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Introduction

Radiation therapy is one of the three major modalities for 
treating cancer, along with surgery and chemotherapy. 
Nearly half of all cancer patients will receive radiation 

therapy in either a curative or palliative setting (1). 
Clinically, radiation oncologists and physicists have 
harnessed milestones in physics and engineering to improve 
outcomes for patients receiving radiation. Such milestones 
include the discovery of X-rays, protons, and nuclear 
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magnetic resonance (NMR). These discoveries were often 
translated to various technologies to improve patient care, 
ranging from the development of linear accelerators in 
the 1950s, to computed tomography (CT) and magnetic 
resonance imaging (MRI) in the 1970s, to the application 
of advanced radiation field-shaping collimators and imaging 
for 3D treatment planning in the 1980–1990s (2). Similar 
scientific milestones have been reached in radiobiology, and 
translating these advances to improve clinical outcomes by 
harnessing biological mechanisms remains a critical area of 
current research. GEMMs can serve as powerful preclinical 
models to accelerate this translation.

Suitable systems for modeling cancer in vivo should strive 
to satisfy several key features, particularly for radiobiology 
research. First, the tumor model should mimic human 
cancers on a histological, anatomical, and genetic level. 
Tumor models should be initiated by the same driver 
mutations observed in human tumors of the same type 
being studied. Further, the animal tumors should resemble 
human tumors anatomically and histologically with classic 
histopathological features used for diagnosis. Second, the 
tumor microenvironment should be preserved as best as 
possible. The importance of the microenvironment has 
been demonstrated most strikingly in studies showing that 
tumor vasculature and hypoxia in transplanted models 
differ from spontaneous models (3-5). This consideration is 
especially relevant for studying how the response to ionizing 
radiation is impacted by the tumor microenvironment and 
immune system (6,7). Third, ideally tumor initiation should 
be controlled spatially, temporally, and genetically. Precise 
control over tumor initiation is important for experimental 
reproducibility and feasibility. Most importantly, because 
cancer is a genetic disease, models should enable facile 
gene manipulation for systematic dissection of normal and 
tumor tissue response to radiation. Xenograft models are 
relatively simple to implement in a research pipeline and 
remain a workhorse model in research and industry (8). 
However, xenografts only satisfy some of the ideal features 
of a model system to study tumor biology, and it is therefore 
not surprising that xenografts may lack predictive value 
for clinical outcomes (5,8,9). In contrast, GEMMs provide 
many if not all of these features. Thus, GEMMs enable 
creative, rigorous, and reproducible experimental designs 
for studying radiobiology.

Current modeling techniques allow scientists to 
manipulate genes in several ways: activation, knockdown, 
knockout, tissue-specific expression, inducible expression, 
and sequential expression. Here, we introduce these 

GEMM technologies through the lens of radiobiology in 
three contexts: (I) studying normal tissue radiation injury; 
(II) dissecting tumor response to radiation therapy; (III) 
developing next-generation mouse models.

In vivo short hairpin RNA (shRNA) to investigate normal 
tissue radiation injury and carcinogenesis

As the number of people diagnosed with cancer each year 
grows, so does the number of patients living with the long-
term complications of radiation therapy. Approximately half 
of all patients diagnosed with cancer will receive radiation 
as a part of their therapy regimen (10,11). Regardless of 
whether exposure to ionizing radiation is the result of 
medical therapy or accidental exposure, normal healthy 
tissues are inadvertently exposed to radiation, which 
may result in a variety of toxicities and even secondary 
malignancies. Despite the rapid advances in radiation 
oncology that reduce exposure of surrounding healthy 
tissues by enabling radiation to be delivered precisely 
to tumor sites, collateral exposure of normal tissue is 
unavoidable. As the number of radiation survivors increases, 
it is essential to understand the mechanisms regulating 
normal tissue radiation injury and radiation carcinogenesis.

