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Abstract: Handheld imaging probes are needed to extend the clinical translation of optical 
elastography to in vivo applications, yet such probes have received little attention. In this 
paper, we present the first demonstration of optical palpation using a handheld probe. Optical 
palpation is a variant of optical elastography that uses three-dimensional optical coherence 
tomography (3D-OCT) to provide maps of stress at the tissue surface under static 
compression. Using this technique, stiff features present beneath the surface of turbid tissues 
are identified, providing mechanical contrast complementary to the optical contrast provided 
by OCT. However, during handheld operation, relative motion between the probe and the 
tissue can induce motion artifact, causing spatial distortion of 3D-OCT and in turn, optical 
palpation images. We overcome this issue using a novel, dual-function bi-layer that provides 
both a fiducial marker for co-registration and a compliant section for estimation of the stress 
at the tissue surface. Co-registration of digital photographs of the bi-layer laid out over the 
tissue surface is used to measure and correct for motion in the lateral (xy) plane. We also 
demonstrate, for the first time, that optical palpation can be used as a method for monitoring 
pressure applied to the tissue during handheld operation, thus providing a more repeatable and 
robust imaging technique between different users. Handheld optical palpation is demonstrated 
on a structured phantom, in vivo human skin and excised human breast tissue. In each case, 
image quality comparable to bench-top 3D-OCT and optical palpation is achieved. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Optical elastography is a suite of light-based imaging techniques developed to characterise 
and map the mechanical properties of biological tissue by measuring the deformation in 
response to a mechanical load [1]. These techniques hold promise for a wide range of 
applications in areas such as oncology [2], ophthalmology [3] and dermatology [4], for 
example, in differentiating tumor from healthy tissue during cancer surgery [5–7] and in 
tracking the progression of burn scars [8]. 
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The ability to perform optical elastography with a handheld probe is needed for extension 
to clinical use [1], yet such imaging is challenging, largely because of motion artifact 
distorting the image and causing a time-dependent variation in mechanical loading. There 
have been a number of in vivo demonstrations of optical elastography [8–11], however these 
have largely been performed by benchtop systems or semi-mounted probes, artificially 
removing motion artifact. Transition of optical elastography to handheld probes operated 
freely by the user is key to enabling wide application to in vivo and clinical scenarios, as is 
the case in ultrasound elastography [12–14]. Recently, a handheld optical coherence 
elastography (OCE) probe using manual compression has been demonstrated on excised 
tissue [15]. In this approach, motion artifact along the depth axis is accounted for by utilizing 
a noise-tolerant vector-method [16] for strain estimation and calculating an inter-frame 
cumulative strain. As this approach used phase-sensitive detection, it is very sensitive to 
motion artifact. To overcome this, in [15], hundreds of B-scans were averaged to generate 
elastograms, making it challenging to implement clinically. In addition, as this technique is 
not readily extendable to 3D, and therefore, en face imaging, it is limited in its ability to 
survey large tissue areas in clinically relevant timeframes. 

In this paper, we demonstrate, for the first time, optical palpation, a variant of optical 
elastography, using a handheld probe unsupported by any apparatus. Optical palpation [17] is 
a tactile imaging technique that generates maps, referred to as optical palpograms, of the axial 
stress at the surface of tissue under static compression. The stress is calculated by measuring 
the deformation of a translucent, compliant layer with known mechanical properties using 
three-dimensional optical coherence tomography (3D-OCT). Elevated regions of stress 
indicate stiffer underlying features, thus if compression is kept approximately constant 
between samples, stress may be used to distinguish tissue types. Particularly in turbid tissues, 
where optical contrast alone is often insufficient to distinguish features of interest [18], 
optical palpation has been demonstrated to enhance visualization by providing 
complementary mechanical contrast [19,9]. Importantly, as optical palpation does not rely on 
dense oversampling, as is the case with phase-sensitive approaches [15,20], acquisition times 
can be as rapid as in standard 3D-OCT. In addition, as optical palpation provides en face 
images, it enables large surface areas (up to 16 × 16 mm [19]) to be scanned in one 
acquisition. 

