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Handheld optical palpation of turbid tissue
with motion-artifact correction
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Abstract: Handheld imaging probes are needed to extend the clinical translation of optical
elastography to in vivo applications, yet such probes have received little attention. In this
paper, we present the first demonstration of optical palpation using a handheld probe. Optical
palpation is a variant of optical elastography that uses three-dimensional optical coherence
tomography (3D-OCT) to provide maps of stress at the tissue surface under static
compression. Using this technique, stiff features present beneath the surface of turbid tissues
are identified, providing mechanical contrast complementary to the optical contrast provided
by OCT. However, during handheld operation, relative motion between the probe and the
tissue can induce motion artifact, causing spatial distortion of 3D-OCT and in turn, optical
palpation images. We overcome this issue using a novel, dual-function bi-layer that provides
both a fiducial marker for co-registration and a compliant section for estimation of the stress
at the tissue surface. Co-registration of digital photographs of the bi-layer laid out over the
tissue surface is used to measure and correct for motion in the lateral (xy) plane. We also
demonstrate, for the first time, that optical palpation can be used as a method for monitoring
pressure applied to the tissue during handheld operation, thus providing a more repeatable and
robust imaging technique between different users. Handheld optical palpation is demonstrated
on a structured phantom, in vivo human skin and excised human breast tissue. In each case,
image quality comparable to bench-top 3D-OCT and optical palpation is achieved.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical elastography is a suite of light-based imaging techniques developed to characterise
and map the mechanical properties of biological tissue by measuring the deformation in
response to a mechanical load [1]. These techniques hold promise for a wide range of
applications in areas such as oncology [2], ophthalmology [3] and dermatology [4], for
example, in differentiating tumor from healthy tissue during cancer surgery [5—7] and in
tracking the progression of burn scars [8].
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The ability to perform optical elastography with a handheld probe is needed for extension
to clinical use [1], yet such imaging is challenging, largely because of motion artifact
distorting the image and causing a time-dependent variation in mechanical loading. There
have been a number of in vivo demonstrations of optical elastography [8—11], however these
have largely been performed by benchtop systems or semi-mounted probes, artificially
removing motion artifact. Transition of optical elastography to handheld probes operated
freely by the user is key to enabling wide application to in vivo and clinical scenarios, as is
the case in ultrasound elastography [12—-14]. Recently, a handheld optical coherence
elastography (OCE) probe using manual compression has been demonstrated on excised
tissue [15]. In this approach, motion artifact along the depth axis is accounted for by utilizing
a noise-tolerant vector-method [16] for strain estimation and calculating an inter-frame
cumulative strain. As this approach used phase-sensitive detection, it is very sensitive to
motion artifact. To overcome this, in [15], hundreds of B-scans were averaged to generate
elastograms, making it challenging to implement clinically. In addition, as this technique is
not readily extendable to 3D, and therefore, en face imaging, it is limited in its ability to
survey large tissue areas in clinically relevant timeframes.

In this paper, we demonstrate, for the first time, optical palpation, a variant of optical
elastography, using a handheld probe unsupported by any apparatus. Optical palpation [17] is
a tactile imaging technique that generates maps, referred to as optical palpograms, of the axial
stress at the surface of tissue under static compression. The stress is calculated by measuring
the deformation of a translucent, compliant layer with known mechanical properties using
three-dimensional optical coherence tomography (3D-OCT). Elevated regions of stress
indicate stiffer underlying features, thus if compression is kept approximately constant
between samples, stress may be used to distinguish tissue types. Particularly in turbid tissues,
where optical contrast alone is often insufficient to distinguish features of interest [18],
optical palpation has been demonstrated to enhance visualization by providing
complementary mechanical contrast [19,9]. Importantly, as optical palpation does not rely on
dense oversampling, as is the case with phase-sensitive approaches [15,20], acquisition times
can be as rapid as in standard 3D-OCT. In addition, as optical palpation provides en face
images, it enables large surface areas (up to 16 x 16 mm [19]) to be scanned in one
acquisition.

