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Abstract

Background: The ABC-stroke and ABC-bleeding risk scores incorporate clinical variables and 

cardiovascular biomarkers to estimate risk of stroke or systemic embolic events (S/SEE) and 

bleeding, respectively, in patients with atrial fibrillation (AF). These scores have been proposed for 

routine clinical use but their performance in external cohorts remains uncertain.

Methods: ENGAGE AF-TIMI 48 was a multinational, randomized trial of the oral factor Xa 

inhibitor edoxaban in patients with AF and CHADS2 score ≥2. We performed a nested prospective 

biomarker study in 8705 patients, analyzing baseline high-sensitivity troponin T (hsTnT), N-

terminal B-type natriuretic peptide (NT-proBNP), and growth differentiation factor (GDF)-15, as 

well as in serial samples after 12 months. The ABC-stroke (age, prior stroke/transient ischemic 

attack, hsTnT, NT-proBNP) and ABC-bleeding (age, prior bleeding, hemoglobin, hsTnT, and 

GDF-15) scores were tested. Hazard ratios were adjusted for estimated glomerular filtration rate 

and the components of the CHA2DS2-VASc and HAS-BLED scores, respectively. Discrimination 

and reclassification were compared with these established scores.

Results: Median baseline hsTnT, NT-proBNP, and GDF-15 levels were 13.7 ng/L (25th–75th 

percentiles, 9.6–20.4 ng/L), 811 pg/mL (386–1436 pg/L), and 1661 pg/mL (1179–2427 pg/mL), 

respectively. Elevated hsTnT, NT-proBNP, and GDF-15 were independently associated with higher 
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rates of S/SEE, and elevated hsTnT and GDF-15 were independently associated with higher rates 

of major bleeding (p<0.001 for each). The ABC-stroke and ABC-bleeding scores were well-

calibrated and yielded higher c-indices than the CHA2DS2-VASc score for S/SEE (0.67 [95% CI, 

0.65 – 0.70] vs. 0.59 [95% CI, 0.57 – 0.62]; p<0.001) and HAS-BLED score for major bleeding 

(0.69 [95% CI, 0.66 – 0.71] vs. 0.62 [95% CI, 0.60 – 0.64]; p<0.001), respectively. The ABC-

stroke and ABC-bleeding scores stratified patients within CHA2DS2-VASc and HAS-BLED risk 

categories (p<0.001 for both). Patients with ABC-bleeding scores predicting a high 1-year risk of 

bleeding (>2%) derived greater benefit from treatment with edoxaban compared with warfarin.

Conclusions: The ABC-stroke and ABC-bleeding scores evaluated in this anticoagulated 

clinical trial cohort were well-calibrated and outperformed the CHA2DS2-VASc and HAS-BLED 

scores, respectively. These scores may help identify patients most likely to derive a benefit from 

treatment with non-vitamin K antagonist oral anticoagulants (NOACs).

Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: 

NCT00781391.
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Introduction

Stroke and systemic embolism are morbid and often fatal complications of atrial fibrillation 

(AF).1 Oral anticoagulation in patients with AF significantly reduces the risk of stroke and 

systemic embolic events (S/SEE) but increases the risk of major bleeding. Current guidelines 

recommend systematically evaluating the absolute risks of S/SEE and bleeding estimated 

using clinical risk scores such as the CHA2DS2-VASc and HAS-BLED scores, respectively, 

when making decisions regarding oral anticoagulation.2–4 Despite the availability of these 

scores and guidelines for treatment, a surprisingly high proportion of patients with AF go 

untreated, in particular because of concern regarding the risk of bleeding.5–7

In research dating back for more than a decade, multiple studies have suggested that 

circulating biomarkers of cardiovascular disease may improve prediction of stroke or 

systemic embolic events (S/SEE) and bleeding in patients with AF compared with 

established clinical risk scores.8–13 In an analysis of a cohort from the ENGAGE-TIMI 48 

trial, we previously demonstrated that incorporating a conventional assay for cardiac 

troponin I, N-terminal B-type natriuretic peptide (NT-proBNP), and D-dimer into a 

multimarker risk score for S/SEE and death significantly enhanced prognostic accuracy 

compared with or when added to the CHA2DS2-VASc score.14

The novel ABC (age, biomarker, clinical history)-stroke and ABC-bleeding risk scores also 

incorporate biomarkers, along with clinical variables, to estimate risk of S/SEE and 

bleeding, respectively.15, 16 The components of the ABC-stroke score include age, NT-

proBNP, high-sensitivity cardiac troponin T (hsTnT), and prior stroke/transient ischemic 

attack, while the components of the ABC-bleeding score include age, growth differentiation 

factor-15 (GDF-15), hsTnT, hemoglobin, and history of bleeding.15, 16

Berg et al. Page 2

Circulation. Author manuscript; available in PMC 2020 February 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.clinicaltrials.gov/


Although the ABC-stroke and ABC-bleeding scores outperformed the CHA2DS2-VASc and 

HAS-BLED scores, respectively, in their predictive accuracy in the derivation cohorts,15, 16 

their performance in external cohorts remains uncertain.17, 18 Given the current equipoise 

regarding clinical use of the biomarker-based ABC scores, we designed a nested biomarker 

study to independently evaluate the prognostic performance and identify novel applications 

of these risk scores in patients with AF in a well characterized cohort from a large, 

multinational clinical trial.19

Methods

Study population and design

The Effective Anticoagulation with Factor Xa Next Generation in Atrial Fibrillation—

