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Attention to colors induces 
surround suppression at category 
boundaries
Ming W. H. Fang1, Mark W. Becker1 & Taosheng Liu1,2

We investigated how attention to a visual feature modulates representations of other features. The 
feature-similarity gain model predicts a graded modulation, whereas an alternative model asserts an 
inhibitory surround in feature space. Although evidence for both types of modulations can be found, 
a consensus has not emerged in the literature. Here, we aimed to reconcile these different views by 
systematically measuring how attention modulates color perception. Based on previous literature, 
we also predicted that color categories would impact attentional modulation. Our results showed that 
both surround suppression and feature-similarity gain modulate perception of colors but they operate 
on different similarity scales. Furthermore, the region of the suppressive surround coincided with 
the color category boundary, suggesting a categorical sharpening effect. We implemented a neural 
population coding model to explain the observed behavioral effects, which revealed a hitherto unknown 
connection between neural tuning shift and surround suppression.

When we encounter a crowded scene, we rely on visual attention to select what is most task-relevant and mini-
mize distraction from inconsequential input. Numerous studies have demonstrated attentional selection based 
on locations (‘spatial attention’)1 and features (‘feature-based attention’)2. It is now well-documented that the 
selected location or feature is endowed with processing priority, manifested by enhanced behavioral performance 
and neural responses to the selected stimuli. An important open question concerns the profile of such attentional 
selection, i.e., how selection of a location or a feature modulates the representation of other locations and features?

In the domain of spatial attention, early studies suggested a monotonic profile of selection (e.g., the gradi-
ent model)3, such that attentional modulation was strongest at the attended location and decreased monotoni-
cally with the distance from the attended location. Similarly, early single-unit studies on feature-based attention 
(FBA), have also proposed a gradient profile in feature space, as epitomized by the feature-similarity gain (FSG) 
model4,5. According to the FSG model, attentional modulation is a monotonic function of the difference (similar-
ity) between the attended feature and a neuron’s preferred feature, varying gradually from enhancement to sup-
pression. Thus for both space-based and feature-based attention it seemed that there was a monotonic decrease in 
attentional modulation as the distance (in physical or feature space) increased from the attend stimulus.

However, more recent studies of spatial attention that sampled locations more finely have revealed a 
non-monotonic profile of attention comprised of “surround suppression”, such that nearby locations are more 
suppressed than further locations. This local suppression produces a “Mexican hat” attentional profile, which 
is thought to allow better distinction between closely located targets and distractors6–11. Notably, sampling this 
Mexican hat profile at too coarse a scale can produce what appears to be a monotonic function. The finding of a 
non-monotonic profile in spatial attention naturally led to the question of whether there is a similar pattern of 
surround suppression in FBA. Although many earlier studies in humans have supported the FSG model12–17, they 
either employed only two very different features, or used coarse sampling between the cued and target feature. 
Thus, these FBA studies are unlikely to detect a surround suppression effect in the feature space. Indeed, with 
finer sampling, two recent studies have reported initial evidence for a Mexican hat profile for feature-based atten-
tion to color and orientation18,19. However, a number of limitations in these studies could potentially weaken their 
conclusions (for details see General Discussion).

Here, we set out to determine if there is a genuine surround suppression in feature-based attention; and if so, 
how such a non-monotonic profile can be reconciled with a monotonic profile as stipulated by the FSG model. 
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Based on the literature, there are three possible outcomes (Fig. 1). A pure FSG model would predict that atten-
tional modulation monotonically decreases with cue-target dissimilarity (Fig. 1a). Alternatively, a pure surround 
suppression model would predict a Mexican hat profile with a complete rebound once the target feature is outside 
the suppressive zone (Fig. 1b). Lastly, a third possibility is a hybrid model of surround suppression at nearby fea-
tures and feature-similarity gain at further features. This would predict a Mexican hat profile at the vicinity of the 
attended feature and a further decrease outside the suppressive zone (Fig. 1c).

We tested these theoretical predictions for color-based attention. Color is one of the most extensively studied 
features in attention research, perhaps because color is a particularly effective cue to guide attention20. Thus, it is 
important to know whether color-based attention elicits a surround suppression profile. Furthermore, color per-
ception is strongly categorical such that continuous variation in input stimulus (e.g., wavelength) is mapped onto 
discrete hue categories (e.g., red, green, blue, etc.). This categorical nature of color perception is known to play a 
role in attention. For example, visual search for color targets is inefficient when target and distractors are linearly 
non-separable in color space21,22. However, such inefficiency is much reduced when targets and distractors are 
from different categories than if they come from the same category, even when the perceptual similarity between 
targets and distractors are equated23 (and an analogous effect in orientation)24. The fact that perceptual categories 
influence search efficiency suggests that categorical structures can modulate attention to colors. We thus conjec-
tured that color categories could also impact the attentional profile.