Key to realizing freehand optical palpation is overcoming motion artifact, caused by
movement of the user’s hand during scanning, or in the case of in vivo imaging, involuntary
movement of the patient. Relative motion between the probe and tissue typically causes
spatial distortion of 3D-OCT volumes which, in turn, distorts optical palpograms. This can
degrade the appearance and size of tissue features, for example, sub-surface blood vessels and
areas of tumor, and needs to be corrected to ensure both faithful reconstruction of tissue
structure, and proper estimation of surface stress. In optical elastography to date, motion-
artifact has only been accounted for along the depth axis, and motion correction of handheld
optical palpograms has not yet been demonstrated. There has, however, been several
demonstrations of motion correction in 3D-OCT [21-25], based on information either
encoded in the OCT images themselves, or provided by some concurrent tool. One such study
used the registration of multiple scanning laser ophthalmoscope images acquired during the
handheld 3D-OCT scans to measure and correct for motion in the lateral (xy) plane [26]. This
registration, however, relied on the detection and alignment of vessels, and as such, this result
may not be extendable to imaging of more turbid tissue, in which such key features may not
be present. Another method estimates and corrects for motion using a fiducial marker, a rigid
object of known shape and size laid out over the tissue of interest, and image correlation of
consecutively acquired B-scans [27]. Although this removes the need for key features on the
tissue surface, the rigid metal fiducial marker would obscure the mechanical contrast of the
tissue, making it unsuitable for extension to optical palpation.
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To demonstrate handheld optical palpation, we overcome these pivotal issues by
implementing a novel, dual-function bi-layer, simultaneously performing both stress
measurement and motion correction. Placed on the tissue surface, a compliant layer of soft
material can be deformed in order to perform optical palpation, while a fiducial marker is
embedded in a secondary top layer. This top layer is made of stiffer silicone to ensure that it
is not deformed by hand motion. In our approach, motion correction is performed using a
digital camera in-built in the handheld OCT probe to track motion in the lateral plane, relative
to the tissue surface. Relative offsets and rotations between successive OCT B-scans are
measured by simultaneously acquiring a photograph of the tissue surface for each B-scan in
the OCT volume. We then run a pixel-intensity correlation algorithm on successive pairs of
photographs, facilitating lateral motion estimation to within ~16 um. The corresponding B-
scan is then transformed accordingly, for each B-scan in the OCT volume, forming a more
accurate representation of the tissue geometry. This motion-corrected 3D-OCT volume
enables us to generate motion-corrected optical palpograms, providing mechanical contrast
complementary to the optical contrast provided by OCT.

We also show, for the first time, that optical palpation can be used to monitor pressure
applied to the tissue surface during handheld scanning. This is an important development for
handheld OCT in general, as it has been reported that pressure can affect the rate of blood
flow and can warp structures imaged by OCT [28,29]. In addition, our technique can be used
to ensure that applied pressure is below the pain threshold of human subjects (0.4 MPa [30]),
to avoid discomfort [10]. We achieve this by computing and comparing the average stress in
the area of interest, enabling more repeatable and consistent OCT imaging with handheld
probes across different patients and operators.

To demonstrate handheld optical palpation, we present results from a structured phantom,
in vivo scans of human skin, and excised human breast tissue. In each case, we show
substantial reduction in motion artifact in 3D-OCT and hence optical palpation, providing
accurate contrast of key tissue features. We also demonstrate optical palpation as a method
for monitoring pressure applied to the tissue by the user, providing insight into the ability to
compare scans. We believe that this work is an important development towards routine
optical elastography with handheld probes, expediting development towards in vivo clinical
application.

2. Methods
2.1 The handheld OCT probe

Scanning was performed using a commercial, spectral-domain OCT system (TELESTO III,
Thorlabs Inc., Newton, NJ, USA) operating at a center wavelength of 1300 nm. The full
width at half maximum (FWHM) axial and lateral resolutions were measured to be 5.5 pm (in
free space) and 14.4 um, respectively. The objective scanning lens (LK30, Thorlabs) has a
working distance of 22 mm and the acquired imaging volume was 7 x 7 x 2.5 mm in x, y and
z, respectively. The sample arm comprised a handheld OCT probe (OCTH-1300, Thorlabs).
Figure 1(a) shows a photograph of the probe, with overlaid axes which can be used to
describe motion relative to the tissue; six degrees of freedom, three axes of translation (x, y,
z), corresponding to the fast (x), slow (y) and depth (z) scan directions, respectively, and three
rotational directions (pitch, yaw, roll) which pivot around these axes. A piezoelectric ring
actuator (PA), similar to that previously used for optical coherence elastography (OCE) [21],
is fixed to the probe using a threaded connection, giving the probe a total weight of ~0.3 kg.
Although OCE was not performed in this study, this setup is designed to enable extension to
such imaging in the future. A VIS-NIR AR coated glass imaging window (Edmund Optics) of
diameter 20 mm and thickness 2 mm was attached to the ring actuator using wax. To perform
scanning, contact is made between the window and the bi-layer, as described in Sec. 2.3,
which is placed on the tissue surface. The reference mirror was removed from the handheld
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probe to facilitate a common-path configuration, with the reflected beam from the surface of
the glass imaging window in contact with the bi-layer used as the reference reflection, as
described previously [17,31].