In some radiosensitive tissues, such as the hematopoietic 
system, the tumor suppressor p53 promotes the apoptotic 
cell death and acute tissue toxicity associated with 
radiotherapy (12-14). Therefore, blocking p53-mediated 
cell death during radiotherapy may represent an effective 
treatment strategy for cancer patients by minimizing the 
injury to normal tissue without obstructing the response 
of p53 mutant tumors (14-16). In order to model the 
temporary loss of p53 that would occur with a p53 inhibitor, 
we utilized the tetracycline-responsive element (TRE) to 
drive the in vivo expression of a shRNA against p53 (17,18). 
The reverse tetracycline-controlled transactivator (rtTA) 
was expressed ubiquitously and induced expression of the 
p53 shRNA only in the presence of doxycycline (Figure 1). 
These compound transgenic mice enabled us to decrease 
p53 mRNA expression in an inducible and reversible 
manner in p53 wild type mice. Temporary induction of the 
p53 shRNA during total body irradiation improved the 
survival of mice from the hematopoietic acute radiation 
syndrome by protecting hematopoietic stem and progenitor 
cells (HSPC) from radiation-induced cell death. These 
results suggest that a p53 inhibitor given concurrently with 
radiotherapy may ameliorate radiation-induced injury in the 
hematopoietic system.
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Although temporary knockdown of p53 with this 
tetracycline-regulated mouse model protected normal tissue 
from radiation, mice with germline p53 deletion develop 
radiation-induced cancer (19,20). Therefore, one potential 
risk associated with p53 inhibition during radiotherapy is 

that the incidence of secondary tumors may be exacerbated. 
Other researchers evaluated the tumor suppressor function 
of p53 during irradiation, but these studies made use of 
mice that were functionally p53 null or had permanent 
deletion of p53 (Figure 2) (21,22). One key advantage of the 

Figure 1 Tetracycline-inducible systems for in vivo shRNA expression. An rtTA relies on the presence of tetracycline (+Tet), such as 
doxycycline, for induction of gene or shRNA expression. Expression is turned off in the absence of tetracycline (−Tet). shRNA, short hairpin 
RNA; rtTA, reverse tetracycline-controlled transactivator; TRE, tetracycline-responsive element. 

Figure 2 Mouse modeling approaches to evaluate the tumor suppressor function of p53 during radiation. Using a tamoxifen-inducible 
p53 knock-in mouse model that is functionally p53 null (dashed line), Christophorou et al. showed that induction of functional p53 activity 
(red block) during radiation did not improve the survival of mice as compared to mice with no restoration of p53. However, delaying p53 
restoration by approximately one week post radiation resulted in delayed onset of lymphomas (21). Hinkal et al. utilized a tamoxifen-
inducible mouse model to delete p53 two weeks before, two weeks after, or concurrent with radiation exposure. No difference was observed 
in survival of the mice regardless of the p53 status at the time of radiation (22). By controlling the expression of a shRNA against p53 in a 
temporal and reversible manner, Lee et al. showed that temporarily blocking p53 during fractionated radiotherapy improved the tumor-free 
survival of mice by decreasing the incidence of lymphomas (18).
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tetracycline-controlled p53 shRNA mouse model is that p53 
expression is intact in the absence of doxycycline, mimicking 
the wild type p53 status of most cancer patients. This 
model was therefore well-equipped to address the question: 
does temporary loss of p53 during radiation increase the 
incidence of radiation-induced lymphomas? Surprisingly, 
we found that temporarily blocking p53 during fractionated 
radiation exposure enhanced the overall survival of mice 
by preventing lymphomagenesis. Knockdown of p53 
during radiation also promoted the regeneration of the 
hematopoietic system by enhancing the fitness of HSPCs 
within the bone marrow. Furthermore, transplantation of 
bone marrow cells from mice with temporary loss of p53 
during radiation into irradiated recipients was sufficient to 
suppress lymphomagenesis. Together, these data revealed 
a new paradigm for the role of p53 during radiation: 
within the bone marrow, p53 promotes radiation-induced 
lymphomagenesis in a non-cell-autonomous manner.

Cre-loxP technology to study normal tissue radiation 
injury

The risk of late effects from radiation therapy frequently 
limits the maximum radiation dose that can be safely 
delivered to a malignancy. Therefore, studies to understand 
the mechanisms of radiation-induced normal tissue injury 
may be translated to increase the radiation dose to a tumor 

while preventing normal tissue injury. Cre-loxP technology 
is well-suited to dissect mechanisms of radiation-induced 
normal tissue injury. The bacteriophage P1-derived Cre-
loxP system can be used to carry out site-specific deletions, 
insertions, and translocations within genomic DNA  
(Figure 3). The enzyme Cre recombinase recombines a 
pair of short palindromic sequences called loxP sites, which 
are inserted into genomic DNA to flank a target (‘floxed’) 
locus. Activity of the Cre recombinase can be controlled 
by various mechanisms, including ubiquitous expression, 
expression under a cell type-specific promoter, use of 
a ligand-inducible system (such as tamoxifen), or viral 
packaging for targeted injection and delivery. We used Cre-
loxP technology to delete p53 specifically in endothelial 
cells using the Tie2-Cre and VE-Cadherin-Cre mice to 
demonstrate the role of endothelial cell-specific p53 in 
preventing radiation-induced myocardial injury in mice (23).  
Radiation-related heart disease is an important cause 
of treatment-associated mortality for patients receiving 
thoracic radiotherapy (24), and the findings from this 
preclinical work suggest that combining radiation therapy 
with inhibitors of p53 (25) may increase the risk for cardiac 
injury if the heart is in the radiation field. 