In the current study, we first determined individual participant’s color categories in a pretest (Fig. 2). 
Participants then performed a 2-interval forced choice (2-IFC) detection task of a coherent color signal (Fig. 3). 
We manipulated FBA by cuing participants to attend to a particular color (attention condition) or not to attend 
to any particular color (neutral condition). We systematically varied the similarity between the cue and the tar-
get with a fine sampling method in the attention condition and compared detection performance to the neutral 
condition, to measure the attentional profile. This measurement was conducted for three different color catego-
ries to examine the impact of categorical structure on attentional profile. To foreshadow the results, we found a 
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Figure 1.  Predictions of attentional profile. The horizontal axis is cue-target offset, with the left most point 
(“same”) representing the attended feature and the right most point representing the most dissimilar feature 
(“most different”). Solid black line represents how attentional effect varies as a function of cue-target offset and 
gray dashed line depicts the baseline performance. (a) Prediction from a pure feature-similarity gain (FSG) 
model; (b) Prediction from a pure surround suppression model; and (c) Prediction of a hybrid model of both 
FSG and surround suppression at different scales. Note that the FSG induces a suppression effect at a relative 
larger scale while surround suppression induces a suppression effect only in the vicinity of the attended feature.
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Figure 2.  Trial sequence and example participants’ responses in the color boundary pretest. (a) Schematic for 
the trial sequence. (b) Examples of individual participants’ frequency distributions of clicks on the wheel. Two 
participants’ data for each of the three experiments were shown.
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non-monotonic surround suppression effect for color values close to the attended one, and a feature-similarity 
gain effect for more dissimilar colors, consistent with the hybrid model above (Fig. 1c). Furthermore, the width 
of the suppressive surround coincided with the category boundaries of colors, which suggests a category-level 
sharpening effect to the attended color. Finally, we implemented a simple neural coding model to examine the 
underlying neural mechanisms of the observed attentional profile.

Results
Experiment 1.  In this experiment, the attention cue was a red color at the center of the participant’s red cat-
egory. The target was most frequently the cued color but also appeared in eight colors varying in 15° increments 
from ±15° to ±60° from the cued color. We compared detection performance under color cueing with the neutral 
condition to assess the modulation profile of color-based attention.

Category boundaries.  Figure 4a summarizes individual participants’ boundary profile for Experiment 1. The 
width of color strips represents the category width on the color wheel. There was a general consistency of the loca-
tions of the color boundaries across participants, with the degree of consistency varying for different boundaries. 
The variability (i.e., standard deviation) across the six boundaries ranged from 3.62° (for blue-purple boundary) 
to 12.59° (for orange-yellow boundary). Here we used a red cue that was the individual participant’s center color 
in the red category. The red category was relatively narrow, with a mean span of 34.9 degrees (SD = 8.6°). Thus, the 
target colors at ±15° offset from the cue would be the closest to the boundaries of red category.

Baselines and Cueing Effect.  Figure 5a depicts the average thresholds obtained from the staircase pretest and 
average performance across test colors in the neutral cue blocks (baseline) in the attention test sessions. The 
thresholding task worked fairly well to equate performance across test colors in the neutral blocks; the average 
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Figure 3.  Trial sequence for the staircase and attention test in Experiment 1. The color dots are enlarged 
compared to the actual stimulus for illustration purpose.
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Figure 4.  Individual category boundaries for all six color categories. Each row represents one participant’s 
boundaries. The labeling colors are chosen from the middle points of categories. The width of each color 
corresponds to the category width anchored by a participant on the color wheel. (a–c) Represent category 
boundaries for Experiment 1 (n = 10), 2 (n = 10), & 3 (n = 11) respectively.
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baseline accuracies for all test colors were within the ±5% of the desired 75% accuracy level. We then calculated 
a cueing effect for each test color by subtracting the baseline performance for that color from its performance in 
the condition with a red pre-cue.

As illustrated in Fig. 6a, the overall pattern shows an enhancement when the red cue and test color were the 
same (0° offset, “valid condition”), and suppressions when they were most different (±60°, “invalid conditions”). 
However, the cueing effects do not follow a monotonic function of offsets between 0° and ±60°. Importantly, 
suppressions also emerged at the immediate neighbors (±15°) of the red cue, but not at further colors (±30° and 
±45°). To better characterize the shape of the cueing effects, we performed two further analyses.

Combined cueing effect. To further summarize the cueing effect, we averaged the participant-level cueing effect 
for each pair of +/− cue-target offset (Fig. 7a), and then conducted one-sample t-tests against zero to assess atten-
tional enhancement and suppression. We used Bonferroni corrected alpha (at 0.01 level) for statistical inferences 
due to multiple comparisons. There was a significant enhancement at 0° cue-target offset, t(9) = 8.38, p = 1.5 × 
10−5, Cohen’s d = 2.65, CI = (0.056,0.097) a significant suppression at 15° offset, t(9) = −3.38, p = 0.0081, d = 1.07, 
CI = (−0.065, −0.013). However, the cueing effect was non-significant at both 30° (t(9) = 0.62, p = 0.55) and 45° 
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Figure 5.  Threshold and baselines performances. (a) For the red color set (Exp. 1, n = 10), the bar graph 
represents subjects’ average baseline performances under neutral cueing condition. The dots above the 
bar graph represents average thresholds obtained from the staircase test. (b,c) Shows the average baseline 
performances and average thresholds for green (Exp. 2, n = 10) and blue (Exp. 3, n = 11) color set respectively. 
Error bars represent standard error of the mean.

