
Sequence analysis

Optimal seed solver: optimizing seed selection

in read mapping

Hongyi Xin1,*, Sunny Nahar1, Richard Zhu1, John Emmons5,

Gennady Pekhimenko1, Carl Kingsford3, Can Alkan4,* and Onur Mutlu1,2,*

1Computer Science Department, 2Department of Electrical and Computer Engineering, 3Computational Biology

Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA, 4Department of Computer Engineering, Bilkent

University, Bilkent, Ankara 06800, Turkey and 5Department of Computer Science and Engineering, Washington

University, St. Louis, MO 63130, USA

*To whom correspondence should be addressed.

Associate Editor: Gunnar Ratsch

Received on April 19, 2015; revised on September 27, 2015; accepted on November 9, 2015

Abstract

Motivation: Optimizing seed selection is an important problem in read mapping. The number of

non-overlapping seeds a mapper selects determines the sensitivity of the mapper while the total

frequency of all selected seeds determines the speed of the mapper. Modern seed-and-extend

mappers usually select seeds with either an equal and fixed-length scheme or with an inflexible

placement scheme, both of which limit the ability of the mapper in selecting less frequent seeds to

speed up the mapping process. Therefore, it is crucial to develop a new algorithm that can adjust

both the individual seed length and the seed placement, as well as derive less frequent seeds.

Results: We present the Optimal Seed Solver (OSS), a dynamic programming algorithm that dis-

covers the least frequently-occurring set of x seeds in an L-base-pair read in Oðx � LÞ operations

on average and in Oðx � L2Þ operations in the worst case, while generating a maximum of OðL2Þ
seed frequency database lookups. We compare OSS against four state-of-the-art seed selection

schemes and observe that OSS provides a 3-fold reduction in average seed frequency over the

best previous seed selection optimizations.

Availability and implementation: We provide an implementation of the Optimal Seed Solver in

Cþþ at: https://github.com/CMU-SAFARI/Optimal-Seed-Solver

Contact: hxin@cmu.edu, calkan@cs.bilkent.edu.tr or onur@cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The invention of high-throughput sequencing (HTS) platforms dur-

ing the past decade triggered a revolution in the field of genomics.

These platforms enable scientists to sequence mammalian-sized gen-

omes in a matter of days, which have created new opportunities for

biological research. For example, it is now possible to investigate

human genome diversity between populations (1000 Genomes

Project Consortium, 2010, 2012), find genomic variants likely to

cause disease (Flannick et al., 2014; Ng et al., 2010), and study the

genomes of ape species (Marques-Bonet et al., 2009; Prado-

Martinez et al., 2013; Scally et al., 2012; Ventura et al., 2011) and

ancient hominids (Green et al., 2010; Meyer et al., 2012; Reich

et al., 2010) to better understand human evolution.

However, these new sequencing platforms drastically increase

the computational burden of genome data analysis. First, billions of

short DNA segments (called reads) are aligned to a long reference

genome. Each read is aligned to one or more sites in the reference

based on similarity with a process called read mapping (Flicek and

Birney, 2009). Reads are matched to locations in the genome with a

certain allowed number of errors: insertions, deletions, and substitu-

tions (which usually constitute less than 5% of the read’s length).

Matching strings approximately with a certain number of allowed

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1632

Bioinformatics, 32(11), 2016, 1632–1642

doi: 10.1093/bioinformatics/btv670

Advance Access Publication Date: 14 November 2015

Original Paper

https://github.com/CMU-SAFARI/Optimal-Seed-Solver
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv670/-/DC1
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: (Ng etal.,2010;
Deleted Text:
Deleted Text:
Deleted Text: 4
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: al.,2011;Prado-Martinez et
Deleted Text:
Deleted Text: 3
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: Reich etal.,2010;
Deleted Text:
Deleted Text:
Deleted Text: 2
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: ,
http://www.oxfordjournals.org/

errors is a difficult problem. As a result, read mapping constitutes a sig-

nificant portion of the time spent during the analysis of genomic data.

Pigeonhole principle based seed-and-extend mappers are one kind

of popular mappers that have been widely used to aid many biological

applications (Green et al., 2010; Navin et al., 2011; Van Vlierberghe

et al., 2010). In pigeonhole based seed-and-extend mappers such as

mrFAST (Alkan et al., 2009; Xin et al., 2013), RazerS3 (Weese et al.,

2012), GEM (Marco-Sola et al., 2012), SHRiMP (Rumble et al.,

2009) and Hobbes (Ahmadi et al., 2011), each read is partitioned into

one or more short segments called seeds. Here we define seeds as sub-

strings of a read. This definition is different from the ‘spaced seeds’

definition (which can be a subsequence, rather than a substring)—a

concept we will explain in the Related Works section. Seeds are used

as indices into the reference genome to reduce the search space and

speed up the mapping process. Since a seed is a substring of the read

that contains it, every correct mapping for a read in the reference gen-

ome will also be mapped by the seed (assuming no errors in the seed).

Therefore, mapping locations of the seeds generate a pool of potential

mappings of the read. Mapping locations of seeds in the reference gen-

ome are pre-computed and stored in a seed database (usually imple-

mented as a hash table or Burrows-Wheeler-transformation (BWT)

(Burrows et al., 1994) with FM-indexing (Ferragina and Manzini,

2000)) and can be quickly retrieved through a database lookup.

When there are errors in a read, the read can still be correctly mapped as

long as there exists one seed of the read that is error free. The error-free seed

can be obtained by breaking the read into many non-overlapping seeds; in gen-

eral, to tolerate e errors, a read is divided into eþ1 seeds, and based on the

pigeonhole principle, at least one seed will be error free.

Alternatively, a mapper can use overlapping seeds. Such mappers

follow the q-gram approach (Rasmussen et al., 2006) in order to

achieve full mapping sensitivity (finding all valid mappings that

have fewer errors than permitted) or simply select overlapping seeds

without guaranteeing the full mapping sensitivity under the given

error threshold (e.g. bowtie2 (Langmead and Salzberg, 2012),

BWA-MEM (Li, 2013)). Compared to the pigeonhole principle (a

special case of the q-gram approach), selecting overlapping seeds

using the q-gram approach could generate longer, less frequent

seeds. However, in order to guarantee full mapping sensitivity, this

approach requires selecting a larger number of seeds, which may in-

crease the total number of potential mappings, there by reducing the

speed of a mapper. In this work, we focus on seed selection mechan-

isms based on the pigeonhole principle that provide full mapping

sensitivity by selecting non-overlapping seeds.

For each selected non-overlapping seed, its locations are further

verified using weighted edit-distance calculation mechanisms (such as

Smith–Waterman (Smith and Waterman, 1981) and Needleman–

Wunsch (Needleman and Wunsch, 1970) algorithms), to examine the

similarity between the read and the reference at each potential mapping

site. Locations that pass this final verification step (i.e. contain fewer

than e substitutions, insertions and deletions) are valid mappings and

are recorded by the mapper for use in later stages of genomic analysis.

Computing the edit-distance is an expensive operation and is the primary

computation performed by most read mappers. In fact, speeding up this com-

putation is the subject of many other works in this area of research, such as

Shifted Hamming Distance (Xin et al., 2015), Gene Myers’ bit-vector algo-

rithm (Myers, 1999) and SIMD implementations of edit-distance algorithms

(Rognes, 2011; Szalkowski et al., 2008). To allow edits, mappers must divide

reads into multiple seeds. Each seed increases the number of locations that

must be verified. Furthermore, to divide a read into more seeds, the lengths of

seeds must be reduced to make space for the increased number of seeds;

shorter seeds occur more frequently in the genome which requires the mapper

to verify even more potential mappings.

Therefore, the key to building a fast yet error tolerant mapper with

high sensitivity is to select many seeds (to provide greater tolerance)

while minimizing their frequency of occurrence (or simply frequency)

in the genome to ensure fast operation. Our goal, in this work, is to

lay a theoretically-solid foundation to enable techniques for optimal

seed selection in current and future seed-and-extend mappers.