However, the role of Cre-loxP technology goes beyond 
modeling and understanding the mechanisms of radiation-
related normal tissue injury. These GEMMs can also be 
used to study biomarkers of normal tissue injury as well as 

Figure 3 Genetically engineering mice with site-specific recombinase technology. (A) GOI deletion or (B) activation can be achieved using 
Cre-loxP or FLP-FRT-mediated recombination to generate tumors and modulate radiation response. Injection of Cre or FLP enables 
spatial and temporal control of tumor generation in mice. GOI, gene of interest.
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various imaging modalities that can potentially be translated 
for early clinical intervention. For example, the Tie2-
Cre; p53fl/fl mouse model has several characteristics that 
make it useful to study radiation-induced heart disease: 
genetic manipulation leads to decreased latency of disease 
compared to irradiation of wild type mice, and the severity 
of the cardiomyopathy is such that mortality reaches 
100%, as opposed to 50% in genetically intact mice (26). 
Furthermore, the dose of radiation delivered in a single 
fraction to the heart to elicit such a profound phenotype 
is only 60% of that delivered to wild type mice and rats  
(12 vs. 20 Gy) (27). This Tie2-Cre; p53fl/fl model utilizes Cre-
loxP technology to exploit the biology of the DNA damage 
response to generate an efficient model of radiation-
induced normal tissue injury with high penetrance, 
accelerated onset, and a severe phenotype. This GEMM has 
also been adopted for the study of dual energy-microCT, 
4D-microCT, and microSPECT imaging to assess changes 
in vascular permeability and cardiac function (28), which are 
surrogates for myocardial injury. These preclinical imaging 
approaches developed in GEMMs have the potential to be 
translated as imaging biomarkers to identify patients treated 
with radiation who have developed cardiac injury that may 
progress to radiation-related heart disease. 

In addition to the development of preclinical imaging 
modalities using GEMMs, Cre-mediated recombination 
of fluorescent reporters can also be used for additional 
resolution of cellular proliferation and lineage tracing. 
Cre-mediated recombination of the confetti allele can be 
used to randomly tag airway progenitor cells with one of 
four fluorescent lineage reporters. Using this technique 
to perform in vivo lineage tracing, Farin et al. revealed the 
stark difference between the effects of low- and high-linear 
energy transfer (LET) radiation in vivo and in vitro. While 
radiation induces a decrease in colony forming ability in 
vitro, a significant increase in clonal expansion of progenitor 
cells is observed in vivo following exposure to either low- 
or high-LET radiation (29). These findings suggest that 
a reduction in proliferation-competent progenitor cells 
after radiation exposure actually results in clonal expansion 
of the remaining progenitor cells in vivo. This example 
demonstrates the application of Cre-loxP technology 
for lineage tracing of specific progenitor cells for in vivo 
clonogenic assays, which exhibit dramatically different 
results compared to those performed using traditional in 
vitro cell culture methods. 

Concern over the potential exposure of civilians to high-
dose radiation has led to increased interest in understanding 

mechanisms underlying radiation injury. Specifically, no 
medical countermeasures are approved to prevent or treat 
the radiation-induced gastrointestinal (GI) syndrome, and 
the cellular targets of radiation-induced toxicity in the GI 
tract and molecular mechanisms underlying cell death in 
the GI syndrome remain active areas of investigation. Using 
Cre-loxP technology to delete p53 and essential mediators 
of the intrinsic apoptotic cascade specifically in GI epithelial 
cells, we found that p53 controlled the radiation-induced 
GI syndrome in mice through a mechanism independent 
of apoptosis (30). These experiments utilize genetic 
manipulation within a particular cellular compartment to 
elucidate a specific mechanism for acute radiation syndrome. 
Studies such as these have significant implications for efforts 
to develop medical countermeasures against radiation due 
to the cellular and molecular resolution they provide. 