Figure 6.  Results for Experiment 1 (n = 10), 2 (n = 10) & 3 (n = 11). (a,c,e) Average cueing effect for all test 
colors measured as performance difference between color cue and neutral condition for Experiment 1, 2, & 3 
respectively. (b,d,f). Best fitting non-monotonic Mexican hat function and monotonic Gaussian function to 
the observed data. The shaded areas in all six panels represent average category boundaries ± 1 SD. Error bars 
represent standard error of the mean.
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(t(9) = 0.91, p = 0.39) offsets. At the maximum 60° offset, there again was a significant suppression, t(9) = −7.60, 
p = 3.4 × 10−5, d = 2.4, CI = (−0.088, −0.047).

Model Comparison: As a complementary analysis to the significance tests above, we also fitted both the mono-
tonic (i.e., Gaussian) model and the non-monotonic (i.e., Mexican-hat) model to the average cueing effects (See 
Fig. 6b). For this analysis, the largest offsets that we included were those showing an immediate rebound in cueing 
effect (±30°) following suppressions. Our general approach was to exclude data points outside of the immediate 
rebound as these points were not part of the surround suppression (see Fig. 1c). In addition, our previous work 
suggests that feature-similarity gain suppression can occur at 60° offset16. Thus, for the model fitting, we excluded 
±45° and ±60°. Within the range between −30° to +30° offsets, the Mexican hat model (R2 = 0.94) is favored by 
a Bayes factor of 21.73 over the Gaussian model (R2 = 0.85), which constitutes strong evidence25 for the Mexican 
hat model. Similarly, the AIC evidence also supported the Mexican hat model as 26.03 times more likely than 
the Gaussian model. We also conducted similar model comparisons for individual participants’ data and found 
that the Mexican hat model was favored in 7 out of 10 participants based on both AIC and BIC model evidence.

Discussion.  In this experiment, we measured individual participant’s category boundaries and selected 
test colors (i.e., cue and target colors) based on the center of each participant’s red category. By manipulating 
the cue-target offset at a fine scale (every 15 ° on the color wheel), we found a significant suppression effect 
at the immediate neighbors (±15°) of the cued color, but not at its further neighbors (±30° and ±45°). These 
results support a surround suppression model of attentional modulation when attending to a color. However, 
at a larger scale there was also a significant suppression at ±60° offset, which is consistent with a feature-
similarity gain modulation when colors become more dissimilar16. Thus, the overall pattern of results shows 

Figure 7.  Combined cueing effects. For each of the three color sets (i.e., red, green, and blue), we averaged the 
cueing effect across pairs of positive and negative offsets. Panels (a–c) show results from Experiments 1 (n = 10), 
2 (n = 10), and 3 (n = 11), respectively. The shaded areas represent mean boundaries ± 1 SD. As the boundaries 
width increased, the suppressive surround also increased and overlapped with the boundary areas. Error bars 
represent standard error of the mean.
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both effects: surround suppression and feature-similarity gain (Fig. 1c). Interestingly, we found that the 
suppressive surround coincided with the category boundaries (see Fig. 6b, shaded area represents the average 
boundaries ±1 SD), suggesting a potential link between surround suppression and categorical color perception.

Experiment 2.  In this experiment, we further examined the attentional profile for colors and the relationship 
between color categories and surround suppression, by testing a different color category. The boundary pretest 
results in Experiment 1 showed that the green category was roughly twice as wide as the red category, and thus 
we chose to test the green category to investigate whether the suppressive zone remained at a constant extent or 
scaled with the width of the category. The methods were identical to those in Experiment 1, except the colors were 
selected around individual participant’s green category.

Category boundaries.  We found generally consistent boundary placements across participants (Fig. 4b). The 
variability (i.e., standard deviation) of individual participants’ boundaries ranged from 4.74°(blue-purple) to 
11.59°(orange-yellow). The center point of each individual participant’s green category was chosen as the color 
cue. The green category had an average width of 62.9° (SD = 15.95°), with its boundaries closest to target colors 
at ±30° offset.

Baselines and Cueing Effect.  Figure 5b depicts the average thresholds from the pretest and baseline performance 
(in neutral cue blocks) in the attention test sessions. The average baseline accuracies for all test colors were within 
±7.5% range of the desired 75% accuracy level.

Figure 6c shows the overall cueing effect for the green category. There was both an enhancement at 0° and a 
suppression at +60°, with a less pronounced suppression at −60°. Moreover, the cuing effect was non-monotonic; 
suppressions emerged at ±30° but rebounded at ±45°. To verify the non-monotonic pattern, we conducted two 
further analyses.

