figure 2 shows a typical example of Raman experiment. Good visual correspondence was 
observed between Raman pseudo-color images and H&E images of the serial section. Figure 
3 shows the mean Raman spectra of BCC and normal structures. The main differences 
between BCC and epidermis/hair follicle/inflamed dermis can be found at 1093, 1577, 1663 
cm−1 (assigned to nucleus), while the main differences between dermis and BCC can be found 
at 856, 940, 1248 cm−1 (assigned to collagen). 
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Fig. 4. Mean Raman spectra of BCC, Inf (inflamed dermis), Epi (epidermis), Der (dermis), HF 
(hair follicle), HS (hair shaft), SG (sebaceous gland) and fat fit to the model components in 
Fig. 1. Black solid lines: mean tissue spectra. Red dotted lines: model fits. Residuals are also 
plotted on the bottom. 

Figure 4 shows the mean Raman spectra fit to the model components in Fig. 1. The fit 
coefficients of the model components computed from the biophysical model were visualized 
in Fig. 5. Statistical significance for BCC versus inflamed dermis, BCC versus epidermis, 
BCC versus dermis, and BCC versus hair follicle was demonstrated in Fig. 5. A complete list 
of statistical comparison between BCC and individual normal structures was displayed in 
Table 2. 
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Fig. 6. ROC analysis for classifying BCC from all normal structures. Black thick line: leave-
one-spectrum-out ROC curve. Blue thin line: leave-one-patient-out ROC curve. 

Table 3. Discriminating between BCC and all normal structures using optimum 
combination of components 

# components Optimum combinations Leave-one-patient-out 
ROC AUC 

Leave-one-spectrum-out 
ROC AUC 

1 [nucleus] 0.94 0.97 
    

2 [nucleus, keratin]   
[nucleus, triolein]   
[nucleus, collagen] 0.94 0.97 

    

3 [nucleus, triolein, keratin]   
[nucleus, triolein, 
collagen] 

0.94 0.97 

    

4 [nucleus, keratin, triolein, 
collagen] 

0.93 0.96 

Table 4. Summary of misclassifications by prioritizing high sensitivity or specificity 

 
Sensitivity/ 
Specificity 

(%) 

PPV/ 
NPV 
(%) 

BCC 
Normal tissue structures 

Inf Epi Der HF HS SG Fat 

Prioritizing 
high sensitivity 

100/84 65/100 0/50 3/19 6/26 0/47 15/31 2/18 1/22 0/10 

Prioritizing 
high specificity 

52/99 93/88 24/50 1/19 1/26 0/47 0/31 0/18 0/22 0/10 

Balanced 
sensitivity and 

specificity 
90/92 76/97 5/50 2/19 5/26 0/47 6/31 1/18 0/22 0/10 

 
Figure 7 represents separating BCC from different categories of normal structures using 

the fit coefficients of two primary model components. Figure 7(a) shows that epidermis and 
hair follicle have the largest overlap with BCC compared to other normal structures. The 
overlap occurs when epidermis and hair follicle have comparable level of keratin and nucleus 
content as BCC. Figure 7(b) shows that fat and sebaceous gland can be easily separated from 
BCC because they have distinct nucleus and lipid content. Figure 7(c) (d) demonstrate 
inflamed dermis/dermis can also be separated from BCC using their distinct differences in 
nucleus and collagen. 
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80% of keratin in dry weight [25]. HF is also rich in keratin. The epithelium of HF forms a 
cylinder with different concentric layers, including the inner and outer root sheath, with each 
one expressing a distinct pattern of keratin [32]. Because keratin expression is closely related 
to differentiation of tumors, it plays a significant role in identifying the origin of BCC. 
Several studies have discovered that BCC may arise from germinative cells within the basal 
layer of epidermis or follicular structures [33,34]. 

Furthermore, BCC has significantly smaller amounts of collagen and elastin compared to 
dermis. The difference spectra in Fig. 3(c) shows that BCC spectra have weaker contribution 
from 856, 940, 1248 cm−1 assigned to the vibrational modes of collagen type I and elastin. 
This is likely the result of the epidermal origin of the BCC, high in cellular content and low in 
connective tissue. We also found collagen in inflamed dermis is higher than BCC, but lower 
than normal dermis. This confirms the observation of an early study that a dense 
inflammatory infiltrate appears to have less collagen than normal dermis [14]. 

Finally, BCC has significantly larger amount of triolein and ceramide compared to dermis, 
and larger amount of triolein compared to epidermis. The difference spectrum of BCC and 
dermis also shows higher contribution at 1080, 1128, 1440 cm−1 associated with lipids. A 
previous biophysical model built upon nonmelanoma skin cancer found an increased 
contribution of triolein to BCC spectra [35]. Another biophysical model also found an 
increase in triolein in urological carcinoma lesions [36]. Those studies suggested that 
maintaining sufficient lipid levels may be necessary to sustain fast tumor growth. 