Thrombolysis in Myocardial Infarction 48 (ENGAGE AF-TIMI 48) trial was a 

multinational, randomized, double-blind trial of the oral factor Xa inhibitor edoxaban versus 

warfarin for the prevention of stroke and systemic embolism in 21,105 patients with AF and 

CHADS2 score ≥2.19 Patients randomized to edoxaban received either a higher-dose 

edoxaban regimen (HDER) with edoxaban 60/30 mg daily or a lower-dose edoxaban 

regimen (LDER) with edoxaban 30/15 mg daily. Patients randomized to warfarin were dosed 

to reach a target INR of 2.0–3.0. The median follow-up was 2.8 years. Participation in a 

prospective nested biomarker substudy was offered to all enrolled patients at sites that 

elected to participate in the biomarker substudy until approximately 9000 patients were 

recruited. For this analysis, collected samples were available for 8705 patients from the time 

of trial enrollment (baseline), and for 6806 patients at 12 months following trial enrollment. 

All patients provided written informed consent. The protocol was approved by ethics 

committees at each center. We encourage parties interested in collaboration and data sharing 

to contact the corresponding author directly for further discussions.

Biomarkers

Baseline blood samples were collected on the day of randomization, which was the same 

day that the first dose of study drug was administered. Samples were collected in EDTA 

anticoagulant tubes, and isolated plasma was stored at −20°C or colder until shipped to the 

central laboratory on dry ice, where plasma was stored at −70°C or colder until thawed for 

analysis at the TIMI Clinical Trials Laboratory (Boston, MA). hsTnT, NT-proBNP, and 

GDF-15 concentrations were measured with immunoassays on the Cobas e601 (Roche 

Diagnostics) (Biomarker assay parameters in Supplemental Material). Hemoglobin was 

measured separately in the commercial core laboratory during conduct of the trial. The 

creatinine clearance was estimated using the Cockroft-Gault equation.

Clinical Endpoints

The primary efficacy endpoint was the time to first adjudicated stroke (ischemic or 

hemorrhagic) or systemic embolic event. The primary safety endpoint was major bleeding, 

which was adapted from the International Society on Thrombosis and Hemostasis definition. 

This endpoint included (1) fatal bleeding; (2) bleeding in a critical area or organ, such as 

intracranial, intraspinal, intraocular, retroperitoneal, intra-articular or pericardial, or 

intramuscular with compartment syndrome; and/or (3) bleeding causing a fall in hemoglobin 
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level of ≥2 g/dL (adjusted for transfusion), or leading to transfusion of two or more units of 

whole blood or red cells. The primary net clinical outcome (NCO) was the composite of 

stroke, systemic embolic event, major bleeding, or death from any cause. An independent 

clinical events committee, blinded to study assignment, adjudicated all outcomes.20

Statistical Methods

Baseline characteristics stratified by pre-specified biomarker categories for hsTnT, NT-

proBNP, and GDF-15 were summarized. Univariate associations between individual 

biomarkers and the clinical outcomes of S/SEE and major bleeding were assessed using a 

Cox proportional hazard model with the biomarker as the independent variable. These 

analyses were performed with the biomarker modeled both as continuous and categorical 

variables using a priori thresholds. Based on the distribution of biomarker values, continuous 

data were log transformed. Event rates were estimated and displayed using annualized event 

rates.

Adjusted estimates of the association between individual biomarkers and S/SEE were 

calculated using a Cox proportional hazard model with the biomarker as an independent 

variable along with estimated glomerular filtration rate (eGFR) and each of the elements of 

the CHA2DS2-VASc score (age, sex, history of heart failure, history of hypertension, history 

of known atherosclerosis, diabetes mellitus, and history of stroke or TIA). Similarly, 

adjusted estimates of the association between individual biomarkers and major bleeding 

were calculated using a Cox proportional hazard model with the biomarker as an 

independent variable along with eGFR and each of the elements of the HAS-BLED score 

(age, history of hypertension, history of abnormal renal or liver function, history of stroke or 

TIA, history of major bleeding, medication use predisposing to bleeding, and alcohol use). 

INR lability (a component of the HAS-BLED score) was not included, because there were 

no available INR data prior to randomization and 40% of patients enrolled in the trial were 

naïve to vitamin K antagonists.

The univariate and multivariable analyses were repeated using the absolute biomarker values 

at 12 months as well as the absolute change (i.e., delta) in biomarker values from 

randomization to 12 months using a priori thresholds. For these analyses, a landmark 

analysis of S/SEE and bleeding outcomes starting at 12 months was performed.

Multivariable analyses were performed assessing the ABC-stroke and ABC-bleeding risk 

score variables in a Cox proportional hazard model with eGFR and each of the risk score 

components (ABC-stroke: age, NT-proBNP, hsTnT, and prior stroke/TIA; ABC-bleeding: 

age, GDF-15, hsTnT, hemoglobin, and history of bleeding). The discriminatory performance 

was assessed using Harrell’s c-index21–23 for the CHA2DS2-VASc and HAS-BLED scores, 

for each biomarker alone, for the ABC-stroke and ABC-bleeding risk scores using both 

coefficients for the regression models derived in ENGAGE AF-TIMI 48 as well as those 

from the original derivation cohorts, and for comprehensive clinical and biomarker models 

for S/SEE and major bleeding tested during the previous derivation of the scores.12–13 The 

predictive performance (i.e., C-indices) of these correlated models were compared using the 

approach described by Kang.24 To estimate the relative prognostic information provided by 

the ABC-stroke and ABC-bleeding risk models compared to the comprehensive S/SEE and 
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bleeding models, respectively, we approximated the comprehensive models using ordinary 

least squares models in which the estimated linear predictors from the full Cox model were 

the outcome variables and the components of the ABC-stroke and ABC-bleeding risk scores 

were the covariates. Reclassification was assessed by calculating the categorical Net 

Reclassification Improvement (NRI) at 1 year with the ABC-stroke vs. CHA2DS2-VASc 

scores and ABC-bleeding vs. HAS-BLED scores using prespecified categorical subgroups 

defined by 1-year predicted risks of S/SEE and major bleeding (<1%, 1–2%, >2%). These 

thresholds were selected based on previous evaluations of the ABC risk score performance 

in AF. In addition, we performed a sensitivity analysis for the NRI of the ABC-stroke vs. 