Cre-loxP and FLP-FRT technology to dissect mechanisms 
of tumor response to radiation 

Cre recombinase has been widely util ized for the 
simultaneous manipulation of multiple genes to study 
tumorigenesis and tumor progression in the mouse model 
system, leading to the development of GEMMs of a wide 
variety of primary cancers. As described above, the activity 
of the site-specific recombinase Cre, as well as an analagous 
recombinase derived from Saccharomyces cerevisiae called 
flippase (FLP), can be controlled by various mechanisms, 
allowing ubiquitous, cell type-specific, or inducible activity 
(Figure 3). Through these various mechanisms, one can 
spatially and temporally restrict genetic recombination by 
Cre and FLP at loxP and FLP recombinase target (FRT) 
sites (respectively) in order to investigate mechanisms of 
tumor formation, progression, and response to radiation 
therapy. 

These tools have proven to be particularly well-suited 
for the study of radiation biology. For example, use of Cre-
loxP technology to generate GEMMs of primary non-small 
cell lung cancer (NSCLC) with various initiating mutations 
has revealed that genetic factors within histologically 
indistinguishable tumor parenchymal cells influence in 
vivo tumor growth delay after radiation (31), which has 
important clinical implications for patients receiving 
radiation therapy. Furthermore, the use of micro-CT has 
been adopted in order to better visualize and monitor the 
response of primary murine lung tumors to radiation, 
demonstrating the ability of advanced imaging technology 
to impact the field of radiation biology (32). In addition, we 
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Figure 4 Rationale for dual recombinase technology. (A) Adeno-Cre infection generates tumors by expressing Cre recombinase in tumor-
initiating cells. However, in this model, Cre recombinase cannot be utilized to selectively recombine additional floxed alleles in stromal cells. 
(B) Dual recombinase technology combines Adeno-FLP infection with a tissue-specific Cre driver that recombines floxed alleles in stromal 
cells. For example, Tie2-Cre recombines floxed alleles in endothelial cells and macrophages. Tumors can be initiated by FLP-mediated 
activation of oncogenes and deletion of FRTed tumor suppressor genes. This approach enables recombination of floxed alleles in stromal 
cells expressing Cre recombinase only. Adapted from Lee et al. (34).

have employed Cre-loxP technology to investigate the role 
of hypoxia-inducible factor 1-alpha (HIF-1α) and hypoxia 
in mediating tumor response to radiation therapy (33).

The efficiency and relative simplicity of Cre-loxP 
technology have led to its widespread use to study 
cancer and radiation biology. Because most primary 
GEMMs of cancer utilize Cre-loxP technology to 
initiate carcinogenesis, the utility of Cre recombinase in 
subsequent modification of either tumor or stromal cells 
is limited (Figure 4A). In contrast to the growing number 
of floxed alleles and tissue-specific Cre drivers, the FLP-
FRT system has been utilized less frequently than the Cre-
loxP system to modify genes in somatic tissues in mice. 
The limitation of these single recombinase models is that 
they are often used to generate the driver mutations for 
tumorigenesis, but they are limited in the ability to ask 
more complex questions regarding the mechanisms of 
radiation response and radiation resistance. For example, 
the response of tumors to radiation therapy is mediated 
by a complex interaction between immune cells, stroma, 
and tumor cells. GEMMs present a unique opportunity to 
dissect the role of specific cellular compartments in tumor 
response to radiation therapy. However, to harness the 

full potential of site-specific recombinase technology to 
dissect mechanisms of radiation response, more than one 
recombinase is needed to not only initiate tumorigenesis 
but also to manipulate other cellular compartments to 
examine their role in the radiation response. Therefore, 
utilization of additional FRT-flanked alleles (‘FRTed’) 
alleles in concert with floxed alleles enables dual 
recombinase technology to direct distinct gene mutations 
to different cell types when Cre and FLP recombinases are 
employed simultaneously (Figure 4B). 