Key to realizing freehand optical palpation is overcoming motion artifact, caused by 
movement of the user’s hand during scanning, or in the case of in vivo imaging, involuntary 
movement of the patient. Relative motion between the probe and tissue typically causes 
spatial distortion of 3D-OCT volumes which, in turn, distorts optical palpograms. This can 
degrade the appearance and size of tissue features, for example, sub-surface blood vessels and 
areas of tumor, and needs to be corrected to ensure both faithful reconstruction of tissue 
structure, and proper estimation of surface stress. In optical elastography to date, motion-
artifact has only been accounted for along the depth axis, and motion correction of handheld 
optical palpograms has not yet been demonstrated. There has, however, been several 
demonstrations of motion correction in 3D-OCT [21–25], based on information either 
encoded in the OCT images themselves, or provided by some concurrent tool. One such study 
used the registration of multiple scanning laser ophthalmoscope images acquired during the 
handheld 3D-OCT scans to measure and correct for motion in the lateral (xy) plane [26]. This 
registration, however, relied on the detection and alignment of vessels, and as such, this result 
may not be extendable to imaging of more turbid tissue, in which such key features may not 
be present. Another method estimates and corrects for motion using a fiducial marker, a rigid 
object of known shape and size laid out over the tissue of interest, and image correlation of 
consecutively acquired B-scans [27]. Although this removes the need for key features on the 
tissue surface, the rigid metal fiducial marker would obscure the mechanical contrast of the 
tissue, making it unsuitable for extension to optical palpation. 
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To demonstrate handheld optical palpation, we overcome these pivotal issues by 
implementing a novel, dual-function bi-layer, simultaneously performing both stress 
measurement and motion correction. Placed on the tissue surface, a compliant layer of soft 
material can be deformed in order to perform optical palpation, while a fiducial marker is 
embedded in a secondary top layer. This top layer is made of stiffer silicone to ensure that it 
is not deformed by hand motion. In our approach, motion correction is performed using a 
digital camera in-built in the handheld OCT probe to track motion in the lateral plane, relative 
to the tissue surface. Relative offsets and rotations between successive OCT B-scans are 
measured by simultaneously acquiring a photograph of the tissue surface for each  B-scan  in 
the OCT volume. We then run a pixel-intensity correlation algorithm on successive pairs of 
photographs, facilitating lateral motion estimation to within ∼16 μm. The corresponding  B-
scan  is then transformed accordingly, for each B-scan in the OCT volume, forming a more 
accurate representation of the tissue geometry. This motion-corrected 3D-OCT volume 
enables us to generate motion-corrected optical palpograms, providing mechanical contrast 
complementary to the optical contrast provided by OCT. 

We also show, for the first time, that optical palpation can be used to monitor pressure 
applied to the tissue surface during handheld scanning. This is an important development for 
handheld OCT in general, as it has been reported that pressure can affect the rate of blood 
flow and can warp structures imaged by OCT [28,29]. In addition, our technique can be used 
to ensure that applied pressure is below the pain threshold of human subjects (0.4 MPa [30]), 
to avoid discomfort [10]. We achieve this by computing and comparing the average stress in 
the area of interest, enabling more repeatable and consistent OCT imaging with handheld 
probes across different patients and operators. 

To demonstrate handheld optical palpation, we present results from a structured phantom, 
in vivo scans of human skin, and excised human breast tissue. In each case, we show 
substantial reduction in motion artifact in 3D-OCT and hence optical palpation, providing 
accurate contrast of key tissue features. We also demonstrate optical palpation as a method 
for monitoring pressure applied to the tissue by the user, providing insight into the ability to 
compare scans. We believe that this work is an important development towards routine 
optical elastography with handheld probes, expediting development towards in vivo clinical 
application. 