Selecting the optimal set of non-overlapping seeds (i.e. the least fre-

quent set of seeds) from a read is difficult primarily because the associ-

ated search space (all valid choices of seeds) is large and it grows

exponentially as the number of seeds increases. A seed can be selected

at any position in the read with any length, as long as it does not over-

lap with other seeds. We observe that there is a significant advantage

to selecting seeds with unequal lengths, as possible seeds of equal

lengths can have drastically different levels of frequencies.

Our goal in this paper is to develop an inexpensive algorithm for

seed-and-extend mappers based on the pigeonhole principle that de-

rives the optimal placement and length of each seed in a read such

that the overall sum of frequencies of all seeds is minimized.

This paper makes the following contributions:

• It examines the frequency distribution of seeds in the seed database

and provides how often seeds of different frequencies are selected

using a naı̈ve seed selection scheme. We confirm the discovery of

prior works (Kiełbasa et al., 2011) that frequencies are not evenly

distributed among seeds and frequent seeds are selected more often

under a naı̈ve seed selection scheme. We further show that this

phenomenon persists even when using longer seeds.
• It provides an implementation of an optimal seed finding algo-

rithm, Optimal Seed Solver, which uses dynamic programming

to efficiently find the least-frequent non-overlapping seeds of a

given read. We prove that this algorithm always provides the

least frequently-occurring set of seeds in a read.
• It provides a comparison of the Optimal Seed Solver and existing

seed selection optimizations, including Adaptive Seeds Filter in the

GEM mapper (Marco-Sola et al., 2012), Cheap K-mer Selection in

FastHASH (Xin et al., 2013), Optimal Prefix Selection in the

Hobbes mapper (Ahmadi et al., 2011) and spaced seeds in

PatternHunter (Ma et al., 2002). We compare the complexity,

memory traffic, and average frequency of selected seeds of

Optimal Seed Solver with the above four state-of-the-art seed selec-

tion mechanisms. We show that the Optimal Seed Solver provides

the least frequent set of seeds among all existing seed selection op-

timizations at reasonable complexity and memory traffic.

2 Motivation

To build a fast yet error tolerant mapper with high mapping cover-

age, reads need to be divided into multiple, infrequently occurring

seeds. In this way, a mapper can find all correct mappings of the

read (mappings with small edit-distances) while minimizing the

number of edit-distance calculations that need to be performed. To

achieve this goal, we have to overcome two major challenges: (i)

seeds are short, in general, and therefore frequent in the genome;

and (ii) the frequencies of different seeds vary significantly. We dis-

cuss each challenge in greater detail.

Assume a read has a length of L base-pairs (bp) and x% of it is

erroneous (e.g. L¼80 and x% ¼ 5% implies that there are 4 edits).

To tolerate x%� L errors in the read, we need to select x%� Lþ 1

seeds, which renders a seed to be L� ðx%� Lþ 1Þ-base-pair long

on average. Given that the desired error rates for many mainstream

mappers have been as large as 0.05, the average seed length of a

hash-table based mapper is typically not greater than 16-bp (Alkan

Optimal seed solver 1633

Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: ``
Deleted Text: ''
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: +
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: .,
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: -
Deleted Text:
Deleted Text:
Deleted Text: -
Deleted Text:
Deleted Text:
Deleted Text: .,
Deleted Text: ,
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: (
Deleted Text:
Deleted Text:
Deleted Text: ;Rognes,2011
Deleted Text:
Deleted Text: -
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: -
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: ,
Deleted Text:
Deleted Text: 1
Deleted Text: 2
Deleted Text:
Deleted Text: .,
Deleted Text: =
Deleted Text:

et al., 2009; Ahmadi et al., 2011; Marco-Sola et al., 2012; Rumble

et al., 2009; Weese et al., 2012).

Seeds have two important properties: (i) the frequency of a seed

is monotonically non-increasing with larger seed lengths and (ii) fre-

quencies of different seeds typically differ (sometimes significantly)

(Kiełbasa et al., 2011). Figure 1 shows the static distribution of fre-

quencies of 10-bp to 15-bp fixed-length seeds from the human refer-

ence genome (GRCh37). This figure shows that the average seed

frequency decreases with the increase in the seed length. With longer

seeds, there are more patterns to index the reference genome. Thus

each pattern, on average, is less frequent.

From Figure 1, we can also observe that the frequencies of seeds

are not evenly distributed: for seeds with lengths between 10-bp to 15-

bp, many seeds have frequencies below 100. As the figure shows, a

high number of unique seeds, often over 103, correspond to seed fre-

quencies below 100. However, there are also a few seeds which have

frequencies greater than 100K (note that such unique seeds are very

few, usually 1 per each frequency). This explains why most plots in

Figure 1 follow a bimodal distribution; except for 10-bp seeds and per-

haps 11-bp seeds, where the frequency of seeds peaks at around 100.

Although ultra-frequent seeds (seeds that appear more frequently than

104 times) are few among all seeds, they are ubiquitous in the genome.

As a result, for a randomly selected read, there is a high chance that

the read contains one or more of such frequent seeds. This effect is

best illustrated in Figure 2, which presents the numbers of frequencies

of consecutively selected seeds, when we map over 4 million randomly

selected 101-bp reads from the 1000 Genomes Project (1000 Genomes

Project Consortium, 2010) to the human reference genome.

Unlike in Figure 1, in which the average frequency of 15-bp

unique seeds is 5.25, the average frequencies of selected seeds in

Figure 2 are all greater than 2.7K. Furthermore, from Figure 2, we

can observe that the ultra-frequent seeds are selected far more often

than some of the less frequent seeds, as the selected seed count in-

creases with seed frequencies higher than 104 (as opposed to Fig. 1,

where seed frequencies over 104 usually have seed counts below 10).

This observation suggests that the ultra-frequent seeds are surpris-

ingly numerous in reads, especially considering how few ultra-fre-

quent seed patterns there are in total in the seed database (and the

plots in Figure 2 no longer follow a bimodal distribution as in Fig.

1). We call this phenomenon the frequent seed phenomenon. The

frequent seed phenomenon is explained in previous works (Kiełbasa

et al., 2011). To summarize, highly frequent seed patterns are ubi-

quitous in the genome, therefore they appear more often in ran-

domly sampled reads, such as reads sampled from shotgun

sequencing. Frequency distributions of other seed lengths are pro-

vided in the Supplementary Materials Section 1.1.

The key takeaway from Figures 1 and 2 is that although longer

seeds on average are less frequent than shorter seeds, some seeds are

still much more frequent than others and such more frequent seeds are

very prevalent in real reads. Therefore, with a naı̈ve seed selection

mechanism (e.g. selecting seeds consecutively from a read), a mapper

selects many frequent seeds, which increases the number of calls to the

computationally expensive verification process during read mapping.

To reduce the total frequency of selected seeds, we need an intelli-

gent seed selection mechanism to avoid using frequent patterns as

seeds. More importantly, as there is a limited number of base-pairs in

a read, we need to carefully choose the length of each seed. Extension

of an infrequent seed does not necessarily provide much reduction in

Fig. 1. Frequency distribution of unique seeds in fixed-length seed (k-mers at

varying ‘k’s) databases of human reference genome version 37. Each plot shows

how many unique seeds there are at each frequency level. Notice that the trend in

each plot is not a continuous line but is made of many discrete data points. Each

data point denotes how many unique seeds there are at each frequency level

Fig. 2. Frequency distribution of selected seeds at runtime by consecutively se-

lecting 15-bp seeds from reads while mapping 4 031 354 101-bp reads from a

real read set, ERR240726 from the 1000 Genomes Project, to human reference

version 37, under different numbers of required seeds. Unlike Figure 1, which

counts each unique seed only once, this figure records the overall distribution

of frequencies over selected seeds while mapping a real read set. In this figure,

upon selection, each seed contributes to the frequency counter individually

(duplicating seeds will be counted multiple times by each selection)

1634 H.Xin et al.

Deleted Text:
Deleted Text:
Deleted Text: Weese
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: Marco-Sola
Deleted Text: al.,2012;Ahmadi et
Deleted Text:
Deleted Text: 1
Deleted Text:
Deleted Text: 1
Deleted Text: 2
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:).
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: Figure
Deleted Text:
Deleted Text: Figure
Deleted Text:
Deleted Text:
Deleted Text:
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv670/-/DC1
Deleted Text:
Deleted Text:
Deleted Text: Figure
Deleted Text: .,
Deleted Text:

the total frequency of all seeds, but it will ‘consume’ base-pairs that

could have been used to extend other more frequent seeds. Besides

determining individual seed lengths, we should also intelligently select

the position of each seed. If multiple seeds are selected from a small re-

gion of the read, as they are closely packed together, seeds are forced

to keep short lengths, which could potentially increase their seed fre-

quency. Thus, seed selection must be done carefully to minimize the

total frequency of seed occurrence.