Combined cueing effect: We averaged the cueing effect along the positive and negative offsets to further sum-
marize the cueing effect (Fig. 7b). We found a significant enhancement at cue-target offsets of 0°, t(9) = 5.18, 
p = 5.8 × 10−4, Cohen’s d = 1.64, CI = (0.05, 0.13), and 15°, t(9) = 4.45, p = 0.0016, d = 1.41, CI = (0.021,0.064). 
For the 30° offset, there was a significant suppression, t(9) = −5.41, p = 4.3 × 10−4, d = 1.71, CI = (−0.096, 
−0.04), but not at 45° offset, t(9) = −0.38, p = 0.71. At the larger offset of 60°, the suppression again reached 
significance, t(9) = −4.08, p = 0.0028, d = 1.3, CI = (−0.092, −0.026).

Model comparison: Following the same model fitting procedure as in Experiment 1, we excluded cue-target 
offset at ±60° because they were outside of the immediate rebound at ±45°. As shown in Fig. 6d, the Mexican hat 
model (R2 = 0.84) was favored with a Bayes factor of 20.48 over the Gaussian model (R2 = 0.71), again constituting 
strong evidence for the Mexican hat model. Similarly, the AIC model evidence favored the Mexican hat model 
21.22 times over the Gaussian model. For individual participants, the Mexican hat model was favored in 9 out of 
10 participants based on both AIC and BIC model evidence. An overlap was also observed between the suppres-
sive surround and the boundary areas of the green category (shaded regions).

Discussion.  Results in Experiment 2 replicated the findings in Experiment 1 and provided further 
evidence that attention to a color elicits suppression at neighboring colors with a further rebound, i.e., the 
surround suppression effect. Meanwhile, at a larger scale (e.g., at 60° offsets), our current findings are again 
consistent with feature similarity gain modulation16 (Fig. 1c). Furthermore, in the current experiment, 
we intentionally selected a color category (i.e., green) that was wider than the red category tested in 
Experiment 1. As the category width increased, we also found an increase in the width of the suppressive 
surround; in both experiments there was an overlap between the area of surround suppression and category 
boundaries. Thus, the suppressive zone does not have a fixed width but tracked the color category’s boundary, 
suggesting at a relationship between suppression mechanism and the perception of color categories.

Experiment 3.  In this experiment, we aimed to further verify the potential link between surround suppres-
sion and color category boundaries. We tested a third color set around the blue category that spanned the largest 
range compared to the red and green categories. If attention suppresses boundary colors, we should find a further 
increase in the suppressive surround width for the blue color set compared to previous color sets.

Category boundaries.  Like the two previous experiments, there was a general consistency among participants 
and also variability among individuals’ color boundaries (Fig. 4c). The smallest boundary variability was found 
in blue-purple (SD = 5.13°), while the largest was found in purple-red (SD = 14.02°). The cue color was selected 
as the center point of each individual participant’s blue category. The blue category had the largest average width, 
which spanned 102.9° (SD = 6.73°) on the color wheel. Thus, the target colors at ±45° would be located closest to 
the category boundaries.

Baselines and Cueing Effect.  Figure 5c depicts the average thresholds from the pretest and baseline performance 
with the neutral cue in the attention test sessions. The baseline accuracies for all test colors were within ±6.2% 
range of the desired 75% accuracy level.

The overall cueing effect is shown in Fig. 6e. Similar to the previous two experiments, there was a significant 
enhancement at 0° offset and an overall non-monotonic pattern such that colors at ±45° had the lowest accuracy, 
and a further rebound was observed at larger offset (±60°). However, this pattern was more pronounced around 
the green-blue boundary than the blue-purple boundary. To verify the non-monotonic pattern, we conducted 
two further analyses.
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Combined cueing effect: Following the same procedure in the Experiment 1 & 2, we averaged the cueing effect 
along the positive and negative color offsets (Fig. 7c), and found a significant enhancement for both 0° and 15° 
offsets (t(10) = 4.93, p = 6 × 10−4, Cohen’s d = 1.49, CI = (0.045, 0.12), and t(10) = 3.89, p = 0.003, d = 1.17, 
CI = (0.02, 0.08) respectively). Furthermore, only colors at 45°, t(10) = −3.77, p = 0.0036, d = 1.14, CI = (−0.084, 
−0.022), but not 60° (t(10) = −1.11, p = 0.29), were significantly suppressed.

Model comparison: Given the suppressive surround was observed at ±45°, we fitted both the non-monotonic 
and monotonic function to all data points (i.e., including ±60° offsets) to include the rebound part of the profile 
(Fig. 6f). The model comparison result provided positive support25 for the Mexican hat model (R2 = 0.79) over the 
Gaussian model (R2 = 0.76) with a Bayes factor of 4.85 based on BIC evidence, and with a likelihood ratio of 4.41 
with AIC evidence. For individual participants, the Mexican hat model was favored by 9 and 8 (out of 11) partici-
pants based on BIC and AIC evidence, respectively. Importantly, the suppressive surround once again scaled with 
color category width and emerged near the boundaries of blue category.