2. Methods 

2.1 The handheld OCT probe 

Scanning was performed using a commercial, spectral-domain OCT system (TELESTO III, 
Thorlabs Inc., Newton, NJ, USA) operating at a center wavelength of 1300 nm. The full 
width at half maximum (FWHM) axial and lateral resolutions were measured to be 5.5 μm (in 
free space) and 14.4 μm, respectively. The objective scanning lens (LK30, Thorlabs) has a 
working distance of 22 mm and the acquired imaging volume was 7 × 7 × 2.5 mm in x, y and 
z, respectively. The sample arm comprised a handheld OCT probe (OCTH-1300, Thorlabs). 
Figure 1(a) shows a photograph of the probe, with overlaid axes which can be used to 
describe motion relative to the tissue; six degrees of freedom, three axes of translation (x, y, 
z), corresponding to the fast (x), slow (y) and depth (z) scan directions, respectively, and three 
rotational directions (pitch, yaw, roll) which pivot around these axes. A piezoelectric ring 
actuator (PA), similar to that previously used for optical coherence elastography (OCE) [21], 
is fixed to the probe using a threaded connection, giving the probe a total weight of ∼0.3 kg. 
Although OCE was not performed in this study, this setup is designed to enable extension to 
such imaging in the future. A VIS-NIR AR coated glass imaging window (Edmund Optics) of 
diameter 20 mm and thickness 2 mm was attached to the ring actuator using wax. To perform 
scanning, contact is made between the window and the bi-layer, as described in Sec. 2.3, 
which is placed on the tissue surface. The reference mirror was removed from the handheld 
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higher stress (∼7 kPa) than the surrounding phantom material (∼3 kPa), and its geometry is 
now consistent with the motion-corrected en face OCT image shown in Fig. 6(f). The average 

stress (or pressure), σ , applied by the user during this scan is 3.78 kPa, calculated by 
averaging all stress values in the cropped optical palpogram. This value is useful in 
quantitatively guiding operators with applying adequate pre-load compression and assessing 
the ability to compare with other handheld scans of this phantom. Since optical palpation only 
relies on 3D-OCT to measure the deformation of the transparent compliant layer, it is less 
susceptible to error caused by small, localized OCT SNR variations. As such, the image 
artifacts (A,D), highlighted in Fig. 6(f), are not noticeable in Fig. 6(h). 

3.2 Human skin 

Figure 7 shows an in vivo handheld scan of the fingertip of a 21-year-old Caucasian female. 
The silicone layer was placed on the finger, with care taken to minimize slip during scanning. 
Figure 7(a) shows an uncorrected en face OCT image at a depth of ∼0.4 mm below the skin 
surface. The fingerprint pattern can be identified by the stripe-like texture and the fiducial 
marker by its low OCT intensity, however, the shape of both is clearly distorted by hand 
motion during the scan. Transforming this image using our motion correction technique 
generates the image shown in Fig. 7(b). The circular shape of the fiducial marker is accurately 
reconstructed, and the lines of the fingerprint are now more easily recognizable. The small 
disruption in this pattern (A) is likely caused by the fiducial marker moving slightly with 
respect to the skin during the scan. This distorts the correction of the underlying tissue as the 
photograph co-registration preferentially aligns the fiducial marker in each photograph, due to 
its high contrast. 

Figure 7(c) shows the uncorrected optical palpogram, and demonstrates similar distortion 
to the en face OCT image (Fig. 7(a)). The area outside of the fiducial marker has been 
masked in grey. Processing the motion-corrected 3D-OCT volume for optical palpation 
provides the optical palpogram shown in Fig. 7(d). This result can be used to see that the 
operator applied less pressure to the fingertip than the structured phantom (shown in Fig. 6), 
an average of 2.91 kPa. The fingerprint pattern can be identified in the image by the stress 
contrast caused mainly by the ridges and troughs of the finger pad, i.e., surface topology. 
Figure 7(e) shows a photograph of the fingertip with the fiducial marker in place. The inset 
highlights the correspondence of both the corrected OCT and optical palpograms to the area 
scanned. Additionally, this photograph shows a small horizontal crease line (C) present on the 
fingertip; not readily visible in the OCT image but revealed by optical palpation. Scattered 
small vertical lines of high stress (E) are also present, indicating areas where the automatic 
algorithm for compliant layer/tissue edge detection, used in the calculation of stress (see 
Section 2.1), failed due to optical artifacts near the layer-tissue interface. 
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4. Discussion 