Based on the above observations, our goal in this paper is to de-

velop an algorithm that can calculate both the length and the place-

ment of each seed in the read such that, the total frequency of all seeds

is minimized. We call such a set of seeds the optimal seeds of the read

as they produce the minimum number of potential mappings to be veri-

fied while maintaining the sensitivity of the mapper. We call the sum of

frequencies of the optimal seeds the optimal frequency of the read.

3 Methods

The biggest challenge in deriving the optimal seeds of a read is the

large search space. If we allow a seed to be selected from an arbi-

trary location in the read with an arbitrary length, then from a read

of length L, there can be L�ðLþ1Þ
2 possibilities to extract a single seed.

When there are multiple seeds, the search space grows exponentially

since the position and length of each newly selected seed depend on

the positions and lengths of all previously selected seeds. For x seeds,

there can be as many as OðL2�x

x! Þ seed selection schemes.

Below we propose Optimal Seed Solver (OSS), a dynamic pro-

gramming algorithm that finds the optimal set of x seeds of a read in

Oðx� LÞ operations on average and in Oðx� L2Þ operations in the

worst case scenario.

Although in theory a seed can have any length, in OSS, we assume

the length of a seed is bounded by a range [Smin, Smax]. This bound is

based on our observation that, in practice, neither very short seeds nor

very long seeds are commonly selected as optimal seeds. Ultra-short

seeds (<8-bp) are too frequent. Most seeds shorter than 8-bp have fre-

quencies over 1000. Ultra-long seeds ‘consume’ too many base-pairs

from the read, which shorten the lengths of other seeds and increase

their frequencies. This often leads to higher total seed frequency.

Furthermore, long seeds (e.g. 40-bp) are mostly either unique or non-

existent in the reference genome (seed of 0 frequency is still useful in

read mapping as it confirms there exist at least one error in it).

Extending a unique or non-existent seed longer provides little benefit

while ‘consuming’ extra base-pairs from the read.

Bounding seed lengths reduces the search space of optimal seeds.

However, it is not essential to OSS. OSS can still work without seed

length limitations (to lift the limitations, one can simply set Smin¼1

and Smax ¼ L), at the cost of extra computation.

We describe our Optimal Seed Solver algorithm in three sections.

First, we introduce the core algorithm of OSS (Section 3.1). Then we

improve the algorithm with four optimizations (Section 3.2), opti-

mal divider cascading, early divider termination, divider sprinting

and optimal solution forwarding. Finally we explain the overall al-

gorithm and provide the pseudo-code (Section 3.3).

3.1 The core algorithm
A naı̈ve brute-force solution to find the optimal seeds of a read would

systematically iterate through all possible combinations of seeds. We

start by selecting the first seed by instantiating all possible positions and

lengths of the seed. On top of each position and length of the first seed,

we instantiate all possible positions and lengths of the second seed that

is sampled after (to the right-hand side of) the first seed. We repeat this

process for the rest of the seeds until we have sampled all seeds. For

each combination of seeds, we calculate the total seed frequency and

find the minimum total seed frequency among all combinations.

The key problem in the brute-force solution above is that it exam-

ines many obviously suboptimal combinations. For example, in Figure

3, there are two 2-seed combinations, SA and SB, extracted from the

same read, R. Both combinations end at the same position, p, in R.

We call SA and SB seed subsets of the partial read R[1...p]. In this case,

between SA and SB, SB has a higher total seed frequency than SA. For

any number of seeds that is greater than 2, we know that in the final

optimal solution of R, seeds before position p will not be exactly like

SB, since any seeds that are appended after SB (e.g. S0B in Fig. 3) can

also be appended after SA (e.g. S0A in Fig. 3) and produce a smaller

total seed frequency. In other words, compared to SB, only SA has the

potential to be part of the optimal solution and worth appending

more seeds after. In general, among two combinations that have equal

numbers of seeds and end at the same position in the read, only the

combination with the smaller total seed frequency has the potential of

becoming part of a bigger optimal solution (with more seeds).

Therefore, for a partial read and all combinations of subsets of seeds

in this partial read, only the optimal subset of this partial read (with

regard to different numbers of seeds) might be relevant to the optimal

solution of the entire read. Any other suboptimal subsets of seeds of

this partial read (with regard to different numbers of seeds) is guaran-

teed to not lead to the optimal solution and should be pruned.

The above observation suggests that by summarizing the optimal

solutions of partial reads under a smaller number of seeds, we can

prune the search space of the optimal solution. Specifically, given m

(with m<x) seeds and a substring U, only the optimal m seeds of U

could be part of the optimal solution of the entire read. Any other

suboptimal combinations of m seeds of U should be pruned.

Storing the optimal solutions of partial reads under a smaller num-

ber of seeds also helps speed up the computation of larger numbers of

seeds. Assuming we have already calculated and stored the optimal

frequency of m seeds of all substrings of R, to calculate the optimal

ðmþ 1Þ-seed solution of a substrings, we can i) iterate through a series

of divisions of this substring; ii) calculate the seed frequency of each

division using pre-calculated results and iii) find out the division that

provides the minimum seed frequency. In each division, we divide the

substring into two parts: We extract m seeds from the first part and 1

seed from the second part. The minimum total seed frequency of this

division (or simply the ‘optimal frequency of the division’) is simply

the sum of the optimal m-seed frequency of the first part and the opti-

mal 1-seed frequency of the second part. As we already have both the

optimal m-seed frequency of the first part and the 1-seed frequency of

the second part pre-calculated and stored, the optimal frequency of

this division can be computed with one addition and two lookups.

Fig. 3. Example showing that a seed subset (SB) that leads to a higher frequency

than another subset (SA) that ends at the same location (p) in the read must not be

part of the optimal seed solution. In this figure, the total seed frequency of SA is

smaller than SB. Both combinations can be extended by adding a third seed, mak-

ing them SA
0 and SB

0 respectively. For any third seed, the total seed frequency of

SB
0 must be greater than SA

0 . Hence, SB must not be part of any optimal solution

Optimal seed solver 1635

Deleted Text: ``
Deleted Text: ''
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: ``
Deleted Text: ''
Deleted Text: .,
Deleted Text: ``
Deleted Text: ''
Deleted Text:
Deleted Text: =
Deleted Text:),
Deleted Text:
Deleted Text: ,
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: .,
Deleted Text: Figure
Deleted Text: .,
Deleted Text: Figure
Deleted Text:
Deleted Text: <
Deleted Text:
Deleted Text: ``
Deleted Text: ''
Deleted Text:

The optimal ðmþ 1Þ-seed solution of this substring is simply the

division that yields the minimum total frequency. Given that each

seed requires at least Smin base-pairs, for a substring of length L0,

there are in total L0 � ðmþ 1Þ � Smin possible divisions to be exam-

ined. This relationship can be summarized as a recurrence function

in Equation 1, in which OptðU;mÞ denotes the optimal m-seed fre-

quency of substring U and u denotes the length of U.

OptðU;mþ 1Þ ¼ mini½OptðU½1 : i� 1�;mÞ þOptðU½i : u�; 1Þ�
(1)

We can apply the same strategy to the entire read: to obtain the opti-

mal xþ1 seeds from read R, we first examine all possible 2-part div-

isions of the read, which divide the read into a prefix and a suffix. For

each division, we extract x seeds from the prefix, and 1 seed from the

suffix. The optimal ðxþ 1Þ-seed solution of the read is simply the div-

ision that provides the lowest total seed frequency. As we have dis-

cussed above, for a division to be optimal, its x-seed prefix and 1-seed

suffix must also be optimal (this provides the minimum total seed fre-

quency). By the same logic, to obtain the optimal x-seed solution of a

prefix, we can further divide the prefix into an optimal ðx� 1Þ-seed

prefix and an optimal 1-seed substring (which is no longer a suffix of

the read). We can keep applying this prefix-division process until we

have reached 1-seed prefixes. In other words, by progressively calcu-

lating the optimal solutions of all prefixes from 1 to x seeds, we can

find the optimal ðxþ 1Þ-seed solution of the read.

