Skip to main content
. 2019 Feb 5;9:1449. doi: 10.1038/s41598-019-38595-7

Table 2.

Summary of statistic results using model selection analysis.

Models Coefficients p-value AICc RMSE (95%) Error factor
Qs = c0Qac1 c0 89.211 5.93E-03*** 22.49 3.27 26.31
c1 1.004 2.13E-06***
Qs = c0Qac1Hc2 c0 30.220 8.87E-03*** 12.93 2.55 12.80
c1 0.505 1.05E-02**
c2 2.249 1.31E-03***
Qs = c0Qac(P1)Hc(P3) c0 25.946 2.16E-02** 10.43 2.23 9.29
c(P1(lo)) 0.721 5.65E-03***
c(P1(hi)) 0.622 2.49E-03***
c(P3(cl)) 1.950 1.80E-03***
c(P3(op)) 1.396 3.17E-02**

p-values quality is illustrated using asterisk (***Excellent; **very good). The AICc stands for corrected Akaike Information Criterion, the RMSE is given as the natural logarithm of the Root Mean Square Error for a 95% prediction interval and the error factor is calculated as the exponential of the RMSE.