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Abstract

In the past two decades, mutations in multiple genes have been linked to autosomal dominant or 

recessive forms of monogenic Parkinson’s disease (PD). Collectively, these monogenic (often 

familial) cases account for less than 5% of all PD, the majority being apparently sporadic cases. 

More recently, large-scale genome-wide association studies have identified over 40 loci that 

increase risk of PD. Importantly, there is overlap between monogenic and sporadic PD genes, 

particularly for the loci that contain the genes SNCA and LRRK2, which are mutated in 

monogenic dominant PD. There have also been reports of idiopathic PD cases with heterozygous 

variants in autosomal recessive genes suggesting that these mutations may increase risk of PD. 

These observations suggest that monogenic and idiopathic PD may have shared pathogenic 

mechanisms. Here, we focus mainly on the role of monogenic PD genes that represent 

pleomorphic risk loci for idiopathic PD. We also discuss the functional mechanisms that may play 

a role in increasing risk of disease in both monogenic and idiopathic forms.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects multiple 

brain regions, resulting in a syndrome that includes symptoms related to neurological control 

of movement as well as other brain functions including cognition (Langston, 2006). PD is 

both common and age-related, being rare before the age of 50, affecting about 1% of the 

population worldwide over the age of 65 years and about 4–5% of the population over 85 

years old (de Lau and Breteler, 2006). Since aging remains the largest risk factor for 

developing PD, the economic and social impact resulting from PD will continue to rise with 

the overall longevity of many populations (Collier et al., 2011; Driver et al., 2009).
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Historically, other than aging there have been relatively few widely confirmed causal factors 

that influence lifetime risk of PD, making this a classic sporadic disorder. However, genetic 

linkage analysis in families, has identified several underlying rare but penetrant pathogenic 

mutations. To date, 19 PARK loci have been designated for different genetic forms of PD 

and the underlying gene mutation has been identified in 11 of them, with some uncertainty 

about the accuracy of assignment of several genes in four loci (Hernandez et al., 2016). 

Although these discoveries have provided important insights into the pathogenesis of PD, 

the cumulative set of genes only explain up to 5% of all PD cases (Klein and Westenberger, 

2012). Therefore, the remaining 95% of PD remain apparently sporadic.

Large genome-wide association studies (GWAS) of PD cases have identified common risk 

variants that have modest influence on lifetime risk of PD. The first reasonably well-

powered PD GWAS identified several loci that contain common variation associated with 

PD risk (Simón-Sánchez et al., 2009; Satake et al., 2009). Subsequent meta-analyses have 

confirmed these associations (International Parkinson Disease Genomics Consortium et al., 

2011; Nalls et al., 2014) and the latest GWAS, which consists of 37,688 PD cases, 18,618 

PD proxies and over 1,400,000 controls, has robustly identified association signals in 92 loci 

(Nalls et al., 2018). What is particularly interesting in PD, but not generally true in other 

neurodegenerative diseases, is that the genes that cause disease in families are also 

represented in the GWAS loci. There are multiple examples of these pleomorphic risk loci, 

so called because they harbor variants that, likely through slightly different mechanisms, 

impact both inherited and sporadic PD.

Here, we provide an overview and interpretation of how monogenic genes may play roles in 

sporadic PD. We will focus mainly on genes that contain deleterious and highly penetrant 

causal mutations, but also harbor risk variants for idiopathic disease. These genes are 

particularly important because their presence implies that there are functional pathogenic 

links between monogenic and idiopathic PD, which in turn has implications for 

understanding and treating this disorder.

SNCA links protein deposition and genetic risk of PD

The first definitive genetic cause of PD was the discovery of a missense mutation (p.A53T) 

in SNCA (PARK1) that was linked to disease in a large family with an autosomal dominant 

pattern of inheritance (Polymeropoulos et al., 1997). Soon after being linked to monogenic 

forms of PD, α-synuclein was also identified as the primary component of Lewy Bodies and 

the major pathological hallmark of PD (Spillantini et al., 1997). Since its initial discovery, 

several other SNCA missense point mutations have been described (p.A30P, p.E46K, 

p.G51D, p.A53E), all of which are located in the N-terminal region of the protein that 

normally folds into a helical conformation to bind to neuronal synaptic membranes (Krüger 

et al., 1998; Zarranz et al., 2004; Lesage et al., 2013; Pasanen et al., 2014). In addition to 

these point mutations, duplications and triplications of the SNCA locus also cause inherited 

PD (Ibáñez et al., 2004; Chartier-Harlin et al., 2004; Singleton, 2003). Interestingly, 

individuals carrying triplications present with a more severe and aggressive phenotype than 

cases with duplications, which are more similar to idiopathic PD (Fuchs et al., 2007), 

suggesting that SNCA dosage is important in disease pathogenesis.
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The SNCA locus was first implicated as a common genetic risk factor when polymorphisms 

in REP1, a variable repeat microsatellite sequence located upstream of the SNCA promoter, 

were associated with idiopathic PD (Maraganore et al., 2006). Subsequently, at least three 

independent single nucleotide polymorphisms (SNPs) across the SNCA locus have now 

been associated with increased risk for PD by GWAS (Pihlstrøm et al. 2018; Simón-Sánchez 

et al., 2009; Nalls et al., 2014; Chang et al., 2017; Nalls et al., 2018). Additionally, a recent 

GWAS in Dementia with Lewy Bodies (DLB), a synucleinopathy with overlapping 

symptoms, identified only one of the three independent signals at the 5’ end of SNCA as 

contributing to disease risk (Guerreiro et al., 2018). These distinct patterns of associations 

with PD and DLB at the SNCA locus suggest that these variants have different effects on 

SNCA gene regulation.