Discussion.  Once again, we found positive support for the Mexican hat model in a new set of colors around 
the blue category. Somewhat unexpectedly, the surround suppression effect in the current experiment is asym-
metric: we found a stronger suppression effect around green-blue category than the blue-purple boundary. It 
is not clear why this occurred, but we note that of all the color categories we tested here, the blue/purple cate-
gory might be the most qualitatively distinct, which may have impacted the exact profile of surround suppres-
sion. Overall, our model comparison and the analysis of the combined cueing effect further verified that such 
non-monotonic pattern reflected genuine suppression effects. In addition, as the test category’s width increased, 
we again found a close mapping between the suppressive surround and category width. Taken as a whole, the 
surround suppression effect and its coupling to the category boundary are thus robust findings that are consistent 
across all three experiments.

Note we did not find a strong feature-similarity effect in this experiment. This is likely due to the limited 
range of the test colors, as the most dissimilar colors were close to the category boundaries and thus still on the 
rebound part of the suppressive surround. A feature similarity effect has been observed for larger color offsets in 
our previous study16.

General Discussion
We systematically manipulated feature similarity for three sets of colors to study the profile of FBA and to 
examine its relationship with categorical color perception. Our results showed that the attentional cueing effect 
was a non-monotonic function of cue-target similarity, giving rise to a surround suppression profile of FBA. 
Importantly, we also found that the suppressive surround consistently tracked the location of category bounda-
ries. These findings suggest that FBA may enhance color selectivity at the category level by suppressing similar 
but different colors near the boundaries. When colors were most dissimilar (60°), our results from the first two 
experiments also showed further suppression, which is consistent with the feature-similarity gain model4,5. Taken 
together, we conclude that both surround suppression and feature-similarity gain jointly modulate FBA’s profile, 
but at different similarity scales (Fig. 1c).

Two earlier studies have also reported evidence for a surround suppression effect, one for color and one for 
orientation18,19. However, we believe our methods improve on those designs, making our replication of those 
findings particularly compelling. First, the methods in Stormer & Alvarez’s study seems overly complex in that 
participants were asked to attend simultaneously to two colors with varied similarity19; thus, the effect may have 
been due to other factors associated with the need to hold and attend to two colors simultaneously. Second, 
participants in Tombu & Tsotsos’ study were asked to judge whether oriented stripes were straight or jagged18, 
which in principle does not require orientation information. Furthermore, their effect was only observed for the 
jagged stripes for unknown reasons. Third, and critically, neither study measured a neutral baseline to evaluate 
whether there is a true suppression or simply less enhancement. Lack of a proper baseline could also lead to 
inaccurate characterization of the shape of attentional profile. For example, Stormer & Alvarez (2014) showed an 
almost complete rebound at the largest cue-target distance19 (similar to Fig. 1b), whereas we never observed such 
a complete rebound.

Building on these previous studies, we aimed to better investigate the attentional profile for color-based 
attention. To reduce complexity, we directly manipulated the signal strength through color coherence and cued 
participants to attend to a single color. To quantify attentional effect, we established baseline performance by 
equating perceptual differences across the test colors. We also used a post-cue to reduce response uncertainty, 
so that performance should reflect FBA’s modulation on perception instead of post-perceptual processes26,27. 
While our finding of surround suppression is generally consistent with initial studies reporting this effect, there 
are also some important differences. First and foremost, our results show a hybrid modulation of both surround 
suppression and feature-similarity gain on different scales, which reconciles previous literature showing the two 
qualitatively different attentional profiles in separate studies16–19. Second, we discovered that the suppressive 
zone coincides with the color category boundary, which has not been considered in previous studies. Stormer & 
Alvarez19 selected random colors and reported a surround suppression effect at 30°, whereas our suppressive zone 
varied according to the cued color category. We believe that their finding could be due to averaging of variable 
suppressive surround widths across different categories.

In general, attentional suppression serves to enhance signal-to-noise ratio by excluding irrelevant features. 
The FSG-induced suppression can exclude very dissimilar distracters, whereas surround suppression can exclude 
distracters that are similar and thus easily confusable with the target feature. In the case of color, our observation 
of the overlap between suppressive zone and category boundaries further suggests that the latter effect is equiva-
lent to a sharpening effect at the category level. In other words, color categories might be the natural substrate to 
instantiate surround suppression. We thus prose that both types of suppression would facilitate efficient selection 
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of a target feature, depending on its similarity to distracter features. The category-based surround suppression 
effect also supports our initial conjecture based on the finding that categorical difference facilitates search for 
linearly non-separable colors23. It is conceivable that this effect in visual search can be achieved by a sharpening 
effect at the category level.

Finally, we would like to point out that stimulus competition is likely necessary in order for the suppression 
effects to emerge. Indeed, a number of early studies found that FSG effects are only present when there is stimulus 
competition14,15,28. Likewise, both our study and previous ones on surround suppression18,19 mixed task-irrelevant 
features with target features to introduce stimulus competition. This observation is generally consistent with the 
biased-competition framework of attention29, which proposes that a key function of attentional selection is to 
resolve stimulus competition. Our results further extend and refine the framework by specifying the profile of 
such biased influence in feature-based selection.

What are the possible underlying mechanisms that generate our observed attentional profile and in particular, 
the surround suppression effect? While feature-similarity gain modulation has been directly observed in sensory 
neurons’ responses, a neuronal correlate of surround suppression has not been reported, and indeed, is apparently 
absent in single-unit’s response4,5. In the absence of direct physiological data, computational models can provide 
useful insights on the underlying mechanism.