A schematic diagram of the optical layout is provided in Fig. 1(b). The handheld OCT
probe contains a 5 megapixel charge-coupled device (CCD) camera. This camera shares the
same optical path as the OCT beam but records an image with a larger field of view than
the 7 mm x 7 mm en face OCT area; constricted to a 13 mm diameter circle by the hollow
area of the ring actuator. The camera captures photographs at a maximum rate of 6 frames per
second, with a pixel size of 6.2 pm.

a 50 mm b eco
BS
(o] I m—
Sample

Fig. 1. Handheld probe used for optical palpation. (a) Photograph of the probe, with overlaid
illustration of the six degrees of freedom. The probe body has dimensions 158 x 39 x 107 mm
(L x W x H). (b) Schematic layout of the optical path in the handheld probe. SLD,
superluminescent diode. PC, polarization controller. FC, fiber coupler. BD), beam dump. S,
spectrometer. MEMS, microelectromechanical mirror system. BS, beam splitter. CCD, charge-
coupled device. PA, piezoelectric actuator. IW, glass imaging window. OL, objective lens.

2.2 Optical palpation

To perform optical palpation, a translucent compliant silicone sensor is compressed, between
the tissue and an imaging window. The deformed thickness of the layer is measured from a
3D-OCT scan, by detecting the layer/tissue interface using a Canny-based edge detection
algorithm on each of the OCT B-scans. Then, strain, i.e. the change in thickness divided by
the original thickness, at each lateral position in the layer is calculated [9,17]. Local stress
values are estimated from the known stress-strain curve of the compliant layer under the
assumption that the stress field within the layer is uniform and uniaxial, and the friction of the
layer interfaces is low [17]. Mapping these stress values with their lateral locations gives an
image referred to here as an optical palpogram.

2.3 Dual-function bi-layer fabrication

Key to successful demonstration of handheld optical palpation was the design and
implementation of a dual-function bi-layer, enabling both stress estimation at the tissue
surface, and tracking of the relative motion between the handheld probe and the tissue.

To assist in motion tracking, a circular fiducial marker was made by cutting a 6 mm
square out of a plastic reinforcement sticker for hole-punched pages and coloring it in black
with a permanent marker. As shown in Fig. 2(a), this marker was embedded in a transparent
silicone layer fabricated from Elastosil RT601 (Wacker, Germany) to assist in fixing its
position relative to the tissue surface.
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Fig. 2. Transparent silicone layer with embedded fiducial marker. (a) Top-down view
photograph. (b) Schematic illustrating the structure and dimensions of the bi-layer.

As described in Section 2.2, optical palpation relies on deformation being introduced to
the layer. However, in order to use it as a key feature for tracking motion, we require that the
silicone surrounding the fiducial marker does not deform during a scan. As illustrated
in Fig. 2(b), we achieve both of these requirements by creating a bi-layer material. Using
methods outlined previously [32], we first cure the fiducial marker in a thin layer of rigid
silicone (Elastosil RT601, Wacker, Germany), with a measured elasticity of ~4.9 MPa. A
layer of softer silicone (Elastosil P7676, Wacker, Germany), with a measured elasticity
of ~ 6 kPa, is then cured to the rigid layer, to enable optical palpation to be performed.

2.4 Structured phantom fabrication

To test our method on a known material, a structured phantom was also fabricated, using
various combinations of silicone elastomers, to have a diameter of 50 mm and a thickness of
9 mm, using techniques described in detail previously [32]. The phantom contained a stiff
(elasticity = 4.9 MPa) inclusion fabricated using Elastosil RT601 in a matrix of softer
(elasticity = 6 kPa) Elastosil P7676. The inclusion was a ~1 x 1 x 1 mm cube,
located ~ 0.5 mm below the phantom surface. To introduce optical scattering, titanium
dioxide (TiO,) particles (Sigma Aldrich 232033) with a mean diameter of <5 um were added
to both the bulk material (0.5 mg/mL) and the inclusion (3 mg/mL).

2.5 Data acquisition protocol

Prior to imaging, both sides of the silicone layer were lubricated with Elastosil AKS50 silicone
oil (Wacker, Germany) both to partially match the refractive index and to reduce friction at
the layer/window and layer/tissue interfaces. Using one hand, the handheld OCT probe was
then placed in contact with the tissue with moderate compression, while the other hand was
used to steady the layer on the tissue. Custom software was used to acquire the data. The
OCT probe was configured to capture a photograph concurrently with each OCT B-scan
acquisition. In this way, each B-scan in the volume is associated with a corresponding
photograph, which depicts the en face position of the fiducial marker with respect to the
probe, and equivalently, the probe with respect to the tissue. Thus, an OCT B-scan rate
of 6 Hz was chosen for the convenience of matching the maximum frame rate set by the in-
built camera. Setting 808 B-scans per volume, 808 photographs are captured over a scan time
of ~2 minutes. This image acquisition protocol is illustrated in Fig. 3.
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Fig. 3. Schematic of photograph capture with respect to B-scan acquisition.
2.6 Photographs for measuring motion

Acquiring photographs of the tissue surface during scanning provides a mechanism to
quantify shifts that occur in the lateral plane: accounting for shifts in x, y and roll
(see Fig. 1(a)). This can be accomplished by estimating the geometric transformation, in the
form of a matrix, that maps the features in each successive photograph back to the placement
of the same features in the first photograph (arbitrarily chosen as the stationary reference
frame), i.e., co-registration.