CHA2DS2-VASc scores, using 0.75% as a single threshold for 1-year risk of S/SEE.

Annualized S/SEE event rates were described according to: (1) categorical subgroups 

defined by 1-year S/SEE risk predicted by the ABC-stroke score (<1%, 1–2%, >2%) and 

categorical subgroups defined by the CHA2DS2-VASc score (≤3, 4, ≥5); and (2) categorical 

subgroups defined by 1-year S/SEE risk predicted by the ABC-stroke score (<1%, 1–2%, 

>2%) and categorical subgroups defined by a previously reported TIMI-AF clinical risk 

score (low, intermediate, high).25 Similarly, annualized major bleeding event rates were 

described according to: (1) categorical subgroups defined by 1-year major bleeding risk 

predicted by the ABC-bleeding score (<1%, 1–2%, >2%) and categorical subgroups defined 

by the HAS-BLED score (0–1, 2, 3, ≥4); and (2) categorical subgroups defined by 1-year 

major bleeding risk predicted by the ABC-bleeding score (<1%, 1–2%, >2%) and 

categorical subgroups defined by the TIMI-AF clinical risk score (low, intermediate, high).25

Calibration of the ABC-stroke and ABC-bleeding risk scores was assessed by categorizing 

patients into strata using the estimated 1-year S/SEE and bleeding risks from the ABC-

stroke and ABC-bleeding scores and comparing the predicted risk in each group with the 

observed rate, as well as by calculating the Nam-D’Agostino statistic.26

To test for interaction between treatment effect of edoxaban vs. warfarin and baseline ABC-

stroke and ABC-bleeding risk scores, Cox regression was performed with the main effects 

and interaction terms. The proportional hazards assumption was confirmed using statistical 

tests and visual inspection based on the scaled Schoenfeld residuals. Pairwise comparisons 

between each of the two edoxaban exposure groups (HDER and LDER) and warfarin were 

performed.

Data were analyzed with R version 3.5.0.

Results

Baseline characteristics

The median baseline hsTnT, NT-proBNP, and GDF-15 values in the 8705 patients in the 

nested biomarker analysis were 13.7 ng/L (25th–75th percentiles, 9.6–20.4 ng/L), 811 pg/mL 

(386–1436 pg/L), and 1661 pg/mL (1179–2427 pg/mL), respectively. Baseline 

characteristics stratified by pre-specified biomarker categories for hsTnT (<7 ng/mL, 7-<14 

ng/mL, ≥14 ng/mL), NT-proBNP (<450 pg/mL, 450–<900, ≥900 pg/mL), and GDF-15 

(<1200 pg/mL, 1200–<1800 pg/mL, ≥1800 pg/mL) are shown in Table 1 (baseline 
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characteristics for the full cohort are shown in Supplemental Table 1). Patients in the highest 

categories of hsTnT, NT-proBNP, and GDF-15 were older, had worse renal function, and had 

a higher prevalence of coronary artery disease at the time of trial enrollment (all p<0.001).

Individual biomarkers at baseline and one year

After adjusting for the effects of eGFR and each of the elements of the CHA2DS2-VASc 

score (age, sex, history of heart failure, history of hypertension, history of known 

atherosclerosis, diabetes mellitus, and history of stroke or TIA), comparing the highest vs. 

lowest biomarker category for each biomarker, hsTnT, NT-proBNP, and GDF-15 were each 

independently associated with a more than 2-fold higher rate of S/SEE (p<0.001; Figure 1). 

After adjusting for the effects of eGFR and each of the elements of the HAS-BLED score 

(age, history of hypertension, history of abnormal renal or liver function, history of stroke or 

TIA, history of major bleeding, medication use predisposing to bleeding, and alcohol use), 

comparing the highest vs. lowest biomarker category for each biomarker, hsTnT and 

GDF-15 were each independently associated with a more than 2.5-fold higher rate of 

bleeding (p<0.001), while NT-proBNP was not (Figure 1). When analyzed as a continuous 

variable, each biomarker was independently associated with both outcomes (Supplemental 

Table 2). In multivariable models including all three biomarkers, GDF-15 was no longer 

independently associated with S/SEE and NT-proBNP was no longer independently 

associated with major bleeding.

The median hsTnT, NT-proBNP, and GDF-15 values at 12 months following trial enrollment 

among the 6806 patients with available data from the nested biomarker cohort were 13.8 

ng/L (25th–75th percentiles, 9.6–20.7 ng/L), 773 pg/mL (367–1362 pg/L), and 1711 pg/mL 

(1199–2563 pg/mL), respectively. From a landmark of 12 months following trial enrollment, 

hsTnT, NT-proBNP, and GDF-15 remained independently associated with higher rates of 

subsequent S/SEE, and GDF-15 remained independently associated with higher rates of 

major bleeding, but hsTnT did not (Supplemental Table 3).