One possibility is the selective tuning (ST) model, a multi-layered neural network that emulates the hierar-
chical visual pathway10,11. The original ST model was proposed to accommodate visual processing in the spatial 
domain (e.g., crowding, spatial resolution) and follows a hierarchical structure with increasing receptive field 
sizes at higher levels of the network. Critically, the model assumes a top-down feedback modulation which pro-
gresses backward along the visual hierarchy and inhibits units less tuned to the attended location in earlier layers. 
This top-down influence can produce spatial surround suppression in early units, and is able to account for find-
ings in the spatial domain6–9. However, such an account might be less plausible in the feature domain given the 
lack of parallel architecture in spatial and feature processing. In the case of color, high-level neurons have been 
reported to exhibit quite narrow tuning to hues30,31. Thus, if the ST model relies on the general architecture of 
responses pooling across the hierarchical levels, it might not easily accommodate feature-based surround sup-
pression. Furthermore, it is also not obvious how the ST model can account for our observed association between 
category boundary and surround suppression.

Here we consider an alternative modeling approach in the framework of population neural coding and 
read-out with Bayesian estimation32–35. We aimed to build a simple model under known physiological constraints 
(for model details, see the Supplementary Materials). The model contains a bank of color-tuned neurons spanning 
the space on the color wheel (Fig. 8a). We simulated individual trials of our 2-IFC task by generating two random 
dot color stimuli on each trial and obtaining population neural responses for each stimulus. Similar to the 2-IFC 
task in human participants, the model based its decision by choosing the interval that contained a stronger color 
signal. We first simulated the model under a neutral condition without any attentional modulation. To check the 
model’s performance, we varied the coherence of the color signal and observed a better model performance with 
higher color coherence, similar to human participants (see Supplementary Fig. S1). For the main simulations, we 
used a fixed color coherence value (0.1) as it produces an intermediate performance level, to emulate the thresh-
olding procedure in human participants.

We then simulated the model under the attention condition and evaluated how different neural-level modula-
tions impact behavioral performance in the 2-IFC task. In these simulations, we assumed the attended color was 
at 0°. We first considered a feature-similarity gain modulation, where the neuronal gain is a monotonic function 
of the similarity between the cued color and a neuron’s preferred color (Fig. 8b). When we systematically varied 
the input stimuli to have different color offsets from 0°, we obtained a monotonic performance profile (Fig. 8d). 
This result indicates that a pure FSG mechanism cannot produce surround suppression and hence implies the 
existence of additional neural modulations. Here we consider a physiologically plausible mechanism – shift of 
neuronal tuning toward the attended feature. Previous studies have reported neuronal tuning shifts toward the 
attended feature during FBA36,37. Although tuning shift is generally interpreted as a mechanism to enhance the 
representation of task-relevant feature (i.e., matched filter), its connection to surround suppression has not been 
considered. We implemented tuning shift in our model along with FSG modulation (Fig. 8e). We assumed that 
the tuning shift is concentrated around the category boundary, such that within the category the shift was a con-
stant percentage of the distance between the cued color and the neuron’s preferred color, and it was flanked by 
a decline outside the cue’s category (Fig. 8f). Under this scenario, the model performance exhibited a surround 
suppression effect at the category boundaries as well as further suppression for more dissimilar colors (Fig. 8g). 
We provide more in-depth explanations of the model’s behavior based on modulations of population neural 
responses in the Supplementary Material (see Supplementary Figs S2 and S3). Importantly, when the category 
boundary width changes, the location of suppressive surround shifts, such that it follows the category boundary, 
similar to our psychophysical findings. Thus, this simple model assumption of the extent of tuning shift can pro-
duce our observed association between surround suppression and color category.

We also explored other possible neuronal modulations to generate surround suppression. For example, we 
were able to produce the surround suppression effect by assuming attention sharpened the tuning curves of 
individual neurons within the category (but not outside the category). However, given there is no physiologi-
cal evidence of sharpening of neuronal tuning curves, we consider it as a less likely candidate. Thus, based on 
our current model, we postulate that neuronal tuning shift is a possible mechanism for surround suppression. 
Critically, the modeling exercise showed that one does not need to postulate a Mexican hat modulation on indi-
vidual neuron’s tuning curve to obtain a behavioral surround suppression effect. Our model’s performance is due 
to a simple shift in individual neuron’s tuning curves, which, at the population level, is equivalent to a Mexican hat 
modulation. We thus suggest that the category structure determines the pattern of tuning shift, which naturally 
produces surround suppression at the boundary.
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Lastly, a natural question that arises from this work is whether language plays a role in our results. Specifically, 
because humans have verbal labels for different colors, is it possible that the category-based surround suppression 
effect is due to linguistic factors? Although this is a possibility, we think this is unlikely for the following reasons. 
First, it is still controversial whether language plays a role in the perception of color categories, with evidence 
both for38, and against the role of language39,40. Second, there are features in our data that do not easily fit with a 
linguistic interpretation. For example, we found a graded effect of attention within a category (Fig. 5b,c, smaller 
cueing effect for uncued green and blue colors). If linguistic concepts played a primary role, we might expect a 
fairly sharp category boundary without much variation within a category. Further research is necessary to exam-
ine the role of language in shaping the profile of color-based attention.