These 807 different transformations, 7,, were calculated using an in-built image co-

registration algorithm in Matlab (Mathworks, USA). Assuming that the silicone layer stays in
contact and is stationary with respect to the tissue, the fiducial marker provides a distinctive
feature that assists in the accuracy of this optimum transformation calculation.

Unlike in ophthalmology, for applications in turbid tissues, the OCT imaging probe
typically makes contact with the tissue surface. Furthermore, the moderate compression
applied for optical palpation can assist in controlling vertical motion of the probe.
Independent testing of pitch and yaw of the probe axis during the time of a 3D-OCT scan was
conducted using two video cameras mounted on orthogonal planes (xz- and yz-plane) to
monitor probe motion along these axes. Both tilt directions were determined to have minimal
effect on the xy-plane deformation, being equivalent to shifts less than the lateral resolution of
the OCT system, for up to 2.5 mm deep into the tissue. This meant that drift about the x- and
y-axis within the scan time was limited to below 0.5°. Moreover, pressure was applied as
normal to the specimen surface as possible, to avoid artificial stress gradients. Unlike OCE,
optical palpation does not require phase-sensitive detection, and as such, motion in z was also
seen to have negligible effect. Slip of the hand over the tissue surface, however, was
significant, causing considerable motion artifact in the lateral plane (i.e., on the en face OCT
images). As such, our technique focuses on correcting motion in x, y and roll directions and
considers motion in z, pitch and yaw directions to be negligible.

2.7 Correcting 3D-OCT data

In order to correct 3D-OCT, and in turn, optical palpograms, the geometric transformations
calculated using the photographs need to be applied to OCT. Thus, a transformation, P, that
maps each en face OCT pixel to its corresponding position in the probe photograph, and vice
versa, was determined.

We demonstrate our motion correction technique in Fig. 4, using a handheld scan of a
structured phantom. Taking any en face plane (a depth of ~0.8 mm below the phantom
surface is shown in Fig. 4(a)), a particular B-scan (demonstrated for B-scan 600) is mapped to
its location in the associated photograph (shown in Fig. 4(b)), using P. We then map this
location to its co-registered position in Photograph 1, using 7, (T, in this case). Finally, we

map this back to the corresponding OCT coordinate location, and now motion-corrected
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position, using P~' . Mapping all B-scans in this way generates the motion-corrected en face
OCT scatterplot shown in Fig. 4(c). This figure illustrates that, depending on the motion
experienced, the distance between scanned locations can exceed that of the lateral resolution,
resulting in irregular coverage of the tissue. Thus, a best estimate of the OCT intensity in
these areas is obtained by 2D interpolation and cropping to give the final output image shown
in Fig. 4(d). Since, by previous findings, only lateral motion is significant, each en face OCT
slice can be transformed separately and identically. In this way, an entire 3D-OCT scan can
be corrected for motion artifact.

b Fm Photograph 1
r W Photograph 6

|

0 200 400 600 800
y (px)

Fig. 4. Tllustration demonstrating the motion correction technique. (a) B-scan 600 is selected to
demonstrate transformations applied to motion-correct its position. (b) It is first transformed to
its lateral position in Photograph 600, shown in green, then mapped its co-registered position
in Photograph 1, shown in purple, using Tey. (c) Finally, this is mapped back to its
corresponding OCT coordinate location, now motion-corrected. Mapping all B-scans in this

way, with their associated co-registration transformation (Tn ), generates the underlying en

face OCT scatterplot shown. 2D interpolation and cropping of this scatterplot generates the
final output motion-corrected en face OCT image in (d).

2.8 Accuracy of photograph correction technique

To demonstrate the accuracy of using photographs to measure lateral motion, motorized
translation stages (Thorlabs NRT100) were used to introduce preset motion. The silicone
layer was lubricated on both sides with silicone oil, and was placed on the structured
phantom. A 3D-printed plastic casing was utilized to rigidly fix the handheld OCT probe in
light contact with the layer, and the stages were set to translate at a constant speed of 15 pm/s
in both x and y directions. Acquisition was set such that 500 photographs were taken at a rate
of 6 Hz.

After cropping, each of the successive 500 photographs were then co-registered to the first
photograph. Figure 5(a) shows Photograph 250 (in purple) overlaid on Photograph 1 (in
green), and Fig. 5(b) shows this overlay after Photograph 250 has been co-registered to
Photograph 1. The rigid motion between photographs is highlighted in orange. Extracting the
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calculated x and y translations from each transformation matrix and plotting against time
allows comparison against the known translation stage speed, as shown in Figs. 5(c) and 5(d).
These plots indicate close agreement between the position values calculated by photograph
co-registration and a known reference. Calculating the standard deviation of the residuals
about the expected values and the line of best fit gave an absolute accuracy of 15.8 pm and
15.5 um, and a precision of 10.6 pm and 11.5 pm, for x and y respectively. This indicates an
accuracy to within a few pixels. However, the stage manufacturer specifies an absolute on-
axis accuracy of 15.29 um [33], suggesting that our method is accurate to within the tolerance
of the stages.