Among patients with serial biomarker measurements, a >6 ng/mL increase in the value of 

hsTnT, a >800 pg/mL increase in the value of NT-proBNP, and a >1200 pg/mL increase in 

the value of GDF-15 between randomization and 12 months were each independently 

associated with higher rates of S/SEE (Supplemental Table 3). Similarly, a >6 ng/mL 

increase in the value of hsTnT and a >1200 pg/mL increase in the value of GDF-15 between 

randomization and 12 months were each independently associated with higher rates of major 

bleeding (Supplemental Table 3).

ABC-stroke and ABC-bleeding scores

Each clinical variable and biomarker modeled in the ABC-stroke and ABC-bleeding 

derivation cohorts15, 16 was reassessed in our cohort (Figure 2). Consistent with the findings 

in the original derivation cohort, the strongest predictors of stroke and systemic embolic 

events were NT-proBNP, age, history of stroke/TIA, and hsTnT, mirroring the components 

of the ABC-stroke score (Figure 2a). The ABC-stroke score variables accounted for 94.3% 

of the prognostic information provided by the clinical and biomarker variables included in a 

comprehensive model in the derivation cohort. Moreover, including additional 
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cardiovascular biomarkers (GDF-15, cystatin C, and D-dimer) in the model for S/SEE did 

not improve the prognostic performance of the ABC-stroke risk score (Table 2).

The strongest predictors of major bleeding were age, history of bleeding, hemoglobin, and 

GDF-15. In our cohort, hsTnT was a statistically significant but less strong predictor of 

bleeding, with an effect size similar to alcohol use, current smoking, and history of 

peripheral artery disease (Figure 2b). The ABC-bleeding score variables accounted for 

90.3% of the prognostic information provided by the clinical and biomarker variables 

included in a comprehensive model in the derivation cohort.

The ABC-stroke risk score applied using model coefficients derived in our cohort yielded a 

c-index of 0.67 (95% CI, 0.65 – 0.70) for prediction of S/SEE, compared with a c-index of 

0.59 (95% CI, 0.57 – 0.62) for the CHA2DS2-VASc score (p<0.001). The ABC-stroke risk 

score discrimination applied using the coefficients from the original derivation model was 

highly consistent with a c-index of 0.66 (95% CI, 0.63 – 0.68) for prediction of S/SEE. The 

overall net reclassification improvement (NRI) at 1 year was 25.2% (95% CI, 13.1% – 

46.1%), with similar proportions of correct upward and downward reclassification (Table 3). 

In a sensitivity analysis using 0.75% as a single threshold for 1-year risk of S/SEE, the NRI 

at 1 year was 11.7% (95% CI, 7.0% – 18.6%).

The ABC-bleeding risk score in our cohort yielded a c-index of 0.69 (95% CI 0.66 – 0.71) 

for prediction of major bleeding, compared with a c-index of 0.62 (95% CI, 0.60 – 0.64) for 

the HAS-BLED score (p<0.001). Similarly, the ABC-bleeding risk score applied using 

model coefficients from the original derivation cohort yielded a c-index of 0.67 (95% CI, 

0.65 – 0.70) for prediction of major bleeding. The overall NRI at 1 year was 13.8% (95% CI, 

8.0% – 22.8%) with predominantly correct downward reclassification (Table 3).

Moreover, the ABC-stroke and ABC-bleeding risk scores accurately stratified patients 

irrespective of CHA2DS2-VASc (ptrend <0.001) and HAS-BLED risk score categories (ptrend 

<0.001), respectively (Figure 3); this pattern was consistent across all treatment groups 

(Supplemental Figure 1). In addition, the ABC-stroke and ABC-bleeding risk scores further 

stratified S/SEE and bleeding risk within categories of the previously reported TIMI-AF 

clinical risk score,25 though it should be noted that the TIMI-AF risk score was designed to 

predict net clinical outcomes rather than S/SEE or bleeding alone (Supplemental Figure 2).

The ABC-stroke and ABC-bleeding risk scores were well calibrated, with observed 

cumulative incidence rates of S/SEE and major bleeding within each stratum of risk 

matching the 1-year risks predicted by the ABC-stroke and ABC-bleeding scores using both 

the coefficients for the regression models from ENGAGE AF-TIMI 48 (Figure 4) as well as 

those from the original derivation cohort (Supplemental Figure 3); this pattern was 

consistent across all treatment groups (Supplemental Figure 4). Furthermore, the Nam-

D’Agostino statistics for calibration (non-significant p-values indicate adequate calibration) 

for the ABC-stroke and ABC-bleeding scores at 3 years were 14.0 (p=0.12) and 14.6 

(p=0.10), respectively (Supplemental Figure 5). This was also consistent across all treatment 

groups (Supplemental Figure 6).
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Treatment interactions

In comparisons of each edoxaban treatment group vs. warfarin, there was no heterogeneity 

in the performance of either the ABC-stroke score (HDER vs. warfarin, p-interaction=0.99; 

LDER vs. warfarin, p-interaction=0.94) or the ABC-bleeding score (HDER vs. warfarin, 

p=0.84; LDER vs. warfarin, p=0.95) (Supplemental Table 4).

For patients with ABC-bleeding scores predicting 1-year major bleeding risks of <1% (low), 

1–2% (intermediate), and >2% (high), observed annualized major bleeding rates were 

0.37%, 1.54%, and 3.92% in the HDER arm, and 0.43%, 1.01%, and 2.66% in the LDER 

arm, respectively. Compared with patients in the warfarin arm, the absolute reduction in 

annualized major bleeding rates were 0.35%, 0.40%, and 0.72% for patients in the HDER 

arm with low, intermediate, and high risk of major bleeding, and 0.29%, 0.93%, and 1.98% 

for patients in the LDER arm.