Conclusion
We found both a surround suppression modulation and a feature-similarity gain modulation of FBA. On a large scale, 
attention to a color sharpens perceptual feature selectivity by suppressing most dissimilar features. On a finer scale, 
attention can also further enhance our perception by suppressing similar but different colors near category bounda-
ries – a sharpening effect at the category level. We further demonstrated with model simulations that this association 
between suppressive surround and color category can be explained by shifting in neuronal tuning that obeys the 
categorical structure. Although our model is likely over-simplified and incomplete, the linkage between shifts of 
neuronal tuning and surround suppression is highly intriguing and could be interesting avenue for future research.

Methods
Participants.  All participants (Exp. 1, N = 10; Exp. 2, N = 10; Exp. 3, N = 11) gave informed consent and were 
compensated at the rate of $10 per hour. All participants had normal or corrected-to-normal visual acuity and 
reported normal color vision, which was verified with the Dvorine Pseudo-Isochromatic Plates41. Experimental 
protocols were approved by the Institutional Review Board at Michigan State University. All experiments were 
performed in accordance with approved guidelines and regulations.
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Figure 8.  A neural model for surround suppression. (a) Tuning curves for a subset of simulated neurons. Green 
curves represent neurons within a color category (±40°). (b) Tuning curves under a pure FSG modulation. (c) 
Tuning shift function under the pure FSG condition, which is always zero. (d) Behavioral cueing effect due to 
FSG (black dots) monotonically decreases and is fitted with a linear function (gray lines). (e) Tuning curves 
under a hybrid modulation of both FSG and tuning shift. (f) Tuning shift function under the hybrid model. (g) 
Behavioral cueing effect in the hybrid model exhibits a non-monotonic profile that is better fitted by a Mexican-
hat function (black solid line) than a Gaussian function (dark gray solid line). Once outside the suppressive 
zone, the cueing effect further decreases (light gray solid line).
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Apparatus.  The stimuli were generated using Matlab (MathWorks, Natick, MA) and MGL (http://gru.stan-
ford.edu/mgl) and presented on a 21-in CRT monitor (1024 × 768 pixels, 100-HZ refresh rate) at a viewing dis-
tance of 69 cm. The monitor was calibrated using an I1 Pro spectrophotometer (Xrite, Grand Rapids, MI). We 
used the calibration procedure to linearize the luminance (gamma correction) and convert color coordinates in 
CIE L*a*b* color space to monitor RGB values with a white point measured as the display’s white background42.

Stimuli.  During the color boundary pretest, an annulus color wheel (inner radius = 9°, outer radius = 10°) was 
present at the center of the screen on a black background. The wheel consisted of 180 evenly-spaced hues from 
a circle in CIE L*a*b color space (radius = 91, luminance = 75, a = 23, b = 25). Each hue on the wheel spanned 
2°. Names of color categories were displayed at the display center throughout the test. Category boundaries were 
labeled by black line markers (10-pixel wide) upon participant’s response (see below).

The stimuli in the main task were two static arrays of colored dots as an analog to the classic random dot 
motion cinematogram43. Each array had a total of 240 dots (radius = 0.1°), which were randomly positioned 
within a circular region (inner radius = 1°, outer radius = 5 °) centered on the screen. In the noise array, all dots 
had random and different colors sampled from the wheel. In the target array, a proportion of dots were drawn in 
the same color, whereas the rest were assigned colors randomly selected from the color wheel. The proportion of 
the same colored dots is referred to as color coherence, and these dots constitute the signal for the detection task.

Task and procedure.  Each participant performed three tasks over multiple days. They first performed a 
color boundary pretest, which guided stimulus color selection (see below). They then performed a baseline color 
coherence pretest to determine the color coherence threshold for each color used in the main task. After success-
fully completing the two pretests, participants performed the main attention test, which consisted of interleaved 
neutral pre-cue (i.e., baseline) and color pre-cue blocks to test FBA’s modulation profile. The three tasks are 
described in more detail below.

Color boundary pretest.  We measured category boundaries for each individual participant. Figure 2a 
shows an example trial sequence of the pretest. The color wheel and the names of six basic color categories (i.e., 
blue, purple, red, orange, yellow, and green) were always present on the screen (to avoid memory-related effects). 
Participants were instructed to locate the boundaries separating each of the six colors using mouse clicks. Left 
mouse clicks placed markers at the current cursor position and right clicks cancelled the previously placed 
boundary. Participants pressed the space bar after having located all six boundaries on the color wheel. Between 
trials, the color wheel randomly rotated clockwise or counter-clockwise (up to ±12 degrees) to exclude spatial 
location as cues for setting the boundaries.