OSS implements the above strategy using a dynamic programming

algorithm: to calculate the optimal ðxþ 1Þ-seed solution of a read, R,

OSS computes and stores optimal solutions of prefixes with fewer

seeds through x iterations. In each iteration, OSS computes optimal

solutions of prefixes with regard to a specific number of seeds. In the

mth iteration (m�x), OSS computes the optimal m-seed solutions of

all prefixes of R, by re-using optimal solutions computed from the

previous ðm� 1Þth iteration. For each prefix, OSS performs a series

of divisions and finds the division that provides the minimum total fre-

quency of m seeds. For each division, OSS computes the optimal

m-seed frequency by summing up the optimal ðm� 1Þ-seed frequency

of the first part and the 1-seed frequency of the second part. Both fre-

quencies can be obtained from previous iterations. Overall, OSS starts

from one seed and iterates to x seeds. Finally OSS computes the opti-

mal ðxþ 1Þ-seed solution of R by finding the optimal division of R

and reuses results from the xth iteration.

3.2 Further optimizations
With the proposed dynamic programming algorithm, OSS can find

the optimal ðxþ 1Þ seeds of a L-bp read in Oðx� L2Þ operations: In

each iteration, OSS examines OðLÞ prefixes (to be exact,

L� ðxþ 1Þ � Smin) and for each prefix OSS inspects OðLÞ divisions

(to be exact, L0 � i� Smin divisions of an L0-bp prefix for the ith iter-

ation). In total, there areOðL2Þ divisions to be verified in an iteration.

To speed up OSS and reduce the average complexity of process-

ing each iteration, we propose four optimizations: optimal divider

cascading, early divider termination, divider sprinting and optimal

solution forwarding. With all four optimizations, we empirically re-

duce the average complexity of processing an iteration to OðLÞ.
Below we describe the four optimizations in detail.

3.2.1 Optimal divider cascading

Until this point, our assumption is that optimal solutions of prefixes

within an iteration are independent from each other: the optimal

division (the division that provides the optimal frequency) of one

prefix is independent from the optimal division of another prefix,

thus they must be derived independently.

We observe that this assumption is not necessarily true as there

exists a relationship between two prefixes of different lengths in the

same iteration (under the same seed number): the first optimal div-

ider (the optimal divider that is the closest towards the beginning of

the read, if there exist multiple optimal divisions with the same total

frequency) of the shorter prefix must be at the same or a closer pos-

ition towards the beginning of the read, compared to the first opti-

mal divider of the longer prefix. We call this phenomenon the

optimal divider cascading, and it is depicted in Figure 4. The proof

that the optimal divider cascading phenomenon always holds is pro-

vided in the Supplementary Materials Section 1.2.

Based on the optimal divider cascading phenomenon, we know

that for two prefixes in the same iteration, the first optimal divider

of the shorter prefix must be no further than the first optimal divider

of the longer prefix. With this relationship, we can reduce the search

space of optimal dividers in each prefix by processing prefixes

within an iteration from the longest to the shortest.

In each iteration, we start with the longest prefix of the read,

which is the read itself. We examine all divisions of the read and find

the first optimal divider of it. Then, we move to the next prefix of the

length jL� 1j. In this prefix, we only need to check dividers that are

at the same or a prior position than the first optimal divider of the

read. After processing the length jL� 1j prefix, we move to the length

jL� 2j prefix, whose search space is further reduced to positions that

are at the same or a closer position to the beginning of the read than

the first optimal divider of the length jL� 1j prefix. This procedure is

repeated until the shortest prefix in this iteration is processed.

3.2.2 Early divider termination

With optimal divider cascading, we are able to reduce the search

space of the first optimal divider of a prefix and exclude positions

that come after the first optimal divider of the previous, 1-bp longer

prefix (recall that with optimal divider cascading OSS starts with the

longest prefix and gradually moves to shorter prefixes). However,

the search space is still large since any divider prior to the first opti-

mal divider of the previous prefix could be the optimal divider. To

further reduce the search space of dividers in a prefix, we propose

the second optimization—early divider termination.

The goal of early divider termination is to reduce the number of

dividers we examine for each prefix. The key idea of early divider termi-

nation is to find the early divider termination position in the target pre-

fix, as we are moving the divider backward one base-pair at a time,

where all dividers that are prior to the termination position are guaran-

teed to be suboptimal and can be excluded from the search space.

The key observation that early divider termination builds on is sim-

ple: The optimal frequency of a substring monotonically non-increases

as the substring extends longer in the read (see Lemma 1 in

Supplementary Materials Section 1.2 for the proof of this fact).

Fig. 4. All prefixes and their first optimal dividers in an iteration. We observe

that the first optimal divider of a longer prefix is never more towards the be-

ginning of the read than the first optimal divider of a shorter prefix

1636 H.Xin et al.

Deleted Text: ,
Deleted Text:
Deleted Text:
Deleted Text: +
Deleted Text:
Deleted Text: (),
Deleted Text:
Deleted Text:
Deleted Text: .
Deleted Text:
Deleted Text:
Deleted Text:
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv670/-/DC1
Deleted Text:
Deleted Text:
Deleted Text: .
Deleted Text:
Deleted Text: –
Deleted Text:
Deleted Text:
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv670/-/DC1
Deleted Text:

Based on the optimal divider cascading, we start at the position of

the first optimal divider in the previous prefix. Then, we gradually move

the divider towards the beginning (or simply move backward) and check

the total seed frequency of the division after each move. During this pro-

cess, the first part of the division gradually shrinks while the second part

gradually grows, as we show in Figure 5. According to the Lemma 1 in

the Supplementary Materials Section 1.2, the optimal frequency of the

first part must be monotonically non-decreasing while the optimal fre-

quency of the second part must be monotonically non-increasing.

For each position of the divider, let FREQP2
denote the frequency

of the second part (P2, in yellow) and DFREQP1
denote the change of

frequency of the first part (P1, in blue) between current and the next

move (the two moves are only 1 bp apart). Early divider termination

suggests that: the divider should stop moving backward, whenever

jDFREQP1
j > jFREQP2

j. All dividers that are prior to this position

are guaranteed to have greater total seed frequencies. We call this stop-

ping position the termination position, and the division at this pos-

ition—the termination division, denoted as T, and the above inequality

that determines the termination position, the termination inequality

(jDFREQP1
j > jFREQP2

j). We name the first and the second part of T

as T1 and T2 respectively.

For any divider D that comes prior to the termination position, compared

to the termination division, T, its first part is shorter than the first part of the

termination division (jDD1j < jDT1j) and its second part is longer. Hence the

optimal frequency of its first part is greater ðFREQD1
�FREQT1

Þ and the

optimal frequency of its second part is smaller ðFREQD2
�FREQT2

Þ. Let jD
FREQD1�T1

j denote the increase of the optimal frequency of the first part be-

tween current division D and termination division T and jDFREQD2�T2
j de-

note the decrease of the second part. Based on Lemma 1, we have

jDFREQD1�T1
j�jDFREQT1

j. Since the frequency of a seed can be no

smaller than 0, we also have jFREQT2
j�jDFREQD2�T2

j. Combining these

two inequalities with the termination inequality,

(jDFREQT1
j > jFREQT2

j) we have jDFREQD1�T1
j > jDFREQD2�T2

j.
This suggests that compared to the termination division, the frequency

increase of the first part of D must be greater than the frequency reduc-

tion of the second part. Hence, the overall optimal frequency of such a

division must be greater than the optimal frequency of the termination

division. Therefore, a division prior to the termination position cannot

be optimal.