For patients with ABC-stroke and ABC-bleeding scores predicting 1-year S/SEE and major 

bleeding risks of <1%, the rates of the NCO between patients treated with edoxaban vs. 

warfarin were very similar (HDER, 1.48%/year; LDER, 1.43%/year; warfarin, 1.38%/year) 

(Table 4). However, for patients with ABC-bleeding scores predicting 1-year major bleeding 

risks of >2%, observed rates of the NCO were more favorable in both the HDER and LDER 

arms compared to warfarin regardless of stroke risk. Among patients with elevated ABC-

bleeding scores (>2%), those with elevated ABC-stroke scores (>2%) derived the greatest 

benefit from HDER (NCO: HDER, 8.31%/year; LDER, 9.22%/year; warfarin, 10.91%/

year), and those with low ABC-stroke scores (<1%) derived the greatest benefit from LDER 

(NCO: HDER, 3.57%/year; LDER, 2.44%/year; warfarin, 4.25%/year) (Table 4).

Discussion

In this nested prospective biomarker substudy of the ENGAGE AF-TIMI 48 trial, we 

demonstrated that hsTnT, NT-proBNP, and GDF-15—three circulating biomarkers of 

underlying cardiovascular disease—were independently associated with risk of S/SEE, and 

that hsTnT and GDF-15 were independently associated with risk of major bleeding in 

patients with AF. Moreover, we independently confirmed the prognostic performance of the 

ABC-stroke and ABC-bleeding risk scores for the prediction of S/SEE and major bleeding, 

respectively, in a well-characterized anticoagulated cohort from a large multinational clinical 

trial. New compared with previous work, we found that correct upward and downward 

reclassification of stroke risk and predominantly correct downward reclassification of 

bleeding risk may identify patients whose risk-benefit profile more clearly favors treatment, 

ameliorating the current treatment gap that exists in patients with AF. While a high bleeding 

risk in itself should not automatically result in the decision not to anticoagulate as stroke risk 

tracks along with bleeding risk, using the ABC-bleeding score, which provides a more 

precise estimate of bleeding risk, may empower physicians and patients to make better 

informed treatment decisions. In addition, we showed that simultaneous application of the 

ABC-stroke and ABC-bleeding risk score scores can identify patients who are most likely to 

derive a benefit from treatment with NOACs as compared to warfarin. Lastly, extending 

beyond prior work, we demonstrated the stable prognostic contribution of the biomarkers 

after 1 year of clinical follow-up while continuing anticoagulation, and found that increases 
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in these biomarkers over a 12-month period were independently associated with increased 

risk of S/SEE and major bleeding. These data support the concept that biomarker-based risk 

scores improve prediction of S/SEE and major bleeding in patients with AF as compared to 

established clinical risk scores, may be useful for therapeutic decision-making, and warrant 

consideration in management guidelines.

Potential for Application of the ABC Scores in Clinical Practice

Although risk scores based on clinical variables only, including the CHA2DS2-VASc and 

HAS-BLED scores, are widely used by clinicians, multiple studies have demonstrated 

modest prognostic performance.14–16 In addition, several prior studies have established that 

incorporating multiple as opposed to single biomarkers of cardiovascular disease into risk 

prediction tools enhances their discriminatory performance, perhaps by capturing orthogonal 

information about distinct pathways implicated in thrombosis and vascular integrity. For 

example, in a previous analysis from the ENGAGE-TIMI 48 trial, incorporating a 

conventional assay for cardiac troponin I, NT-proBNP, and D-dimer into a multimarker risk 

score for S/SEE and death significantly enhanced prognostic accuracy of the CHA2DS2-

VASc score.14 Among the risk prediction tools that have been developed for patients with 

AF, the ABC-stroke and ABC-bleeding risk scores have been proposed for routine clinical 

use27; however, their performance in validation cohorts has been variable. Specifically, while 

the ABC-stroke and ABC-bleeding risk scores outperformed the CHA2DS2-VASc and HAS-

BLED scores in the original validation cohorts derived from the STABILITY (n=1400) and 

RE-LY (n=8468) trials, respectively,15, 16 the prognostic performance of a modified ABC-

bleeding score was not significantly better than the HAS-BLED risk score in a smaller non-

clinical trial cohort from the Murcia Atrial Fibrillation Project (n=1120).17, 18 Although the 

differential performance of the modified ABC-bleeding score in this non-clinical trial cohort 

may have been related to incomplete biomarker data (GDF-15 was not included in the risk 

score) and/or inadequate power, it has also been suggested that it may have been related to 

the higher prevalence of non-AF comorbidities in this population.17, 18 Since the circulating 

biomarkers in the ABC scores are elevated in multiple different disease states,28, 29 it is 

possible that patients with more non-AF comorbidities have serum biomarker levels that do 

not necessarily reflect their thrombotic or bleeding risk. Although this analysis was 

performed in a clinical trial population, ENGAGE AF-TIMI 48 enrolled a higher risk 

population with a greater burden of comorbid diseases compared to the clinical trial 

populations in which the ABC scores were derived and initially validated.30–32 The results 

of this analysis therefore represent an important step forward in establishing a robust 

evidence-base toward potential clinical use of the ABC scores by providing additional 

realistic estimates of their discriminatory and reclassification performance.