1400

1200

1000
— 800
£ 600
X 400

200

-200 - . S -« -200
0 20 40 60 80 0 20 40 60 80

time (s) time (s)

Fig. 5. Testing the accuracy of photograph co-registration. (a) Photograph 250 (green) overlaid
on Photograph 1 (purple). (b) Photograph 250 co-registered and overlaid on Photograph 1. The
area highlighted in orange shows movement of Photograph 250 from its original to new
location. Graphs showing (c) x-translation and (d) y-translation calculated by photograph co-
registration, the corresponding least squares line of best fit (blue line) and expected positions
based on stage translation speed (red line).

3. Results
3.1 Structured phantom

Figure 6 shows the results of our approach on a structured silicone phantom. Figures 6(a)-6(c)
show plots of x, y and roll hand motion, respectively, as estimated by the co-registration of
the photographs taken during the handheld scan with respect to the phantom. The maximum
shifts in x and y, and roll, relative to the start of the scan were of ~0.8 mm, ~1.5 mm and 2.1°,
respectively. Figure 6(d) shows an en face OCT image taken from a depth of ~0.6 mm below
the phantom surface. Acquired with the handheld OCT probe mounted on the benchtop, this
image is free from motion-artifact. As such, the accurate shape of the fiducial marker and the
square inclusion can be identified by their comparatively low and high OCT intensities,
respectively. Figure 6(e) shows a corresponding OCT image acquired during handheld
operation of the probe. The fiducial marker and the inclusion can be readily distinguished
from the bulk by OCT intensity, but are distorted in shape due to motion of the probe relative
to the phantom during the scan. Using our motion correction technique to transform this en
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face OCT depth, gives the image in Fig. 6(f). It can be seen that the correction provides an
accurate reconstruction, as indicated by the circular shape of the fiducial marker. Due to the
difficulty of scanning exactly the same location between handheld and mounted scenarios, a
quantitative comparison with Fig. 6(d) is challenging, however a visual comparison reveals
that the square shape of the inclusion has been reconstructed well. Several artifacts (A) are
visible in Fig. 6(f), caused by inaccurate performance of interpolation when sudden motion of
the hand has created an area of limited sampling. Since this phantom result was used to
demonstrate the motion correction technique in Section 2.6, the spatial locations that were
truly sampled during this scan can be seen in Fig. 4(c). Examination of this scatterplot reveals
that drift in the x direction has seen the bottom edge of the fiducial marker not scanned and
sudden motion in the y direction has caused an area of particularly scarce sampling towards
the end of the scan. A lack of data limits the accuracy of interpolation, creating the artifacts
(A) observed. The dark artifact (D) seen in Fig. 6(f) is a consequence of (Petzval) field
curvature [34] effects from the LK30 achromatic doublet lens, causing lower signal-to-noise
ratio (SNR) at the edges of the uncorrected OCT image. If, after the first few B-scans are
captured, the operator’s hand slips momentarily towards the positive y direction (as indicated
by the arrow in Fig. 6(b)), then a more central region of the phantom is actually being
sampled under field curvature aberration. Therefore, motion correcting the position of these
B-scans can cause discontinuous OCT intensity (D), even when the phantom is homogeneous.

y (mm)
v hoan

0 20 40 60 80 100 120 140
time (s)

Soft bulk

Fig. 6. Structured phantom. Plots of hand motion in (a) x, (b) ¥, and (c) roll directions, as
measured by co-registering digital photographs captured by the OCT probe during scanning.
(d) En face OCT at ~0.6 mm below the phantom surface, acquired with the handheld probe
mounted on the benchtop, for a motion-artifact-free reference. Corresponding en face OCT
image acquired in handheld (e) uncorrected, and (f) motion-corrected. (g) Uncorrected and (h)
corresponding motion-corrected optical palpograms. The area outside of the fiducial marker

has been masked out (in grey). O is the average stress in kPa, and equivalently, pressure

applied to the tissue during the scan. A, interpolation inaccuracy artifacts. D, field curvature
artifact.

Figure 6(g) shows the uncorrected optical palpogram, distorted analogously to the
uncorrected en face OCT image shown in Fig. 6(e), such that the correct shape of the
inclusion cannot be determined. Using the motion-corrected 3D-OCT volume to generate the
optical palpogram provides the result shown in Fig. 6(h). In both Figs. 6(g) and 6(h), the area
outside the fiducial marker has been masked in grey. The inclusion is clearly identified by
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higher stress (~7 kPa) than the surrounding phantom material (~3 kPa), and its geometry is
now consistent with the motion-corrected en face OCT image shown in Fig. 6(f). The average

stress (or pressure), o , applied by the user during this scan is 3.78 kPa, calculated by
averaging all stress values in the cropped optical palpogram. This value is useful in
quantitatively guiding operators with applying adequate pre-load compression and assessing
the ability to compare with other handheld scans of this phantom. Since optical palpation only
relies on 3D-OCT to measure the deformation of the transparent compliant layer, it is less
susceptible to error caused by small, localized OCT SNR variations. As such, the image
artifacts (A,D), highlighted in Fig. 6(f), are not noticeable in Fig. 6(h).