Using early divider termination, we can further reduce the search

space of dividers within a prefix and exclude all positions that are

prior to the termination position. Since the second part of the prefix

hosts only one seed and frequencies of most seeds decrease to 1 after

extending it to a length of over 20-bp, we observe that the termin-

ation position of a prefix is reached fairly quickly, only after a few

moves. With both optimal divider cascading and early divider ter-

mination, from our experiments, we observe that we only need to

verify 5.4 divisions on average (this data is obtained from mapping

ERR240726 to human genome v37, under the error threshold of 5)

for each prefix. To conclude, with both optimizations, we have

reduced the average complexity of Optimal Seed Solver to Oðx� LÞ.

3.2.3 Divider sprinting

According to optimal divider cascading and early divider termin-

ation, for each prefix, after inheriting the starting divider from the

previous prefix, we gradually move the divider towards the begin-

ning of the prefix, one base-pair at a time, until early divider termin-

ation is triggered. In each move, we check the optimal frequency of

the two parts in the current division as well as the frequency increase

of the first part compared to the previous division. We stop moving

the divider when the frequency increase of the first part is greater

than the optimal frequency of the second part.

We observe that it is unnecessary to always move the divider a single base-

pair at a time and check for frequencies after each move. In the early divider

termination method, the move terminates only when the frequency increase of

the first part is greater than the optimal seed frequency in the second part. This

suggests that when the frequency of the first part remains unchanged between

moves, which produces no increase in frequency, we do not need to check the

frequency of the second part as it will not trigger early termination. When mul-

tiple dividers in a region share the same first-part frequency, we only need to

verify the last divider of this region and skip all the other dividers in the middle

(an example is provided in the Supplementary Materials Section 1.4). The last

divider always provides the least total seed frequency among all dividers in this

region since it has the longest second part compared to other dividers (longer

substring always provides less or equally frequent optimal seeds) while keeping

its first-part frequency the same. We call this method divider sprinting.

3.2.4 Optimal solution forwarding

With optimal divider cascading, early divider termination and div-

ider sprinting, we observe that the average number of divisions per

prefix reduces from 5.4 (plain OSS) to 3.7. Nevertheless, for each

prefix, we still need to examine at least two divisions (one for the in-

herited optimal division of the previous prefix and at least one more

for early divider termination). We observe that some prefixes can

also inherit the optimal solution of the previous prefix without ver-

ifying any divisions, as they share the same optimal divider with the

previous prefix. Within an iteration, we recognize that there exist

many prefixes that share the same second-part frequency with the

previous prefix when divided by the previous prefix’s optimal div-

ider. We conclude that such prefixes must also share the same opti-

mal divider as well as the same optimal seed frequency with the

previous prefix (detailed proof is provided in the Supplementary

Materials Section 1.3). We call this optimal solution forwarding.

With optimal solution forwarding, for each incoming prefix, after inherit-

ing the optimal divider from the previous prefix, we first test if the second-part

frequency of the new prefix equals the second-part frequency of the previous

prefix. If they are equal, then we can assert that the optimal divider of the pre-

vious prefix must also be the optimal divider of the new prefix and move on

to the next read, without examining any divisions.

With optimal solution forwarding, we observe that the average

number of division verifications per prefix reduces further to 0.95

from 5.4 (this data is obtained from mapping ERR240726 to human

genome v37, under the error threshold of 5), providing a 5.68x po-

tential speedup over OSS without any optimizations.

3.3 The full algorithm
Algorithm 1 and 2 show the full algorithm of the Optimal Seed

Solver. Before calculating the optimal x-seed frequency of the read,

R, we assume that we already have the optimal 1-seed frequency of

any substring of R and it can be retrieved in a Oð1Þ-time lookup via

the optimalFreqðsubstringÞ function (this assumption is valid only if

Fig. 5. Moving a divider dividers in a prefix according to optimal divider cascad-

ing. The divider starts at the position of the previous prefix’s first optimal div-

ider, then gradually moves towards the beginning of the prefix, until it reaches

the termination position, T. P1 (in blue) and P2 (in yellow) are the first and the

second part of each division, respectively. T1 (in pink) and T2 (in green) are the

first and the second part of the termination division, respectively

Optimal seed solver 1637

Deleted Text:
Deleted Text:
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv670/-/DC1
Deleted Text:
Deleted Text: .
Deleted Text: –
Deleted Text: .
Deleted Text:
Deleted Text:
Deleted Text: .
Deleted Text: .
Deleted Text: .
Deleted Text:
Deleted Text: .
Deleted Text:
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv670/-/DC1
Deleted Text:
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv670/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv670/-/DC1
Deleted Text:
Deleted Text:
Deleted Text:

seeds are stored in a large hash table. For seeds that are pre-pro-

cessed by the Burrows-Wheeler transformation, OSS requires OðsÞ
total steps in FM-indexing to obtain the frequency of the seed,

where s is the length of the seed. In total, it requires OðL3Þ total

steps to index all possible seeds in the read, which potentially could

generate OðL3Þ memory accesses and OðL3Þ cache misses in the

worst case. Later in Supplementary Materials Section 1.6, we pro-

pose lock-step BWT, a mechanism that reduces the average number

of cache misses per read to OðLÞ, by imposing a minimum seed

length requirement and by traversing all prefixes of the read in a

lock-step fashion. Specifically, lock-step BWT organizes all prefixes

together such that they extend the same base-pair in the read at the

same time. Please refer to Supplementary Materials Section 1.6 for

further details). It requires at most OðL2Þ lookups to the seed data-

base for all possible substrings of the read.

Let firstOptDividerðprefixÞ be the function to calculate the first

optimal divider of a prefix. Then the optimal set of seeds can be cal-

culated by filling a 2-D array, opt_data, of size ðx� 1Þ � L. In this

array, each element stores two data: an optimal seed frequency and

a first optimal divider. The element at ith row and jth column stores

the optimal i-seed frequency of the prefix R½1:::j� which includes the

optimal i-seed frequency of the prefix and the first optimal divider

of the prefix. The optimal divider divides the prefix into an (i � 1)-

seed prefix and an 1-seed substring.

Algorithm 1 provides the pseudo-code of optimalSeedSolver,

which contains the core algorithm of OSS and the optimal divider

cascading optimization; and Algorithm 2 provides the pseudo-code

of firstOptDivider, which contains the early divider termination, the

divider sprinting and the optimal solution forwarding optimizations.

1638 H.Xin et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv670/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv670/-/DC1
Deleted Text: -time lookup via the function 1. It requires at most lookups to the seed database for all possible substrings of the read.
Deleted Text: ,
Deleted Text: .
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:

To retrieve the starting and ending positions of each optimal

seed, we can backtrack the 2-D array and backward induce the opti-

mal dividers between optimal seeds. We start with the final optimal

divider of the entire read, which divides the read into a (x – 1)-seed

prefix and a suffix. Among them, the suffix makes the last (right

most) optimal seed of the read. Then we examine the (x – 1)-seed

prefix from the previous step and retrieve its optimal divider, which

divides the prefix into an (x – 2)-seed prefix and a substring. Among

the two, the substring makes the second last optimal seed of the

read. This process is repeated until we have retrieved all x optimal

seeds of the read. Further details as well as the pseudo-code of the

backtracking process is provided in Supplementary Materials.

For better understanding, we provide a real example in

Supplementary Materials Section 1.4 to show how Optimal Seed

Solver operates.

4 Related works

The primary contribution of this work is a dynamic programming

algorithm that derives the optimal non-overlapping seeds of a read

in Oðx� LÞ operations on average. To our knowledge, this is the

first work that finds the optimal seeds and the optimal frequency of

a read. The most related prior works are optimizations to the seed

selection mechanism which reduce the sum of seed frequencies of a

read using greedy algorithms. We will compare to such methods

shortly, both qualitatively (in this section) and quantitatively (in

Section 5).