The first demonstration of handheld optical palpation is presented in this paper. A main 
challenge we overcame was correction of operator- and tissue-induced motion artifact 
occurring during the scan. Importantly, in this study, the operator used a contact probe held 
freely in their hand. This is in contrast to prior demonstrations of optical palpation which used 
a support apparatus, such as an articulating mechanical arm [9] or mechanical stages [10] 
which are cumbersome for use in clinical applications. 

Unlike for x, y, and roll motion, independent testing of z, pitch and yaw motion, while 
scanning with the OCT probe in contact with turbid tissue, revealed negligible motion-artifact 
on the 3D-OCT signal intensity. For pitch and yaw, this was confirmed in the structured 
phantom scan, by the consistent en face location of the inclusion edges throughout motion-
corrected OCT volume. Comparisons of y-z profiles of the motion-corrected and mounted 
phantom scan, also confirmed negligible z-shifts. The handheld OCT probe used for this 
testing was fitted with an actuator to enable future extension to OCE [20] and quantitative 
micro-elastography [31] which rely on the fidelity of 3D-OCT scans. Since these techniques 
rely on phase-sensitive detection, they are significantly more sensitive to motion in z, as in the 
recent paper by Zaitsev et al. [15], than optical palpation. In ongoing work, we will assess 
existing and novel methods to also account for z-motion in OCE, and the possibility of 
extending our motion correction technique to image strain and elasticity using a handheld 
OCT probe. 

Unlike in many previously demonstrated motion correction approaches for 3D-OCT, we 
do not rely on SNR or contrast in the underlying OCT data for performing motion correction, 
increasing versatility across different tissues types and OCT scanning approaches. By design, 
the technique does, however, assume that OCT intensity values are determined only by the 
optical backscattering of points sampled. Field curvature effects from the lens in the off-the-
shelf handheld OCT probe, used in this demonstration, therefore caused small artifacts (D) in 
the motion corrected images (see Figs. 6(f) and 8(d)). This effect could be readily removed by 
cropping pixels at the edges of the 7 mm × 7 mm uncorrected en face OCT image or by using 
an f-theta corrected telecentric lens. The use of external hardware, i.e., the in-built CCD 
camera, for motion tracking, also allows for the robust correction of large positional shifts. 
We demonstrate correction of up to 1.5 mm among B-scans (see Fig. 6(b)), limited primarily 
by the fiducial marker staying within the camera field of view. The ability to correct for hand 
motion is, however, limited by the 6 Hz sampling rate and a co-registration accuracy of 
within ∼16 μm, with higher frequency and small magnitude hand motion unable to be 
accounted for. 

The use of a dual-function bi-layer is key to the robust correction demonstrated, enabling 
the decoupling of the accuracy of surface tracking and properties of the underlying tissue, 
since it removes the need to resolve features in photographs and OCT images. It also provides 
an easy visual check that the correction has succeeded. However, this is based on the 
assumption that the fiducial marker does not move relative to the tissue surface during the 
scan. The occurrence of such motion will cause incorrect alignment of the underlying tissue, 
as seen by the alignment artifact (A) in Fig. 7(b), since the photograph co-registration will 
favor aligning the fiducial markers. Thus, care must be taken to ensure that the bi-layer 
remains stationary with respect to the tissue during acquisition. We also note that the fiducial 
marker can present a potential disadvantage in reducing the effective field of view of OCT, 
optical palpation, and tissue surface photographs. Another issue for the compliant silicone 
layer used for optical palpation is the potential presence of negative stress, when the layer is 
compressed against uneven surface tissues. As the layer is incompressible, it has a tendency 
to expand into softer or cavernous areas e.g. the troughs of the fingerprint (see Fig. 7(e)), 
resulting in small negative stresses being calculated. More generally, surface topology can 
create stress contrast that may not be a direct consequence of the mechanical properties of the 
underlying tissue, as in the case of the fingerprint (see Fig. 7(e)). This could potentially 
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obscure the desired contrast in optical palpation by complicating the direct relationship 
between stress and stiffness. However, higher fidelity stiffness contrast can be found by 
employing quantitative micro-elastography [35] and extending this motion-correction 
technique to it. Meanwhile, incorrect surface stress estimation in palpograms, obtained under 
the assumptions that the stress field within the compliant section of the bi-layer is uniform 
and uniaxial, and the interface friction is low could also be overcome in future work by 
extending previously demonstrated computational optical palpation to in vivo work [36]. 