We have utilized this dual recombinase (Cre + FLP) 
technology to address a critical question in radiation 
biology: defining the cellular target of radiation therapy in 
tumor eradication (7). To investigate whether stromal cells, 
such as endothelial cells, are critical targets of radiation 
therapy, we applied dual recombinase technology. We 
generated multiple murine tumors which were genetically 
identical except for the deletion of the DNA damage 
response gene ataxia telangiectasia mutated (Atm). By deleting 
Atm in either tumor cells or endothelial cells, we were 
able to radiosensitize distinct cellular populations to better 
understand their roles in tumor response and eradication 
following radiation therapy. In these experiments, an 
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adenovirus expressing FLP recombinase (Adeno-FLP) 
was used to initiate sarcoma development in the lower 
extremity. Adeno-FLP was injected intramuscularly to 
delete both copies of a conditional FRTed allele of p53 
(p53FRT/FRT) (Figure 3A) (34). In addition, FLP excises a 
FRTed STOP cassette (FSF) upstream of oncogenic Kras 
to initiate transcription of KrasG12D (Figure 3B). In order 
to manipulate the radiosensitivity of endothelial cells, an 
endothelial-specific Cre driver (VE-Cadherin) recombines 
floxed alleles specifically in endothelial cells. In this case, 
Atm was selectively deleted in endothelial cells to enhance 
their radiosensitivity. We used this dual recombinase 
technology in KrasFSF-G12D; p53FRT/FRT; VE-Cadherin-
Cre; Atmfl/fl mice (Table 1) in order to demonstrate that 
selectively sensitizing endothelial cells to mitotic cell death 
by deleting Atm (35) prolongs sarcoma growth delay after 
stereotactic body radiation therapy (SBRT) (36), but this 
enhanced radiosensitivity does not translate into improved 
local control (7). However, radiosensitization of tumor 
cells by deleting Atm increases local control of primary 
sarcomas after radiation therapy, demonstrating that tumor 
cells but not endothelial cells are critical targets of curative 
radiation therapy (7). These results have important clinical 
implications. They suggest that the increased local control 
that is observed with some tumors following SBRT may not 
be due to increased endothelial cell death, but is instead a 
consequence of delivering larger (10 to 20 Gy per fraction), 
biologically effective doses that kill more tumor cells 
compared to standard (1.8 to 2 Gy per fraction) radiation 
therapy (7). 

By coupling the Cre-loxP and FLP-FRT systems, dual 
recombinase technology has made it possible to genetically 
manipulate both tumor cells and stromal cells (Figure 4) 
to address the role of various stromal cell populations in 
mediating response to radiotherapy. This capability gains 
increasing importance in the field of radiation biology 

because of the potential role of manipulating the immune 
system during radiotherapy to not only optimize local 
control, but also to potentially cause abscopal responses in 
distant sites of metastatic disease.

RCAS-TVA system to model primary cancers

Although genetic engineering in mice through the use of 
Cre-loxP technology has facilitated numerous advances 
in the field of radiation biology, these studies are often 
expensive and time-consuming. In vivo retroviral gene 
transfer represents a practical alternative for lineage tracing 
and cell fate mapping, generating mouse models of cancer, 
and evaluating the function of genes that regulate radiation 
response. The stable delivery of genes to somatic cells has 
been optimized using the RCAS (replication-competent 
avian sarcoma-leukosis virus long-terminal repeat with 
splice acceptor) viral vector, which was derived from the 
Rous sarcoma virus-A. In order to generate the RCAS 
vector, the oncogenic v-src was replaced with a multiple 
cloning site to accommodate genes of interest (37). The 
RCAS virus maintains expression of the subgroup A 
envelope glycoprotein and can therefore infect only cells 
with the cognate tumor virus A (TVA) receptor. Although 
the TVA receptor is naturally expressed only in avian cells, 
a host of genetically engineered mice expressing TVA 
under the control of a variety of tissue-specific promoters 
has been generated (38). Either virus-producing avian 
cells or the virus itself can be injected into transgenic mice 
that harbor the TVA receptor in order to manipulate gene 
expression in a spatiotemporal manner (Figure 5). The 
RCAS-TVA system can also be utilized in combination with 
Cre-loxP technology or with the tetracycline-controlled 
transcriptional regulation system to provide a more intricate 
level of control over gene transfer.

The RCAS-TVA system has been widely utilized to 

Table 1 Dual recombinase technology for deletion of Atm in sarcomas

Genotype
KrasFSF-G12D; p53FRT/FRT; VE-Cadherin-Cre; Atmfl/+ KrasFSF-G12D; p53FRT/FRT; VE-Cadherin-Cre; Atmfl/fl

Tumor parenchyma Endothelial cells Tumor parenchyma Endothelial cells

No Cre; no FLP WT WT WT WT

+ FLP (viral delivery) Mutant Kras No change Mutant Kras No change

p53 null p53 null

+ Cre (VE-Cadherin driven) No change Express Cre: one Atm allele 
retained

No change Express Cre: both Atm 
alleles deleted

https://paperpile.com/c/IYosGq/zH1IS
https://paperpile.com/c/IYosGq/KYB1L
https://paperpile.com/c/IYosGq/xTlNb
https://paperpile.com/c/IYosGq/xTlNb
https://paperpile.com/c/IYosGq/xTlNb
https://paperpile.com/c/IYosGq/4FWcJ
https://paperpile.com/c/IYosGq/SHugn