We first quickly distinguish OSS from other methods (Kucherov

et al., 2014; Langmead and Salzberg, 2012; Li, 2013) which solve

similar yet unrelated problems. These previous works either deter-

mine the number and length of erroneous seeds such that the total

number of branches in backtracking is minimized for each seed

(Kucherov et al., 2014) or simply select seeds and their locations

through probabilistic methods without providing error tolerance

guarantees (e.g. bowtie2 (Langmead and Salzberg, 2012) and BWA-

MEM (Li, 2013)). By contrast, OSS finds the number and lengths of

non-overlapping seeds such that the total frequency of all seeds is

minimized. Former mechanisms are not designed for seed-and-ex-

tend based mappers that rely on non-overlapping seeds following

the pigeonhole principle. In this paper, we only compare seed selec-

tion mechanisms that follow the pigeonhole principle.

Existing seed selection optimizations can be classified into

three categories: (i) extending seed length, (ii) avoiding frequent

seeds and (iii) rebalancing frequencies among seeds. Optimizations

in the first category extend frequent seeds longer in order to re-

duce their frequencies. Optimizations in the second category sam-

ple seed positions in the read and reject positions that generate

frequent seeds. Optimizations in the third category rebalance fre-

quencies among seeds such that the average seed frequency at run-

time is more consistent with the static average seed frequency of

the seed table.

In the remainder of this section, we qualitatively compare the

Optimal Seed Solver (OSS) to four state-of-the-art works selected

from the above three categories. They are: Cheap K-mer Selection

(CKS) in FastHASH (Xin et al., 2013), Optimal Prefix Selection

(OPS) in the Hobbes mapper (Ahmadi et al., 2011), Adaptive Seeds

Filter (ASF) in the GEM mapper (Marco-Sola et al., 2012) and

spaced seeds in PatternHunter (Ma et al., 2002). (In this paper, we

name the mapping strategies used in the the Hobbes and the GEM

mappers, which were not given names in the original papers, as OPS

and ASF, respectively.) Among the four prior works, ASF represents

works from the first category; CKS and OPS represent works from

the second category and spaced seeds represents works from the

third category. Below we elaborate each of them in greater details.

The Adaptive Seeds Filter (ASF) (Marco-Sola et al., 2012) seeks

to reduce the frequency of seeds by extending the lengths of the

seeds. For a read, ASF starts the first seed at the very beginning of

the read and keeps extending the seed until the seed frequency is

below a pre-determined threshold, t. For each subsequent seed, ASF

starts it from where the previous seed left off in the read, and repeats

the extension process until the last seed is found. In this way, ASF

aims to guarantee that all seeds have a frequency below t.

Compared to OSS, ASF has two major drawbacks. First, ASF as-

sumes the least frequent set of seeds in a read has similar frequen-

cies; hence, they share a common frequency threshold t. We observe

that this is not always true. The optimal set of seeds often have very

different frequencies. This is because some seeds do not provide

much frequency reduction despite long extensions while other seeds

yield significant frequency reductions only at certain extension

lengths (the frequency reduction looks like a step function). By regu-

lating all seeds with the same frequency threshold, ASF inefficiently

distributes base-pairs among seeds. Second, ASF sets a fixed fre-

quency threshold t for all reads, which often leads to under-

utilization of base-pairs in reads. Different reads usually get different

optimal thresholds (the threshold that provides the least frequent set

of seeds under ASF for the read). For reads that contain frequent

seeds, optimal thresholds are usually large (e.g. t>1000), while for

reads without frequent seeds, optimal thresholds are usually small

(e.g. t<100). Unfortunately, ASF can apply only a single threshold

to all reads. If t is set to a large value to accommodate reads with fre-

quent seeds, then for other reads, ASF extracts only short seeds even

if there are many unused base-pairs. Otherwise if t is set to a small

value, then frequent seeds consume many base-pairs and reads with

frequent seeds have insufficient base-pairs to construct enough seeds

to tolerate all errors. OSS, however, finds the least frequent set of

seeds individually for each read, which could contain highly variable

seed frequencies.

Note that the method of selecting seeds consecutively starting at

the beginning of a read does not always produce infrequent seeds.

Although most seeds that are longer than 20-bp are either unique or

non-existent in the reference, there are a few seeds that are still more

frequent than 100 occurrences even at 40-bp (e.g. all ‘A’s). With a

small Smax (e.g. Smax�40) and a small t (t�50), ASF cannot not guar-

antee that all selected seeds are less frequent than t. This is because

ASF cannot extend a seed by more than Smax-bp, even if its fre-

quency is still greater than t. If a seed starts at a position that yields

a long and frequent seed, ASF will extend the seed to Smax and ac-

cept a seed frequency that is still greater than t.

Setting a static t for all reads further worsens the problem. Reads

are drastically different. Some reads do not include any frequent short

patterns (e.g. 10-bp patterns) while other reads have one to many

highly frequent short patterns. Reads without frequent short patterns

do not produce frequent seeds in ASF, unless t is set to be very large

(e.g. �10 000) and as a result the selected seeds are very short (e.g.

�8-bp). Reads with many frequent short patterns have a high possi-

bility of producing longer seeds under medium-sized or small t’s (e.g.

�100). For a batch of reads, if the global t is set to a small number,

reads with many frequent short patterns will have a high chance of

producing many long seeds that the read does not have enough length

to support. If t is set to a large number, reads without any frequent

short patterns will produce many short but still frequent seeds as ASF

will stop extending a seed as soon as it is less frequent than t, even

though the read could have had longer and less frequent seeds.

Optimal seed solver 1639

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv670/-/DC1
Deleted Text:
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv670/-/DC1
Deleted Text:
Deleted Text: W
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: .,
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: 1
Deleted Text: 2
Deleted Text: 3
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: .,
Deleted Text: >
Deleted Text: .,
Deleted Text: <
Deleted Text:
Deleted Text: .,
Deleted Text: ``A''s
Deleted Text: .,)
Deleted Text: (),
Deleted Text:
Deleted Text: .,
Deleted Text: .,)
Deleted Text: .,
Deleted Text: .,).
Deleted Text:

Cheap K-mer Selection (CKS) (Xin et al., 2013) aims to reduce

seed frequencies by selecting seeds from a wider potential seed pool.

For a fixed seed length k, CKS samples L
k

� �
seed positions consecu-

tively in a read, with each position apart from another by k-bp.

Among the L
k

� �
positions, it selects x seed positions that yield the

least frequent seeds (assuming the mapper needs x seeds). In this

way, it avoids using positions that generate frequent seeds.

CKS has low overhead. In total, CKS only needs L
k

� �
lookups for

seed frequencies followed by a sorting of L
k

� �
seed frequencies.

Although fast, CKS can provide only limited seed frequency reduc-

tion as it has a very limited pool to select seeds from. For instance,

in a common mapping setting where the read length L is 100-bp and

seed length k is 12, the read can be divided into at most 100
12

� �
¼ 8

positions. With only 8 potential positions to select from, CKS is

forced to gradually select more frequent seeds under greater seed de-

mands. To tolerate 5 errors in this read, CKS has to select 6 seeds

out of 8 potential seed positions. This implies that CKS will select

the 3rd most frequent seed out of 8 potential seeds. As we have

shown in Figure 1, 12-bp seeds on average have a frequency over

172, and selecting the 3rd frequent position out of 8 potential seeds

renders a high possibility of selecting a frequent seed which has a

higher frequency than average.

Similar to CKS, Optimal Prefix Selection (OPS) (Ahmadi et al.,

2011) also uses fixed length seeds. However, it allows a greater freedom

of choosing seed positions. Unlike CKS, which only select seeds at pos-

itions that are multiples of the seed length k, OPS allows seeds to be se-

lected from any position in the read, as long as seeds do not overlap.

Resembling our optimal seed finding algorithm, the basis of OPS

is also a dynamic programming algorithm that implements a simpler

recurrence function. The major difference between OPS and OSS is

that OPS does not need to derive the optimal length of each seed, as

the seed length is fixed to k-bp. This reduces the search space of op-

timal fixed-length seeds to a single dimension, i.e. only the seed

placements. The worst case/average complexity of OPS is OðL� xÞ.
Compared to CKS, OPS is more complex and requires more seed

frequency lookups. In return, OPS finds less frequent seeds, espe-

cially under large seed numbers. However, with a fixed seed length,

OPS cannot find the optimal non-overlapping variable-length seeds.