3.2 Human skin

Figure 7 shows an in vivo handheld scan of the fingertip of a 21-year-old Caucasian female.
The silicone layer was placed on the finger, with care taken to minimize slip during scanning.
Figure 7(a) shows an uncorrected en face OCT image at a depth of ~0.4 mm below the skin
surface. The fingerprint pattern can be identified by the stripe-like texture and the fiducial
marker by its low OCT intensity, however, the shape of both is clearly distorted by hand
motion during the scan. Transforming this image using our motion correction technique
generates the image shown in Fig. 7(b). The circular shape of the fiducial marker is accurately
reconstructed, and the lines of the fingerprint are now more easily recognizable. The small
disruption in this pattern (A) is likely caused by the fiducial marker moving slightly with
respect to the skin during the scan. This distorts the correction of the underlying tissue as the
photograph co-registration preferentially aligns the fiducial marker in each photograph, due to
its high contrast.

Figure 7(c) shows the uncorrected optical palpogram, and demonstrates similar distortion
to the en face OCT image (Fig. 7(a)). The area outside of the fiducial marker has been
masked in grey. Processing the motion-corrected 3D-OCT volume for optical palpation
provides the optical palpogram shown in Fig. 7(d). This result can be used to see that the
operator applied less pressure to the fingertip than the structured phantom (shown in Fig. 6),
an average of 2.91 kPa. The fingerprint pattern can be identified in the image by the stress
contrast caused mainly by the ridges and troughs of the finger pad, i.e., surface topology.
Figure 7(e) shows a photograph of the fingertip with the fiducial marker in place. The inset
highlights the correspondence of both the corrected OCT and optical palpograms to the area
scanned. Additionally, this photograph shows a small horizontal crease line (C) present on the
fingertip; not readily visible in the OCT image but revealed by optical palpation. Scattered
small vertical lines of high stress (E) are also present, indicating areas where the automatic
algorithm for compliant layer/tissue edge detection, used in the calculation of stress (see
Section 2.1), failed due to optical artifacts near the layer-tissue interface.
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Fig. 7. Human fingertip. (a) Uncorrected en face OCT image at ~0.4 mm below skin surface
and (b) corresponding motion-corrected OCT image. (c) Uncorrected and (d) corresponding
motion corrected optical palpograms. The area outside of the fiducial marker has been masked

out (in grey). o is the average stress in kPa, and equivalently, pressure applied to the tissue
during the scan. (e) Photograph of the fingertip with the fiducial marker in place. The inset
highlights the region scanned by OCT. A, alignment artifact. C, crease in the skin on the
fingertip. E. stress estimation artifacts.

3.3 Human breast tissue

A sample of freshly excised human breast tissue was obtained from a mastectomy procedure,
carried out at Fiona Stanley Hospital, Western Australia. Informed consent was obtained from
the patient, and all testing was conducted under ethics approved by the South Metropolitan
Heath Service, Western Australia Human Research Ethics Committee (FSH-2015-032).
Following surgery, the specimen was transferred from the operating theater to the clinical
pathology laboratory for scanning with the handheld probe. The silicone layer was placed
over the tissue sample, which had an approximate size of 30 mm x 35 mm x 8§ mm, as shown
in Fig. 8(a). The specimen scanned here was extracted from the location of a previous
surgery, and contained a prominent region of fibrosis (F), corresponding to a well-formed
surgical scar. A small area of interest was chosen for scanning, as indicated by the placement
of the fiducial marker in Fig. 8(a). Figure 8(b) shows a wide-field OCT image of the
specimen taken by a benchtop scanning head, as in previous work [35], with the position of
the fiducial marker overlaid in orange. After scanning, the specimen was immediately
returned for histopathological analysis in two sections, as shown in Fig. 8(c), revealing
adipose (P), the fibrosis (F), and a small nerve (N) in the selected area. The wider field of
view of the bench-top scan facilitates accurate co-registration of the smaller handheld OCT
images with this histology.

Figure 8(d) shows the motion-corrected en face OCT image at a depth of ~0.1 mm below
the tissue surface. Although the first edge of the fiducial marker was not scanned, due to
difficulty in centering the marker with respect to the scanning area, it is clear that the overall
shape has been accurately reconstructed, and that the underlying tissue appears significantly
less spatially distorted. Comparing the bench-top scan in Fig. 8(b) to the handheld scan, it is
clear that the motion-corrected image shows the same tissue micro-architecture. Similar to the
scan of the structured phantom (Fig. 6), small artifacts (A) caused by inaccurate interpolation
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in areas of insufficient sampling occur on the edges of the image can be seen in Fig. 8(d). A
section of lower SNR B-scans (D) is also present, again due to discontinuity caused by field
curvature effects. However, unlike with the structured phantom, the presence of
heterogeneous structures help to highlight the success of the reconstruction despite the
artifact.