Participants completed 25 trials of the pre-test (6 clicks per trial). They were told to be as accurate as possible 
and were given unlimited time to respond. On average, participants spent 20 minutes on this pretest. Based on 
each participant’s boundary data we defined 9 test colors. The category center (0° offset) was used as the color for 
attentional cueing (Exp 1: Red, Exp 2: Green; Exp 3: Blue), whereas 8 other colors (±15°, ±30°, ±45° and ±60° 
offset from the category center) were used as possible target colors (see Analysis below for details on how the 
colors were selected).

Baseline coherence pretest.  In a separate session, we measured color coherence thresholds for each of 
the 9 test colors for each participant, using a QUEST staircase method targeting 75% accuracy44. As shown in 
Fig. 3, each trial began with the onset of a fixation cross at the center for 300 ms, followed by a neutral precue (i.e., 
fixation cross) for 500 ms. After a 300 ms interstimulus interval (ISI), participants were presented the first dot 
array (300 ms), followed by a 400 ms ISI. Then, the second dot array appeared for 300 ms before another 200 ms 
ISI, followed by the post-cue (300 ms). After the post-cue disappeared, participants reported whether the first 
or second interval contained the target (the array with a coherent color) by pressing one of the two keys on the 
keyboard, which was followed by an inter-trial interval (ITI) of a blank screen for 700 ms. Each trial was randomly 
assigned to one of the nine staircases, such that all staircases were randomly interleaved to equate practice effect 
on threshold estimation.

We informed participants that the post-cue indicated the target color, in order to eliminate decision uncer-
tainty26,27. All participants were given unlimited time for response. A feedback tone was given on incorrect 
response. Thresholds of the nine tests colors were estimated through nine staircases (72 trials per staircase), which 
consisted of 6 blocks of 108 trials.

Attention (Main task).  We measured the effect of FBA on color detection with a color cue. Participants were 
tested with the same 2-IFC task as in the staircase test under neutral cue (i.e., fixation cross) blocks or color cue 
blocks. Coherence for each test color was determined by the baseline coherence test (see above). Presenting the 
coherence at these individually determined threshold coherence levels should have made performance relatively 
equal across all test colors in the neutral cue conditions. For neutral cue blocks, target colors were randomly 
selected from nine possible colors on each trial. For color cue blocks, a colored dot (radius = 0.2 dva) with a hue 
at the middle point of individual participant’s test category was presented at the screen center to orient FBA. The 
target color matched the cue in half of the trials (“valid condition”) so that the cue was predictive, and in the other 
half trials, the target color was randomly assigned to be one of the other eight test colors (“invalid condition”). The 
post-cue always had the same color as the target.

In three separate sessions, participants completed 12 neutral cue blocks of 54 trials for a total of 648 neutral 
trials and 12 color cue blocks of 112 trials for a total of 1344 color cued trials. This yielded 672 trials for the valid 
condition and 84 trials per test color for the invalid condition.
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Analysis: Boundary estimation and test color generation.  We used frequency of clicks (see Fig. 2b) 
on the color wheel to estimate individual participant’s color boundaries. For each of the six frequency distribu-
tions of a participant, we fitted a von Mises distribution and computed the mean as the boundary location45. Each 
individual’s own estimated boundaries were used to generate the set of test colors for the main task. The color of 
the attentional cue was set at the middle of the color category, defined as the midpoint between the two bounda-
ries for that category. The test colors were sampled at 0°, ±15°, ±30°, ±45° and ±60° away from the color of the 
attentional cue on the color wheel.

Analysis: Model fitting and comparison.  The cueing effect was calculated as the difference in accuracy 
(measured as proportion of correct responses) between the color cue condition and neutral cue condition. We 
fitted both a monotonic model and a non-monotonic model to the average cueing effect using non-linear regres-
sion. The data range for model fitting was chosen such that it included one data point from the rebound just 
outside the suppressive surround. Because the suppressive surround was found at different cue-target offsets in 
different experiments, the fit range also varied accordingly. The monotonic model was implemented as a Gaussian 
function, which had three free parameters:
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where Pc is the cueing effect, x is the cue-target offset, w, A, and b are the free parameters controlling the shape of 
the function. The non-monotonic model was implemented as a negative second derivative of a Gaussian function, 
which has a Mexican hat shape:
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where Pc is the cueing effect, x is the cue-target offset, w and A are the two free parameters controlling the model’s 
shape. Both Bayesian information criterion46 (BIC) and Akaike information criterion47 (AIC) were computed as 
evidence supporting each model. BIC was computed with the assumption of a normal error distribution:
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where n is the number of observations, k is the number of free parameters, and RSS is residual sum of 
squares25. We calculated the Bayes factor (BF) of the Mexican hat model over the Gaussian model based on BIC 
approximation48:
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where BICG is for the Gaussian model, BICM is for the Mexican hat model. AIC was also calculated with the 
assumption of a normal error distribution49:
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Where n is the number of observations, k is the number of free parameters, and RSS is residual sum of squares. 
To compare the models, we calculated the likelihood ratio of the Mexican hat model over the Gaussian model49:
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where AICG is for the Gaussian model, AICM is for the Mexican hat model.

Data Availability
The data that support the finding of this study are available from the corresponding author upon request.
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