Although there was some variability in the relative effect sizes of the individual components 

of the ABC-bleeding score in our cohort compared with the original derivation cohort, the 

overall discriminatory performance of both the ABC-stroke and ABC-bleeding scores was 

similar between cohorts. Moreover, when evaluated collectively, the ABC-stroke and ABC-

bleeding score variables accounted for 94.3% and 90.3% of the prognostic information 

provided by comprehensive models for S/SEE and major bleeding,15, 16 respectively. These 

data indicate that traditional clinical risk factors other than age and prior history of S/SEE 
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and bleeding add very little additional discriminatory information beyond what is provided 

by the cardiovascular biomarkers included in the ABC-stroke and ABC-bleeding scores.

The implications of these findings are several-fold. First, given the reproducible performance 

of the ABC-stroke and ABC-bleeding risk scores for predicting S/SEE and major bleeding 

in patients with AF on anticoagulaton, clinicians should consider using these biomarker-

based risk scores rather than traditional clinical risk scores when making decisions about 

oral anticoagulation. For example, simultaneous application of these instruments may help 

to identify patients at increased risk for S/SEE and relatively lower risk for major bleeding in 

whom anticoagulation would be favored. Importantly, however, there are no data yet 

available regarding the performance of the ABC risk scores in a population of AF patients 

not receiving anticoagulation, where application of the ABC scores would be particularly 

useful. Since all patients in the ENGAGE AF-TIMI 48 trial received anticoagulation, the 

results reported in this analysis should not be interpreted as identifying patients at 

sufficiently low risk of S/SEE to defer anticoagulation. Additional validation of the ABC 

scores in a lower risk population and in patients not on anticoagulation would be necessary 

to establish the evidence base to support such application of the ABC-stroke score. Second, 

given the relative stability of the biomarker values over a 12-month period, and the 

consistent risk prediction between the primary analysis of baseline biomarker values and the 

landmark analysis using biomarker values at 12 months post-randomization, the ABC scores 

appear to provide steady and robust estimates of risk. Finally, the ABC risk scores seem to 

perform equally well in patients treated with warfarin and edoxaban, helping to identify 

patients who derive the greatest absolute benefit from treatment with edoxaban compared to 

warfarin. Specifically, among patients with ABC-bleeding scores predicting 1-year major 

bleeding risk of >2%, those with high ABC-stroke scores (i.e., predicting 1-year S/SEE risk 

>2%) derive the greatest net clinical benefit from HDER, and those with low ABC-stroke 

scores (<1%) derive the greatest net clinical benefit from LDER. This finding illustrates the 

potential of the ABC-stroke score to identify low-risk individuals who are candidates for less 

intensive anticoagulation. By enhancing precision of estimated stroke and bleeding risks, 

and directly informing treatment decisions, the ABC scores support the movement towards 

precision medicine. Nevertheless, the decision to use any biomarker-based tool for risk 

stratification might be individualized and weighed against the ease of using traditional 

clinical risk scores, which do not require laboratory testing. For example, it may not be 

necessary to perform additional testing for risk stratification when the risk-benefit calculus 

clearly favors oral anticoagulation even though application of a biomarker-based score may 

provide a more precise estimate of risk.

Limitations

Several limitations of this analysis should be acknowledged. All patients in the ENGAGE 

AF-TIMI 48 trial received anticoagulation, whereas the CHA2DS2-VASc score was 

developed in patients who were not receiving anticoagulants. Despite this difference, prior 

studies of the CHA2DS2-VASc score have shown similar discriminatory performance in 

patients receiving8, 9 and not receiving anticoagulation.33, 34 Moreover, in our analysis, the 

ABC-stroke score outperformed the CHA2DS2-VASc score among patients treated with 

LDER (a less effective regimen for S/SEE prevention than HDER or warfarin). These data 
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suggest that the ABC-stroke score is robust across varying levels of anticoagulation 

exposure. Still, it should be clear that our analysis provides a better estimate of major 

bleeding risk on anticoagulation than of S/SEE risk off anticoagulation. Since this is the 

primary clinical question of interest to clinicians, it would be ideal to assess the performance 

of the ABC-stroke score in a population of AF patients not receiving anticoagulation as well. 

Given the widespread use of anticoagulation in all but the lowest-risk patients in the modern 

era, it may not be feasible or ethical to conduct such an analysis in this population; however, 

doing so in a low-risk population not on anticoagulation in future validation studies would 

be useful for addressing this knowledge gap.

In addition, this validation was performed in a clinical trial cohort, which may affect the 

generalizability of the findings. Although ENGAGE AF-TIMI 48 enrolled a higher risk 

population with a greater burden of comorbid diseases compared to the clinical trial 

populations in which the ABC scores were derived,30–32 additional well-powered studies in 

non-clinical trial cohorts would be helpful to confirm whether the ABC risk scores will 

improve discrimination of S/SEE and bleeding outcomes when applied to unselected 

populations in clinical practice.

Other limitations of our analysis deserve mention. First, since the ENGAGE AF-TIMI 48 

trial excluded patients at low risk for S/SEE (i.e., CHADS2 0–1), the performance of the 

ABC scores in those patients cannot be assessed. Second, by excluding one year of events, 

our power was diminished in the landmark analyses performed starting at 12 months. Third, 

these results do not address whether analytical variability in assay performance in the 

general population may have any meaningful impact on the estimation of risk. Finally, this 

analysis does not address the cost effectiveness of using the ABC scores over traditional 

clinical risk scores to estimate risk of S/SEE and major bleeding; this is an important 

question for the field.