Figure 8(e) shows the corrected optical palpogram, calculated using the motion corrected
3D-OCT volume. Calculating the average stress in the cropped region, 3.15 kPa, indicates
that the user applied slightly more pressure than for the fingerprint scan. This image more
readily highlights areas of fibrosis (F), which are expected to be stiffer than surrounding
stroma and adipose. In particular, optical palpation clearly identifies the location of the small
nerve (N), which exhibits relatively low optical contrast in the OCT image in Fig. 8(d),
demonstrating the value of complementary mechanical contrast. Again, small variations in
OCT SNR are unlikely to affect the compliant layer deformation measurement, and hence the
artifacts (A, D) in Fig. 8(d) are not noticeable in the corresponding optical palpogram. Small
vertical lines of high stress (E) are present at the edges of the image due to localized failure of
the stress estimation algorithm, but do not affect structures in the main area of interest.

dB

Fig. 8. Excised human breast tissue. (a) Specimen photograph with the fiducial marker in
place. (b) Wide-field OCT image taken with a benchtop scanning head. The position of the
fiducial marker has been overlaid (in orange). (c) Histology with the inset highlighting the
region scanned by OCT. (d) Motion-corrected en face OCT image at ~0.1 mm below the tissue
surface (e) Motion-corrected optical palpogram. The area outside of the fiducial marker has

been masked in grey. ¢ is the average stress in kPa, and equivalently, pressure applied to the
tissue during the scan. A, interpolation inaccuracy artifact. D, field curvature artifact. E, stress
estimation artifacts. F, fibrosis from previous surgery. N, nerve. P, adipose.

Analyzing the histology shown in Fig. 8(c) shows agreement with the tissue types, in
particular the nerve feature shown in Figs. 8(d) and 8(e), although positioning and relative
sizes differ. Histological processing involves chemical fixation with formaldehyde, which
often causes shrinkage and shape distortion. Furthermore, compression of the handheld tissue
with the handheld probe can cause small distortions in the shape and locations of features. We
note that this issue is less prominent for larger field-of-views, as in Fig. 8(b), and results
presented in previous studies [19,35], since corresponding features become easier to identify.
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4. Discussion

The first demonstration of handheld optical palpation is presented in this paper. A main
challenge we overcame was correction of operator- and tissue-induced motion artifact
occurring during the scan. Importantly, in this study, the operator used a contact probe held
freely in their hand. This is in contrast to prior demonstrations of optical palpation which used
a support apparatus, such as an articulating mechanical arm [9] or mechanical stages [10]
which are cumbersome for use in clinical applications.

Unlike for x, y, and roll motion, independent testing of z, pitch and yaw motion, while
scanning with the OCT probe in contact with turbid tissue, revealed negligible motion-artifact
on the 3D-OCT signal intensity. For pitch and yaw, this was confirmed in the structured
phantom scan, by the consistent en face location of the inclusion edges throughout motion-
corrected OCT volume. Comparisons of y-z profiles of the motion-corrected and mounted
phantom scan, also confirmed negligible z-shifts. The handheld OCT probe used for this
testing was fitted with an actuator to enable future extension to OCE [20] and quantitative
micro-elastography [31] which rely on the fidelity of 3D-OCT scans. Since these techniques
rely on phase-sensitive detection, they are significantly more sensitive to motion in z, as in the
recent paper by Zaitsev et al. [15], than optical palpation. In ongoing work, we will assess
existing and novel methods to also account for z-motion in OCE, and the possibility of
extending our motion correction technique to image strain and elasticity using a handheld
OCT probe.

Unlike in many previously demonstrated motion correction approaches for 3D-OCT, we
do not rely on SNR or contrast in the underlying OCT data for performing motion correction,
increasing versatility across different tissues types and OCT scanning approaches. By design,
the technique does, however, assume that OCT intensity values are determined only by the
optical backscattering of points sampled. Field curvature effects from the lens in the off-the-
shelf handheld OCT probe, used in this demonstration, therefore caused small artifacts (D) in
the motion corrected images (see Figs. 6(f) and 8(d)). This effect could be readily removed by
cropping pixels at the edges of the 7 mm % 7 mm uncorrected en face OCT image or by using
an f-theta corrected telecentric lens. The use of external hardware, i.e., the in-built CCD
camera, for motion tracking, also allows for the robust correction of large positional shifts.
We demonstrate correction of up to 1.5 mm among B-scans (see Fig. 6(b)), limited primarily
by the fiducial marker staying within the camera field of view. The ability to correct for hand
motion is, however, limited by the 6 Hz sampling rate and a co-registration accuracy of
within ~16 pm, with higher frequency and small magnitude hand motion unable to be
accounted for.