Some normal structures have high biochemical similarity. For instance, the biochemical 
compositions of epidermis and HF are highly similar, which agrees with the fact that HF is an 
invagination of normal dermis [17]. As a result, a previous study grouped epidermis and HF 
together for clustering analysis [6]. The biochemical composition of HS may resemble either 
HF or SG. This is because HS consists of terminally differentiated keratinocytes that are 
produced by HF [32], but it is sometimes coated by the sebum secreted by SG [37]. This also 
explains why the fit coefficients of HS have larger variation compared to the other 
components. Fat and SG both have low nucleus and high triolein content, so they can be 
easily discriminated from BCC (Fig. 7(b)). 

We evaluated the diagnostic performance by prioritizing either high sensitivity or high 
specificity (Table 4). Achieving high specificity is clinically significant in tissue-conserving 
surgeries such as Mohs, when preserving normal tissue is a critical concern. Appropriate use 
criteria of Mohs include tumor location (such as “mask areas” of face), size, and patient type 
[38]. On the other hand, achieving high sensitivity is more clinically significant when the 
primary goal is to capture the entire margin based on aggressive growth histology rather than 
preserving normal tissue. 

By prioritizing high sensitivity, we achieved 100% sensitivity and 84% specificity in 
discriminating BCC from all normal tissue structures. Our results show that that nucleus 
accounts for most of the discriminant ability. By using the fit coefficient of nucleus alone, 
100% of the spectra annotated as dermis (40/40) and fat (10/10) were correctly classified. 
Most of the spectra annotated as SG (95%, 21/22) and HS (89%, 16/18) were also correctly 
classified. The misclassification in these latter two categories may be due to unknown tissue 
structures grouped as the same cluster as SG or HS, leading to high fitting error. On the 
contrary, HF, epidermis and inflamed dermis were the normal structures that were more 
easily misclassified as BCC. 16 out of 31 spectra annotated as HF were correctly classified 
(52%), 20 out of 26 spectra annotated as epidermis were correctly classified (77%), and 16 
out of 19 spectra annotated as inflamed dermis were correctly classified (84%). 

HF and epidermis were most easily misclassified as BCC. Figure 7(a) demonstrates that 
those misclassifications occur due to high nucleus content in some of HF and epidermis. The 
main reason is that HF may have abundant basal cells in inner and outer root sheath layer, 
whereas epidermis is rich in basal keratinocyte stem cells in stratum basale layer and 
polyhedral keratinocytes in stratum spinosum layer. About 16% of inflamed dermis was also 
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misclassified as BCC. Corresponding with the H&E images indicated that inflamed dermis 
regions have higher number of nucleus than normal dermis, so their spectra were more similar 
to BCC than normal dermis. 

By prioritizing high specificity, we achieved 99% specificity, 52% sensitivity and 93% 
PPV. High specificity indicates a region has high risk, so a dermatologist could remove more 
tissue from the corresponding region with high confidence of it being tumor [39]. In a Mohs 
guidance setting, this approach could reduce the number of skin samples processed for 
histopathology. The dermatologist would still make a histopathological diagnosis on the final 
stage to ensure all the tumors are entirely removed; thus, one may be able to tolerate lower 
specificity. Ultimately, this system would need to be tested in an intraoperative setting to 
determine its impact on reducing the number of tissue samples needing histology processing. 
Our results showed 24 out of 50 spectra annotated as BCC were misclassified as normal 
structures. All the spectra annotated as dermis, HF, HS, SG and fat were classified correctly. 
Most of the spectra annotated as inflamed dermis (95%, 18/19) and epidermis (96%, 25/26) 
were correctly classified. 

Although we have demonstrated Raman microscopy is highly accurate in evaluating skin 
tumor surgical margin, one major limitation is lengthy acquisition time. To raster scan a tissue 
1mm2 in size, it would take around 10 – 20 hours, making it unpractical for intraoperative 
use. To overcome this limitation, several wide-field imaging techniques could be employed. 
Kong et al. integrated Raman microscopy with tissue autofluorescence imaging and achieved 
one or two orders of magnitude faster speed [6]. Karen et al. developed fluorescence confocal 
mosaicking microscopy and proved its potential for rapid assessment of BCC margins during 
Mohs [40]. Flores et al used fluorescence confocal mosaicking microscopy to enable rapid 
detection of residual tumor directly in the surgical wounds on patients [41]. Further directions 
for this work include speeding up Raman acquisition without losing molecular specificity, 
and combining Raman spectroscopy with wide-field imaging technique for fast intraoperative 
surgical guidance. 
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