Spaced seeds (Ma et al., 2002) aims to rebalance frequencies

among patterns in the seed database. Rebalancing seeds reduces

the frequent seed phenomenon which, in turn, reduces the average

seed frequency in read mapping (in other words, it improves the

sensitivity/selectivity ratio of seeds in read mapping (Egidi and

Manzini, 2015)). Spaced seeds rebalance seeds by using different

patterns that are hashed into the same hash value are considered

as a single ‘spaced seed’. By carefully designing the hashing func-

tion, which extracts base-pairs only at selected positions from a

longer (e.g. 18-bp) pattern, spaced seeds can group up frequent

long patterns with infrequent long patterns and merge them into

the new and more balanced spaced seeds, which have smaller fre-

quency variations. At runtime, long raw seeds are selected

consecutively in the reads, which are processed by the rebalancing

hash function to generate spaced seeds.

Compared to OSS, spaced seeds has two disadvantages. First, the

hash function cannot perfectly balance frequencies among all spaced

seeds. After rebalancing, there is still a large disparity in seed frequency

amongst seeds. Second, seed placement in spaced seeds is static, and

does not accommodate for high frequency seeds. Therefore, positions

that generate frequent seeds are not avoided which still give rise to the

frequent seeds phenomenon.

5 Results

In this section, we compare the average case complexity, memory

traffic and effectiveness of OSS against the four prior studies, ASF

(Marco-Sola et al., 2012), CKS (Xin et al., 2013), OPS (Ahmadi

et al., 2011) and spaced seeds (Ma et al., 2002) as well as the naı̈ve

mechanism, which selects fixed seeds consecutively. Memory traffic

is measured by the number of required seed frequency lookups to

map a single read. The effectiveness of a seed selection scheme is

measured by the average seed frequency of mapping 4 031 354 101-

bp reads from a real read set, ERR240726 from the 1000 Genomes

Project, under different numbers of seeds.

We do not measure the execution time of each mechanism because

different seed selection optimizations are combined with different

seed database implementations. CKS, OPS and spaced seeds use hash

tables for short, fixed-length seeds while ASF and OSS employs slower

but more memory efficient BWT and FM-index for longer, variant-

length seeds. However, this combination is inter-changeable. CKS and

OPS can also work well with BWT and FM-index and ASF, OSS can

also be combined with a large hash-table, given sufficient memory

space. Besides, different existing implementations have their unique,

implementation-specific seed database optimizations, which intro-

duces more variations to the execution time. Due to these reasons, we

only compare the complexity and memory traffic of each seed selec-

tion scheme, without measuring their runtime performance.

We benchmark each seed optimization scheme with multiple

configurations. We benchmark ASF with multiple frequency thresh-

olds, 5, 10, 100, 500 and 1000. If a read fails to provide enough

seeds in ASF, due to having many long seeds under small thresholds,

the read will be processed again in CKS with a fixed seed length of

12-bp. We benchmark CKS, OPS and the naı̈ve under three fixed

seed lengths, 12, 13 and 14. We benchmark spaced seeds with the

default bit-mask provided in the PatternHunter’s paper (Ma et al.,

2002), ‘110100110010101111’, which hashes 18-bp long seeds into

11-bp long signatures.

All seed selection mechanisms are benchmarked using an in-

house seed database, which supports varying seed lengths between

Smin¼10 and Smax¼30.

Table 1 summarizes the average-case complexity and memory

traffic of each seed selection optimization. From the table, we can

observe that OSS requires the most seed frequency lookups (OðL2Þ)

Table 1. An average case complexity and memory traffic comparison (measured by the number of seed-frequency lookups) of seed selec-

tion optimizations, including Optimal Seed Solver (OSS), Adaptive Seeds Filter (ASF), Cheap K-mer Selection (CKS), Optimal Prefix

Selection (OPS), spaced seeds and naı̈ve (selecting fixed-length seeds consecutively)

Optimal Seed Solver ASF CKS OPS Spaced seeds naı̈ve

Empirical average case complexity Oðx� LÞ OðxÞ Oðx� log L
kÞ Oðx� LÞ OðxÞ OðxÞ

Number of lookups OðL2Þ OðxÞ OðLkÞ OðLÞ OðxÞ OðxÞ

Note that only OSS has different empirical average case complexity and worst case complexity. The average case and worst case complexity of other optimiza-

tions are equal. The empirical average-case complexity of OSS is derived from mapping a real read set, ERR240726, under variable number of errors.

1640 H.Xin et al.

Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: .
Deleted Text:
Deleted Text: ``
Deleted Text: ''
Deleted Text: .,
Deleted Text:
Deleted Text:
Deleted Text: ,
Deleted Text: ,
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: ``
Deleted Text: ''
Deleted Text:
Deleted Text: =
Deleted Text: =
Deleted Text:
Deleted Text:
Deleted Text: ()

with the worst average case complexity, (Oðx� LÞ), which the same

as that of OPS. Nonetheless, OSS is the most effective seed selection

scheme, as Figure 6 shows. Among all seed selection optimizations,

OSS provides the largest frequency reduction of seeds on average,

achieving a 3x larger frequency reduction compared to the second

best seed selection scheme, OPS.

As shown in Figure 6, the average seed frequencies of OSS, CKS

and OPS increase with larger seed numbers. This is expected, as

there is less flexibility in seed placement with more seeds in a read.

For OSS, more seeds also means shorter average seed length, which

also contributes to greater average seed frequencies. For ASF, aver-

age seed frequencies remains similar for three or fewer seeds. When

there are more than three seeds, the average seed frequencies in-

crease with more seeds. This is because up to three seeds, all reads

have enough base-pairs to accommodate all seeds, since the max-

imum seed length is Smax¼30. However, once beyond three seeds,

reads start to fail in ASF (due to having insufficient base-pairs to ac-

commodate all seeds) and the failed reads are passed to CKS instead.

Therefore the increase after three seeds is mainly due to the increase

in CKS. For t¼10 with six seeds, we observe from our experiment

that 66.4% of total reads fail in ASF and are processed in CKS

instead.

For CKS and OPS, the average seed frequency decreases with

increasing seed length when the number of seeds is small (e.g.<4).

When the number of seeds is large (e.g. 6), it is not obvious if greater

seed lengths provide smaller average seed frequencies. In fact, for 6

seeds, the average seed frequency of OPS rises slightly when we in-

crease the seed length from 13-bp to 14-bp. This is because, for

small numbers of seeds, the read has plenty of space to arrange and

accommodate the slightly longer seeds. Therefore, in this case, lon-

ger seeds reduce the average seed frequency. However, for large

numbers of seeds, even a small increase in seed length will signifi-

cantly decrease the flexibility in seed arrangement. In this case, the

frequency reduction of longer seeds is surpassed by the frequency in-

crease of reduced flexibility in seed arrangement. Moreover, the

benefit of having longer seeds diminishes with greater seed lengths.

Many seeds are already infrequent at 12-bp. Extending the infre-

quent seeds longer does not introduce much reduction in the total

seed frequency. This result corroborates the urge of enabling flexi-

bility in both individual seed length and seed placements.

Overall, OSS provides the least frequent seeds on average,

achieving a 3x larger frequency reduction than the second best seed

selection schemes, OPS.

6 Discussion

As shown in the Section 5, OSS requires OðL2Þ seed-frequency look-

ups in order to derive the optimal solution of a read. For a non-trivial

seed database implementation such as BWT with FM-index, this can

be a time consuming process. For reads that generate equally frequent

seeds in OSS and other seed selection mechanisms, OSS could be less

beneficial as it generates more queries of seed frequencies to the seed

database without reducing the total seed frequency. When such reads

are prevalent (very unlikely), OSS might not be the ideal seeding

mechanism. One workaround under this event is to combine OSS

with other greedy seed selection algorithms (e.g. CKS, OPS). In such a

configuration, OSS will only be invoked when greedy seed selection

algorithms fail to deliver infrequent seeds. However, how to combine

different seeding mechanisms is beyond the scope of this paper and

will be explored in our future research.

The Optimal Seed Solver also revealed that there is still great po-

tential in designing better greedy seed selection optimizations. From

our experiment, we observe that the most effective greedy seed selec-

tion optimization still provides 3�more frequent seeds on average

than optimal. Better greedy algorithms that provide less frequent

seeds without a large number of database lookups are also part of

our future research.