S907Translational Cancer Research, Vol 6, Suppl 5 July 2017

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2017;6(Suppl 5):S900-S913 tcr.amegroups.com

generate mouse models of cancer due to the ease through 
which mutant genes can be expressed and oncogenes 
can be stably overexpressed in a tissue-specific manner. 
Furthermore, mammalian cells that have been infected by 
an RCAS virus remain susceptible to reinfection, enabling 
the simultaneous or sequential manipulation of several 
genes. Therefore, the RCAS-TVA system has made it 
possible to model the complex mutational landscape and the 
clonal evolution of primary tumors.

The first models of cancer using the TVA receptor-
mediated delivery of RCAS were developed by targeting 
glial cells within the mouse brain (39-41). These original 
models of gliomagenesis have been adapted over the last 
two decades to reflect the newly discovered landscape of 
genetic alterations that occur in human brain tumors (42). 
For example, a recent study utilized an RCAS construct 
carrying platelet derived growth factor-B (PDGFB) to drive 
the initiation of brainstem gliomas in mice expressing TVA 
under the control of the glial precursor cell-specific Nestin 
promoter (43). To more effectively model the alterations 
commonly observed in cell cycle regulatory genes in 
patients with brainstem gliomas, this Nestin-TVA mouse was 
crossed to an Ink4a/ARF null strain. The resulting GEMM 
was then utilized in a preclinical trial to evaluate the 
efficacy of inhibiting the cyclin/cyclin-dependent kinase/
retinoblastoma signaling pathway in combination with 
radiotherapy (43). Treatment with a cyclin-dependent kinase 
4/6 inhibitor following whole brain irradiation induced 
cell cycle arrest and significantly prolonged the survival 
of mice with Ink4a/ARF deficient brainstem gliomas. The 
effectiveness of the CDK4/6 inhibitor in this preclinical 
study also led to the initiation of a clinical trial for pediatric 
patients with brainstem gliomas (NCT02255461). The 
RCAS-TVA system for mouse modeling has enabled 
many other preclinical trials to test drugs that improve the 
effectiveness of radiation therapy. Gemcitabine, a drug that 

inhibits the synthesis of nucleic acids, significantly extends 
survival in an Ink4a/ARF and PTEN-deficient mouse model 
of glioblastoma when administered concurrently with 
radiation (44). In this same model, concomitant treatment 
with a poly (ADP-ribose) polymerase (PARP) inhibitor, 
temozolomide, and radiotherapy led to an improved tumor 
growth delay and overall survival when compared with 
temozolomide and radiation alone, the current standard-of-
care (45).

In addition to facilitating preclinical trials, the RCAS-
TVA system has been elegantly used to begin dissecting 
the mechanisms of radioresistance in gliomas.  In 
primary models of medulloblastoma and glioblastoma, 
researchers identified the nucleus dense, bulk tumor 
region as preferentially undergoing apoptosis in response 
to radiotherapy, while cells in the perivascular regions 
appeared more radioresistant (46,47). Brain tumor stem 
cells and supporting stromal cell populations have been 
shown to reside in the perivascular niche, highlighting the 
need for autochthonous tumor models when evaluating 
the radiation response of tumors. Hambardzumyan et al. 
went on to show that perivascular cells staining positively 
for various stem cell markers underwent p53-mediated 
cell cycle arrest following radiation. This cancer stem cell 
population ultimately survived the radiotherapy and re-
entered the cell cycle 72 hours post radiation. Additional 
mechanistic insight into the radioresistant nature of gliomas 
was elucidated by studying the defects in the DNA damage 
response pathway commonly found in human tumors. The 
genetic loss of Chk2 in a mouse model of glioblastoma, 
for example, protected tumor cells from radiation-induced 
apoptosis and eradicated the survival benefit following 
radiotherapy (48). Additional studies are required to 
determine whether the role of Chk2 in the radioresistance 
of glioblastomas can be generalized to other components of 
the DNA damage response pathway.