Routine use of this technique in a clinical setting will likely require substantially faster 
volume acquisition. With the current approach of conveniently matching the camera frame 
and B-scan rates, we were limited to a maximum B-scan frequency of 6 Hz, but B-scan rates 
>10 kHz have been demonstrated [37]. The installation of a higher frame rate digital camera 
would enable this technique to be adapted to faster acquisition times. Alternatively, the 
technique could be adapted such that a photograph is captured every few B-scans, rather than 
every B-scan, and motion for B-scans between photographs could be estimated by 
interpolation. Since increasing the B-scan frequency increases the data acquired before 
detectable movement occurs, this would also eliminate much of the interpolation artifacts 
caused by insufficient sampling (as seen in Fig. 4(c)). Although much of the motion artifact 
demonstrated in this paper could be accounted for by a faster imaging system, it is important 
to consider that all scans were acquired by engineers who were consciously trying to hold the 
OCT probe stationary. It is anticipated that clinical scanning scenarios, such as in vivo 
scanning of a surgical cavity by a surgeon, will result in substantially increased bulk motion. 
Thus, even with faster scanning speeds, we anticipate that motion correction will play an 
important role in ensuring fidelity to tissue features. 

Computation time also has important implications for the feasibility of our approach to 
handheld 3D-OCT and optical palpation in clinical applications, with the current processing 
time of a few hours requiring significant reduction. The majority of this time can be attributed 
to co-registering 807 photographs with the current off-the-shelf algorithm, chosen to enable 
proof-of-concept demonstration. Optimizing this photograph co-registration algorithm has the 
potential to greatly reduce this processing time, for example, by co-registering only a small 
window from each photograph or by choosing a feature tracking technique. This processing 
time could be also significantly reduced by re-implementing the code in C + + , which is 
much faster than the current Matlab implementation, and moving to GPU-accelerated 
processing [38]. 

5. Conclusion 

Handheld imaging probes are needed to extend clinical applications of optical elastography to 
in vivo scenarios, yet are challenging to implement, largely because of motion artifact. In this 
paper, we present the first demonstration of optical palpation, a variant of optical 
elastography, with a handheld probe, without any form of supporting apparatus. Key to 
enabling this demonstration was the development of a dual-function bi-layer, providing both a 
fiducial marker for tracking and correcting for lateral hand motion, and a compliant section 
for estimating stress at the tissue surface. We also demonstrate, for the first time, that optical 
palpation can be used as a method for measuring pressure applied to the tissue during 
handheld operation, thus providing a more repeatable and robust imaging technique between 
different users. An off-the-shelf handheld OCT probe was used to successfully demonstrate 
this approach on a structured phantom, in vivo human skin and excised human breast tissue. 
All en face OCT images showed greatly reduced motion artifact, even when almost 1.5 mm 
of motion occurred during a scan, and optical palpation was shown to be valuable in 
contrasting features. Future work will involve integration with faster OCT scanning, 
incorporation of live applied pressure readings and extension for use in other optical 
elastography techniques. This work is an important step towards developing optical 
elastography towards routine clinical use. 
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