The use of a dual-function bi-layer is key to the robust correction demonstrated, enabling
the decoupling of the accuracy of surface tracking and properties of the underlying tissue,
since it removes the need to resolve features in photographs and OCT images. It also provides
an casy visual check that the correction has succeeded. However, this is based on the
assumption that the fiducial marker does not move relative to the tissue surface during the
scan. The occurrence of such motion will cause incorrect alignment of the underlying tissue,
as seen by the alignment artifact (A) in Fig. 7(b), since the photograph co-registration will
favor aligning the fiducial markers. Thus, care must be taken to ensure that the bi-layer
remains stationary with respect to the tissue during acquisition. We also note that the fiducial
marker can present a potential disadvantage in reducing the effective field of view of OCT,
optical palpation, and tissue surface photographs. Another issue for the compliant silicone
layer used for optical palpation is the potential presence of negative stress, when the layer is
compressed against uneven surface tissues. As the layer is incompressible, it has a tendency
to expand into softer or cavernous areas e.g. the troughs of the fingerprint (see Fig. 7(e)),
resulting in small negative stresses being calculated. More generally, surface topology can
create stress contrast that may not be a direct consequence of the mechanical properties of the
underlying tissue, as in the case of the fingerprint (see Fig. 7(e)). This could potentially
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obscure the desired contrast in optical palpation by complicating the direct relationship
between stress and stiffness. However, higher fidelity stiffness contrast can be found by
employing quantitative micro-elastography [35] and extending this motion-correction
technique to it. Meanwhile, incorrect surface stress estimation in palpograms, obtained under
the assumptions that the stress field within the compliant section of the bi-layer is uniform
and uniaxial, and the interface friction is low could also be overcome in future work by
extending previously demonstrated computational optical palpation to in vivo work [36].

Routine use of this technique in a clinical setting will likely require substantially faster
volume acquisition. With the current approach of conveniently matching the camera frame
and B-scan rates, we were limited to a maximum B-scan frequency of 6 Hz, but B-scan rates
>10 kHz have been demonstrated [37]. The installation of a higher frame rate digital camera
would enable this technique to be adapted to faster acquisition times. Alternatively, the
technique could be adapted such that a photograph is captured every few B-scans, rather than
every B-scan, and motion for B-scans between photographs could be estimated by
interpolation. Since increasing the B-scan frequency increases the data acquired before
detectable movement occurs, this would also eliminate much of the interpolation artifacts
caused by insufficient sampling (as seen in Fig. 4(c)). Although much of the motion artifact
demonstrated in this paper could be accounted for by a faster imaging system, it is important
to consider that all scans were acquired by engineers who were consciously trying to hold the
OCT probe stationary. It is anticipated that clinical scanning scenarios, such as in vivo
scanning of a surgical cavity by a surgeon, will result in substantially increased bulk motion.
Thus, even with faster scanning speeds, we anticipate that motion correction will play an
important role in ensuring fidelity to tissue features.

Computation time also has important implications for the feasibility of our approach to
handheld 3D-OCT and optical palpation in clinical applications, with the current processing
time of a few hours requiring significant reduction. The majority of this time can be attributed
to co-registering 807 photographs with the current off-the-shelf algorithm, chosen to enable
proof-of-concept demonstration. Optimizing this photograph co-registration algorithm has the
potential to greatly reduce this processing time, for example, by co-registering only a small
window from each photograph or by choosing a feature tracking technique. This processing
time could be also significantly reduced by re-implementing the code in C + + , which is
much faster than the current Matlab implementation, and moving to GPU-accelerated
processing [38].

5. Conclusion

Handheld imaging probes are needed to extend clinical applications of optical elastography to
in vivo scenarios, yet are challenging to implement, largely because of motion artifact. In this
paper, we present the first demonstration of optical palpation, a variant of optical
elastography, with a handheld probe, without any form of supporting apparatus. Key to
enabling this demonstration was the development of a dual-function bi-layer, providing both a
fiducial marker for tracking and correcting for lateral hand motion, and a compliant section
for estimating stress at the tissue surface. We also demonstrate, for the first time, that optical
palpation can be used as a method for measuring pressure applied to the tissue during
handheld operation, thus providing a more repeatable and robust imaging technique between
different users. An off-the-shelf handheld OCT probe was used to successfully demonstrate
this approach on a structured phantom, in vivo human skin and excised human breast tissue.
All en face OCT images showed greatly reduced motion artifact, even when almost 1.5 mm
of motion occurred during a scan, and optical palpation was shown to be valuable in
contrasting features. Future work will involve integration with faster OCT scanning,
incorporation of live applied pressure readings and extension for use in other optical
elastography techniques. This work is an important step towards developing optical
elastography towards routine clinical use.
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