RCAS virus- 
producing cells

RCAS
virus- 

producing 
cells

RCAS
plasmids TVA mice

Figure 5 RCAS-TVA system for cell or tissue-specific gene expression. RCAS virus-producing cells or virus itself can be injected into mice 
expressing the TVA receptor to generate tumors and modulate radiation response. RCAS, replication-competent avian sarcoma-leukosis 
virus long-terminal repeat with splice acceptor; TVA, tumor virus A.
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Next-generation mouse modeling of cancer with CRISPR/
Cas9 technology

The research described so far demonstrates the broad utility 
of GEMMs in radiobiology. Despite the immense potential 
for GEMMs in radiation research, the time and financial 
costs for model generation and execution of adequately 
powered experiments can be prohibitive. The conventional 
approach for mouse model generation relies on inserting 
targeted donor constructs via homologous recombination 
(HR) in embryonic stem (ES) cells, targeted ES cell 
selection and injection into blastocysts, implantation, and 
months of breeding (49). This entire process of generating 
germline chimeras can take several months before mice 
with the desired genotype are in hand. If more than one 
gene modification is desired, then the time frame increases 
by several more months of extensive breeding.

Recently, both the time and financial costs associated 
with generating mouse models have drastically decreased, 
especially for mouse models of cancer. The discovery and 
engineering of a bacterial adaptive immune system that 
utilizes clustered regularly interspaced short palindromic 
repeats (CRISPR) and CRISPR-associated proteins (Cas) 
have made this possible (50-52). CRISPR/Cas is an RNA-
guided endonuclease system that can be distilled to three 

basic components as used for genome editing in mammalian 
cells: (I) a Cas protein; (II) a single guide RNA (sgRNA); 
and (III) a protospacer adjacent motif (PAM) (Figure 6). The 
Cas proteins, of which Cas9 is the most widely used, serve 
as molecular scissors that make double strand breaks (DSBs) 
in DNA. Cas9 is targeted to DNA by a chimeric sgRNA 
through sequence complementarity between the sgRNA 
and the genomic DNA. The endonuclease activity of Cas9 
is dependent on the presence of a PAM sequence adjacent 
to the 3' end of the sgRNA target sequence (53).

CRISPR/Cas technology can help bypass the two 
primary bottlenecks during generation of cancer GEMMs: 
(I) targeted insertion in ES cells by HR and (II) breeding 
of progeny. The fundamental basis for all gene editing 
technology is the repair of DSBs in DNA. Prior to 
CRISPR/Cas, several methods were used for generating 
targeted DSBs including site-specific endonucleases, zinc-
finger nucleases (ZFNs), and transcription activator-like 
effector nucleases (TALENs) (54,55). These nucleases 
represented an evolution in improving DNA targeting 
specificity and flexibility. However, prior to CRISPR/Cas, 
intensive protein engineering was required to utilize ZFN 
and TALEN technology because cleavage specificity was 
protein-dependent. As such, ZFNs and TALENs could 

Figure 6 Rapid generation of primary tumors in mice using CRISPR/Cas9 technology. In vivo somatic genome engineering using 
CRISPR/Cas9 can generate knockouts, translocations, point mutations, and knock-ins in mice. Double-strand breaks are induced by Cas9 
endonuclease. Cas9 is guided by sgRNAs to specific sites in the genome for targeted gene editing. sgRNAs, single guide RNAs; DSB, 
double-strand break; GOI, gene of interest; NHEJ, non-homologous end joining; HR, homologous recombination; indel, insertion or 
deletion.
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achieve target specificity, but were not flexible because each 
new genomic target required engineering a new protein 
with DNA sequence specificity. In contrast, CRISPR/
Cas is a programmable RNA-guided endonuclease, which 
allows for both specificity and flexibility of DNA targeting. 
Therefore, generating specific genome-wide DSBs for 
genome engineering became a relatively simple process 
of designing a new sgRNA with complementarity to the 
targeted DNA sequence in the genome. As importantly, 
Mali et al. discovered CRISPR/Cas9 had greater HR 
efficiency in mammalian cells compared to previous 
endonucleases when targeting the same locus (51). Thus, 
CRISPR/Cas can eliminate the HR bottleneck in GEMM 
generation. The second bottleneck occurs when chimeric 
mice must be crossed for several weeks to months to 
generate the desired genotype that may contain multiple 
alleles for tumor initiation. Because cancer most often 
arises stochastically in somatic tissues, if somatic gene edits 
could be generated in adult mice with CRISPR/Cas9 then 
this second bottleneck could be bypassed as well. In 2014, 
several labs demonstrated the successful generation of 
multiple non-germline GEMMs of cancer using CRISPR/
Cas9 technology, thus completely bypassing the time-
consuming process of mouse breeding.