Conclusion

The ABC-stroke and ABC-bleeding risk scores re-estimated in this anticoagulated clinical 

trial cohort were well-calibrated and had significantly better discriminatory performance 

than the CHA2DS2-VASc and HAS-BLED clinical risk scores for the prediction of S/SEE 

and major bleeding, respectively. Irrespective of the CHA2DS2-VASc and HAS-BLED risk 

scores, the ABC-stroke and ABC-bleeding risk scores accurately stratified risk of these 

clinical outcomes. Application of these scores may help to identify patients who are most 

likely to derive a benefit from treatment with NOACs compared to warfarin. Incorporating 

these biomarker-based risk scores into clinical practice may significantly improve the risk-

benefit assessment of patients with AF considering anticoagulation.
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Clinical Perspective

What is new?

• In this independent external validation, the ABC-stroke and ABC-bleeding 

risk scores performed well for stratifying the risk of stroke or systemic 

embolic events (S/SEE) and major bleeding in a well-characterized 

anticoagulated cohort from a large multinational trial.

• Compared with the CHA2DS2-VASc score, the ABC-stroke score provides 

both correct upward and downward reclassification of S/SEE risk. Compared 

with the HAS-BLED score, the ABC-bleeding score results in predominantly 

correct downward reclassification of bleeding risk.

• Increases in high-sensitivity troponin T (hsTnT), N-terminal-B-type 

natriuretic peptide (NT-proBNP), and growth differentiation factor (GDF)-15 

over 12-months were independently associated with increased risk of S/SEE 

and major bleeding.

What are the clinical implications?

• Our analysis suggests that incorporating the biomarker-based ABC-stroke and 

ABC-bleeding risk scores into clinical practice may improve the risk-benefit 

assessment of patients with AF considering anticoagulation.

• Application of these scores may help to identify patients who are most likely 

to derive a clinical benefit from treatment with non-vitamin K antagonist oral 

anticoagulants (NOACs) compared with warfarin.
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Figure 1. Cardiovascular biomarkers and annualized rate of stroke or systemic embolism and 
major bleeding.
High-sensitivity troponin T (hsTnT), N-terminal B-type natriuretic peptide (NT-proBNP), 

and growth differentiation factor-15 (GDF-15) were each independently associated with 

higher rates of S/SEE. hsTnT and GDF-15 were both independently associated with higher 

rates of bleeding, but NT-proBNP was not. GDF-15 indicates growth differentiation 

factor-15; hsTnT, high-sensitivity troponin T; HR, hazard ratio; Int, interval; ng/L, 

nanograms/liter; NT-proBNP, N-terminal B-type natriuretic peptide; pg/mL, picograms/

milliliter.
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Figure 2. Relative importance of each variable in the risk models for stroke or systemic 
embolism and major bleeding.
The relative contributions were assessed using the partial Wald χ2 minus the predictor 

degrees of freedom. The components of the (A) ABC-stroke and (B) ABC-bleeding risk 

scores are bolded. AF indicates atrial fibrillation; CAD, coronary artery disease; CHF, 

congestive heart failure; df, degrees of freedom; GDF-15, growth differentiation factor-15; 

hsTnT, high-sensitivity troponin T; MI, myocardial infarction; NT-proBNP, N-terminal B-

type natriuretic peptide; PAD, peripheral artery disease; TIA, transient ischemic attack.
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Figure 3. Annualized rates of (A) stroke or systemic embolic event stratified by the CHA2DS2-
VASc and ABC-stroke risk scores and (B) major bleeding stratified by the HAS-BLED and 
ABC-bleeding risk scores.
Observed annualized event rates are shown as percent of patients at-risk. (A) The ABC-

stroke risk score accurately stratified patients irrespective of CHA2DS2-VASc risk score 

categories (ptrend <0.001). (B) The ABC-bleeding risk score accurately stratified patients 

irrespective of HAS-BLED risk score categories (ptrend <0.001).
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Figure 4. Cumulative incidence of stroke or systemic embolism and major bleeding stratified by 
1-year risk estimates from the ABC scores.
(A) The observed cumulative incidence of S/SEE over the first three years following trial 

enrollment was stratified by the 1-year risk of S/SEE predicted by the ABC-stroke score 

(<1%, 1–2%, >2%). The observed annualized event rates (shown for each risk group) were 

significantly different across strata (p<0.001). (B) The observed cumulative incidence of 

major bleeding over the first three years following trial enrollment was stratified by the 1-

year risk of major bleeding predicted by the ABC-bleeding score (<1%, 1–2%, >2%). The 

observed annualized event rates (shown for each risk group) were significantly different 

across strata (p<0.001). S/SEE indicates stroke or systemic embolic event.
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Table 2.

Comparison of predictive models for stroke or systemic embolism and major bleeding.

Risk Model Harrell’s C-Index (95% CI)

Models for Stroke or Systemic Embolism

 CHA2DS2-VASc 0.59 (0.57 – 0.62)

 ABC-Stroke (Parameter estimates from ENGAGE AF-TIMI 48) 0.67 (0.65 – 0.70)

 ABC-Stroke (Parameter estimates from original derivation cohort) 0.66 (0.63 – 0.68)

 Comprehensive Model for S/SEE* 0.67 (0.65 – 0.70)

 Comprehensive Model for S/SEE plus GDF-15, cystatin C, and D-dimer† 0.68 (0.65 – 0.70)

  

Models for Major Bleeding

 HAS-BLED 0.62 (0.60 – 0.64)

 ABC-Bleeding (Parameter estimates from ENGAGE AF-TIMI 48) 0.69 (0.66 – 0.71)

 ABC-Bleeding (Parameter estimates from original derivation cohort) 0.67 (0.65 – 0.70)

 Comprehensive Model for Major Bleeding* 0.70 (0.68 – 0.72)