7 Conclusion

Optimizing seed selection is an important problem in read mapping.

The number of selected non-overlapping seeds defines the error tol-

erance of a mapper while the total frequency of all selected seeds in

the reference genome determines the performance of the mapper. To

build a fast yet error tolerant mapper, it is essential to select a large

number of non-overlapping seeds while keeping each seed as

Fig. 6. Average seed frequency comparison among Optimal Seed Solver (OSS),

Adaptive Seeds Filter (ASF), Cheap K-mer Selection (CKS), Optimal Prefix

Selection (OPS), spaced seeds and naı̈ve (selecting fixed length seeds consecu-

tively). The results are gathered by mapping 4031354101-bp reads from the

read set ERR240726_1 from 1000 Genomes Project under different numbers of

seeds (for better accuracy and error tolerance). In each figure, a smaller average

seed frequency indicates a more effective seed selection mechanism

Optimal seed solver 1641

Deleted Text: (),
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: =
Deleted Text: =
Deleted Text:
Deleted Text: ., <
Deleted Text: .,
Deleted Text:
Deleted Text:
Deleted Text: Results section
Deleted Text: .,
Deleted Text:
Deleted Text: 3x
Deleted Text: s
Deleted Text:

infrequent as possible. In this paper, we confirmed the frequent seed

phenomenon discovered in previous works (Kiełbasa et al., 2011),

which suggests that in a naı̈ve seed selection scheme, mappers tend

to select frequent seeds from reads, even when using long seeds. To

solve this problem, we proposed the Optimal Seed Solver (OSS), a

dynamic-programming algorithm that finds the optimal set of seeds

that has the minimum total frequency. We further introduced four

optimizations to OSS: optimal divider cascading, early divider ter-

mination, divider sprinting and optimal solution forwarding. Using

all four optimizations, we reduced the average-case complexity of

OSS to Oðx� LÞ, where x is the total number of seeds and L is the

length of the read; and achieved a Oðx� L2Þ worst-case complexity.

We compared OSS to four prior studies, Adaptive Seeds Filter,

Cheap K-mer Selection, Optimal Prefix Selection and spaced seeds

and showed that OSS provided a 3-fold seed frequency reduction

over the best previous seed selection scheme, Optimal Prefix

Selection. We conclude that OSS is an efficient algorithm that can

find the best set of seeds, which can potentially improve the per-

formance of future read mappers.

Funding

This study is supported by two NIH grants (HG006004 to C. Alkan

and O. Mutlu; and HG007104 to C. Kingsford) and a Marie Curie

Career Integration Grant (PCIG-2011-303772) to C. Alkan under

the Seventh Framework Programme. C. Alkan also acknowledges

support from The Science Academy of Turkey, under the BAGEP

program.

Conflict of Interest: none declared.

References

1000 Genomes Project Consortium. (2010) A map of human genome variation

from population-scale sequencing. Nature, 467, 1061–1073.

1000 Genomes Project Consortium. (2012) An integrated map of genetic vari-

ation from 1 092 human genomes. Nature, 491, 56–65.

Ahmadi,A. et al. (2011) Hobbes: optimized gram-based methods for efficient

read alignment. Nucleic Acids Res., 40, e41.

Alkan,C. et al. (2009) Personalized copy number and segmental duplication

maps using next-generation sequencing. Nat. Genet., 41, 1061–1067.

Burrows,M. and Wheeler,D.J. (1994) A block-sorting lossless data compres-

sion algorithm Technical Report, 124, Digital Equipment Corporation.

Egidi,L. and Manzini,G. (2015) Multiple seeds sensitivity using a single

seed with threshold. J. Bioinf. Comput. Biol., 13, 1550011. PMID:

25747382.

Ferragina,P. and Manzini,G. (2000) Opportunistic data structures with appli-

cations. In: Proceedings of the 41st Annual Symposium on Foundations of

Computer Science, FOCS ’00, pp. 390, Washington, DC, USA. IEEE

Computer Society.

Flannick,J. et al. (2014) Loss-of-function mutations in slc30a8 protect against

type 2 diabetes. Nat. Genet., 46, 357–363.

Flicek,P. and Birney,E. (2009) Sense from sequence reads: methods for align-

ment and assembly. Nat. Methods, 6, S6–S12.

Green,R.E. et al. (2010) A draft sequence of the Neandertal genome. Science,

328, 710–722.

Kiełbasa,S. et al. (2011) Adaptive seeds tame genomic sequence comparison.

Genome Res., 21, 487–493.

Kucherov,G. et al. (2014) Approximate string matching using a bidirectional

index. In: Kulikov,A. et al. (eds.) Combinatorial Pattern Matching, Lecture

Notes in Computer Science, volume 8486, pp. 222–231.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with bow-

tie 2. Nat. Method, 9, 357–359.

Li,H. (2013) Aligning sequence reads, clone sequences and assembly contigs

with bwa-mem. arXiv:1303.3997v2[q-bio.GN].

Ma,B. et al. (2002) Patternhunter: faster and more sensitive homology search.

Bioinformatics, 18, 440–445.

Marco-Sola,S. et al. (2012) The gem mapper: fast, accurate and versatile align-

ment by filtration. Nat. Methods, 9, 1185–1188.

Marques-Bonet,T. et al. (2009) A burst of segmental duplications in the gen-

ome of the African great ape ancestor. Nature, 457, 877–881.

Meyer,M. et al. (2012) A high-coverage genome sequence from an archaic

denisovan individual. Science, 338, 222–226.

Myers,G. (1999) A fast bit-vector algorithm for approximate string matching

based on dynamic programming. J. ACM, 46, 395–415.

Navin,N. et al. (2011) Tumour evolution inferred by single-cell sequencing.

Nature, 472, 90–94.

Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable to the

search for similarities in the amino acid sequence of two proteins. J. Mol.

Biol., 48, 443–453.

Ng,S.B. et al. (2010) Exome sequencing identifies MLL2 mutations as a cause

of kabuki syndrome. Nat. Genet., 42, 790–793.

Prado-Martinez,J. et al. (2013) Great ape genetic diversity and population his-

tory. Nature, 499, 471–475.

Rasmussen,K.R. et al. (2006) Efficient q-gram filters for finding all e-matches

over a given length. J. Comput. Biol., 13, 296–308.

Reich,D. et al. (2010) Genetic history of an archaic hominin group from

Denisova Cave in Siberia. Nature, 468, 1053–1060.

Rognes,T. (2011) Faster smith-waterman database searches with inter-se-

quence simd parallelisation. BMC Bioinformatics, 12, 221.

Rumble,S.M. et al. (2009) Shrimp: Accurate mapping of short color-space

reads. PLoS Comput. Biol., 5, e1000386.

Scally,A. et al. (2012) Insights into hominid evolution from the gorilla genome

sequence. Nature, 483, 169–175.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular

subsequences. J. Mol. Biol., 147, 195–195.

Szalkowski,A. et al. (2008) SWPS3 - fast multi-threaded vectorized Smith–

Waterman for IBM Cell/B.e. and x86/SSE2. BMC Res. Notes, 1, 107.

Van Vlierberghe,P. et al. (2010) Phf6 mutations in t-cell acute lymphoblastic

leukemia. Nat. Genet., 42, 338–342.

Ventura,M. et al. (2011) Gorilla genome structural variation reveals evolu-

tionary parallelisms with chimpanzee. Genome Res., 21, 1640–1649.

Weese,D. et al. (2012) RazerS 3: faster, fully sensitive read mapping.

Bioinformatics, 28, 2592–2599.

Xin,H. et al. (2013) Accelerating read mapping with FastHASH. BMC

Genomics, 14, S13.

Xin,H. et al. (2015) Shifted hamming distance: a fast and accurate SIMD-

friendly filter to accelerate alignment verification in read mapping.

Bioinformatics, 31, 1553–1560.

1642 H.Xin et al.

Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: ,
Deleted Text: ,
Deleted Text:
Deleted Text:
Deleted Text: :
Deleted Text: .

	btv670-TF1