The first groups to generate GEMMs using CRISPR/
Cas9 successfully used in vivo somatic genome engineering 
to model several cancers in mice (56-59). These groups used 
CRISPR/Cas9 and mutagenic non-homologous end joining 
(NHEJ) repair to knockout tumor suppressor genes in the 
lung (56,59) and liver (57). Several groups even used CRISPR/
Cas9 to generate the Eml4-Alk translocation to form lung 
tumors (58,60). Since these initial non-germline GEMMs, 
cancers of the breast (61), pancreas (62,63), brain (64),  
and leukemias (65) have also been modeled using CRISPR/
Cas9. The generation of a Cas9 knock-in mouse has further 
streamlined non-germline GEMM development (59). These 
models resulted from the application of only the first widely 
used Cas protein, Cas9, to knock out tumor suppressor 
genes, or knock in oncogenes, and represented a leap forward 
in cancer mouse modeling. Using CRISPR/Cas9 in this way, 
the mouse genome can be modified in any way imaginable 
from simple point mutations to introducing genetic markers 
and chromosomal rearrangements (Figure 6).

CRISPR has been transformative for mouse modeling, 
but there are important limitations to consider. First, the 
targeting of Cas9 and other Cas proteins have unique 
PAM sequences that are required for targeting of the 
endonucleases. These sequence motifs are important for 

specificity, but may limit gene editing to certain areas of 
the genome. Fortunately, engineered variants of Cas9 
and the discovery of novel Cas proteins with altered PAM 
specificities are minimizing the impact of this limitation (66). 
Second, off-target effects are important to consider when 
using CRISPR technology. Off-target effects resulting from 
small molecules have half-lives and the effect is temporary; 
in contrast, gene edits are permanent. Researchers have 
been extremely cognizant of this caveat to employing 
Cas9 technology since its inception (53,67-69). As such, 
several approaches to minimize the risk of these off-target 
effects have been developed. These approaches include 
the development of nickases that require two single-strand 
nicks to generate DSBs (70), high-fidelity Cas9 enzymes 
that have very few to no detectable off-target effects (71,72), 
and methods of detecting off-target mutations generated by 
Cas9 (73-75).

Recently, the CRISPR/Cas9 system has evolved beyond 
simple genome editing into the realms of epigenome editing 
(76,77), base-pair editing (78), and genome regulation 
(79-81). Completely new classes of Cas proteins have also 
been discovered with altered PAM specificity that generate 
staggered DSBs (82), or Cas proteins that allow RNA-
guided RNA targeting (83,84). These technologies expand 
the CRISPR toolbox for radiation biologists and enable 
truly next-generation mouse modeling and discoveries. The 
research performed to study acute and chronic radiation 
effects on normal tissue, radiation-induced carcinogenesis, 
and tumor response to radiation therapy using conventional 
GEMMs can potentially be accelerated at lower cost with 
CRISPR technology. For example, with CRISPR it is now 
feasible to study pathways activated by radiation such as 
the DNA damage response and apoptosis pathways in a 
functional way. Similar experiments using CRISPR have 
been performed to investigate metastasis and cooperative 
mutations required for tumorigenesis (65). CRISPR 
screens can also be performed to identify radioresistant and 
radiosensitizing genetic and epigenetic components, similar 
to screens performed with shRNA in the past (85-87). 

Conclusions

Here we reviewed the applications of mouse models 
in preclinical radiobiology research. We introduced 
fundamental concepts of mouse modeling and summarized 
several technologies for mouse modeling including site-
specific recombinases, shRNA, RCAS-TVA, and CRISPR. 
We demonstrated the utility of these technologies and 
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mouse modeling in radiobiology research by highlighting 
several publications that used GEMMs in preclinical 
research on radiation-induced carcinogenesis, normal 
tissue injury, and the in vivo targets of radiation in tumors. 
Despite the important contributions GEMMs have made 
in radiation research, these and next-generation mouse 
models are poised to reveal additional insights in the future. 
Experiments performed in robust in vivo systems, such as 
GEMMs, will continue to lead to fundamental discoveries 
in radiation research. GEMMs of cancer are powerful 
tools for investigating the cell-autonomous and non-cell-
autonomous mechanisms that contribute to normal and 
tumor tissue response to radiation. We anticipate that 
increased adoption of GEMMs in radiobiology research 
will not only lead to important new knowledge, but may 
also increase the predictive value of preclinical research to 
accelerate clinical translation and improve outcomes for 
patients treated with radiotherapy.
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