The components of the CHA2DS2-VASc score include age, sex, history of heart failure, history of hypertension, history of known atherosclerosis, 

diabetes mellitus, and history of stroke or TIA. The components of the HAS-BLED include age, history of hypertension, history abnormal renal or 
liver function, history of stroke or TIA, history of major bleeding, medication use predisposing to bleeding, and alcohol use (INR lability not 
included). The components of the ABC-stroke score include age, NT-proBNP, hsTnT, and prior stroke/TIA. The components of the ABC-bleeding 
score include age, prior bleeding, hemoglobin, hsTnT, and GDF-15. The “comprehensive models” include the all of the clinical and biomarker 

variables that were included in the comprehensive models from the derivation cohort15, 16 (*) (shown Figure 2). Notably, GDF-15 and cystatin C 

were included in the full bleeding model but not in the comprehensive S/SEE model in the derivation cohort.15, 16 In addition, D-dimer, which 

had been included in a previous multimarker risk score for S/SEE and death derived in ENGAGE AF-TIMI 48,14 was not included in the 

comprehensive S/SEE model in the derivation cohort.15 Therefore, the C-index for an additional model that included the full model for S/SEE in 
the derivation cohort plus GDF-15, cystatin C, and D-dimer is shown (†). CI indicates confidence interval; GDF-15, growth differentiation 
factor-15; hsTnT, high-sensitivity troponin T; INR, international normalized ratio; NT-proBNP, N-terminal B-type natriuretic peptide; S/SEE, 
stroke or systemic embolic event; TIA, transient ischemic attack.
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Table 3.
Net Reclassification Improvement.

Stroke or Systemic Embolism (Number of Patients with Events)

1-year Risk of S/SEE Predicted by
CHA2DS2-VASc Model

1-year Risk of S/SEE Predicted by ABC-Stroke Model

<1% 1–2% >2%

<1% 1 1 1

1–2% 14 37 41

>2% 3 12 29

Stroke or Systemic Embolism (Number of Patients with No Events)

1-year Risk of S/SEE Predicted by
CHA2DS2-VASc Model

1-year Risk of S/SEE Predicted by ABC-Stroke Model

<1% 1–2% >2%

<1% 517 113 5

1–2% 1868 2870 1188

>2% 124 604 966

Risk Score Comparison

ABC-Stroke vs. CHA2DS2-VASc Risk Scores Percent Reclassification (n)

  Correctly Upclassified 31.9% (43)

 Incorrectly Downclassfied 20.9% (29)

 Incorrectly Upclassified 15.8% (1306)

 Correctly Downclassified 31.4% (2596)

 Net Reclassification Improvement at 3 years 25.2% (95% CI, 13.1% – 46.1%)

 

Major Bleeding (Number of Patients with Events)

1-year Risk of Major Bleeding Predicted by
HAS-BLED Model

1-year Risk of Major Bleeding Predicted by ABC-Bleeding Model

<1% 1–2% >2%

<1% 0 0 0

1–2% 1 6 3

>2% 0 32 209

Major Bleeding (Number of Patients with No Events)

1-year Risk of Major Bleeding Predicted by
HAS-BLED Model

1-year Risk of Major Bleeding Predicted by ABC-Bleeding Model

<1% 1–2% >2%

<1% 0 0 0

1–2% 287 512 147

>2% 290 1460 4268

Risk Score Comparison

ABC-Bleeding vs. HAS-BLED Risk Scores Percent Reclassification (n)

  Correctly Upclassified 1.2% (3)

  Incorrectly Downclassfied 13.1% (33)

  Incorrectly Upclassified 2.1% (147)
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Stroke or Systemic Embolism (Number of Patients with Events)

  Correcty Downclassified 29.2% (2037)

  Net Reclassification Improvement at 3 years 13.8% (95% CI, 8.0% – 22.8%)

CI indicates confidence interval; S/SEE, stroke or systemic embolic event.
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Table 4.
Annualized event rates for clinical outcomes in the higher-dose edoxaban, lower-dose 
edoxaban, and warfarin arms stratified by ABC-stroke and ABC-bleeding risk scores.

1-year Risk of Bleeding Predicted by ABC-Bleeding Model

< 1 % 1–2 % > 2 %

LDER HDER WAR LDER HDER WAR LDER HDER WAR

1-year Risk of S/SEE 
Predicted by

ABC-Stroke Model

<1%

N 175 195 208 390 386 388 269 237 239

Stroke/SEE 0.43 0.77 0.18 0.38 0.78 0.87 1.26 0.48 1.09

Bleeding 0.48 0.42 0.59 0.84 1.61 1.89 1.46 2.44 3.50

NCO 1.43 1.48 1.38 1.67 2.80 2.64 2.44 3.57 4.25

1–2%

N 18 28 19 307 308 322 884 904 844

Stroke/SEE 0.00 2.84 2.02 1.11 1.62 0.97 1.91 1.16 1.66

Bleeding 0.00 0.00 2.19 0.96 1.58 2.18 2.17 3.68 4.05

NCO 0.00 4.71 2.19 2.35 3.59 4.12 4.86 5.62 5.96

>2%

N 1 3 3 47 29 52 737 732 739

Stroke/SEE 0.00 0.00 0.00 2.68 2.77 4.62 3.58 2.92 3.21

Bleeding 0.00 0.00 0.00 3.14 0.00 0.86 3.85 4.83 5.85

NCO 0.00 0.00 0.00 4.18 4.91 5.30 9.22 8.31 10.91

The net clinical outcome is a composite of stroke, systemic embolic event, major bleeding, and all-cause mortality. HDER indicates high-dose 
edoxaban regimen; LDER, low-dose edoxaban regimen; NCO, net clinical outcome; S/SEE, stroke or systemic embolic event; WAR, warfarin.
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