While the SNCA locus harbors multiple types of genetic variation associated with PD risk, 

an important question is whether there is convergence of these variants on disease processes 

or whether each type of variation causes disease by different mechanisms (Nalls et al., 

2014). Several non-coding risk variants have been demonstrated to play a role in regulating 

SNCA expression levels in various model systems. For example, the SNCA-REP1 allele has 

been shown to increase human SNCA mRNA and protein levels in a transgenic mouse 

model (Cronin et al., 2009). Recently, a study employing a CRISPR/Cas9 strategy in human 

induced pluripotent stem cells (iPSCs), found that an intronic SNP in SNCA associated with 

PD by GWAS is located in an enhancer that contributes to the regulation of SNCA 
expression (Soldner et al., 2016). More recently, it was suggested that one of the lead SNPs 

from the PD GWAS is a major functional SNP and is predicted to act by increasing SNCA 

expression in the brain (Pihlstrøm et al. 2018). If we consider that inherited PD can be 

influenced by the number of copies of SNCA without coding variation, then we might 

expect that higher expression level of SNCA controlled by common genetic variants would 

influence sporadic PD risk. If this is true, then sporadic disease caused by common non-

coding variants may be a subtler form of the multiplication cases.

As opposed to variants that influence expression level, coding missense point mutations in 

SNCA have a variety of structural effects on the protein that include changes in the ratio of 

tetrameric to monomeric species, formation of oligomeric aggregates and loss of membrane 

binding. Which of these activities is critically important for neuronal damage in PD is not 

resolved, as each have been shown to cause cellular damage. However, as the main 

neuropathological and clinical phenotypes in point mutations and multiplication mutations 

overlap, it seems likely that there are some common mechanisms that underlie disease 

pathogenesis. However, the likelihood of cognitive impairment, psychosis and related 

phenotypes in SNCA mutation carriers correlates with the type of the mutation. Missense 

mutation carriers are least likely to display these non-motor phenotypes while individuals 

with a locus triplication are most likely to exhibit severe forms of disease, and phenotypes in 

duplication carriers often lie in between these two ends of this range (Tambasco et al. 2016). 

Another, more specific example of common mechanisms between different types of PD is 

given by the LRRK2 locus that we will discuss below.
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Variation at the LRRK2 polymorphic risk locus nominates common 

mechanisms in sporadic and monogenic PD

Mutations in LRRK2 were first identified as the cause of PARK8-linked autosomal 

dominant PD in multiple families in 2004 (Paisán-Ruíz et al., 2004; Zimprich et al., 2004). 

By 2008, 46 point mutations, excluding those commonly found in controls, had been 

identified in LRRK2 (Biskup and West, 2009) and by 2010 the total number of exonic 

variants had expanded to 121 (Ross et al., 2011). Of these variants, only six, p.R1441C/G/H, 

p.Y1699C, p.G2019S and p.I2020T, have reliably been shown to segregate with disease in 

extended pedigrees (Paisán-Ruíz et al., 2004; Zimprich et al., 2004; Di Fonzo et al., 2005; 

Nichols et al., 2005). LRRK2 p.G2019S, the most common disease associated variant, 

causes monogenic PD with an age-and population-dependent incomplete penetrance. 

Penetrance estimates range from a lower bound of 16.7% in the Ashkenazi population to an 

upper estimate of 85% by the age of 80 (Lee et al., 2017; Kachergus et al., 2005). This lack 

of complete penetrance explains the relatively high number of apparently idiopathic cases 

that carry the p.G2019S allele, with particularly high frequencies in Ashkenazi Jewish and 

North African populations (Gilks et al., 2005; Ozelius et al., 2006; Lesage et al., 2005). 

Other LRRK2 mutations also show incomplete penetrance (Gosal et al., 2007; Ruiz-

Martínez et al., 2010), suggesting that while all of the variants initially found in families 

increase risk substantially, they do not invariably lead to disease.

Additional risk variants have been identified in other populations, with p.R1628P and 

p.G2385R being the most common in Asian populations (Funayama et al., 2007; Farrer et 

al., 2007; Tan et al., 2010; Gopalai et al., 2014). Interestingly, a protective variant of 

LRRK2, p.R1398H, has also been identified in multiple populations (Chen et al., 2011; 

Heckman et al., 2014). The effect size of these variants is quantitatively less than p.G2019S, 

having a less than two-fold effect on PD risk.

LRRK2 encodes a large multi-domain protein consisting of 2527 amino acids. Interestingly, 

all proven monogenic pathogenic mutations are clustered in the ROC (ras of complex 

proteins), COR (C-terminal of Roc) and kinase domains. Pathogenic mutations either work 

by decreasing the GTPase activity encoded by the ROC-COR tandem bidomain (West et al., 

2005; Lewis et al., 2007; Berwick et al., 2017) or by increasing the activity of kinase domain 

(West et al., 2005; Greggio et al., 2006; West et al., 2007). The protective allele p.R1398H is 

also located in the COR domain and has been shown to decrease kinase activity of the 

protein (Tan et al., 2010; Nixon-Abell et al., 2016). An exception to these general 

observations, is the risk variant p.G2385R which is located in a C-terminal WD40 domain 

and shows lower steady state protein levels and altered protein binding due to changes in 

protein structure (Rudenko et al., 2012; Ho et al., 2016; Rudenko et al., 2017; Carrion et al., 

2017). Speculatively, the lower steady state levels may help negate the pathogenic effects 

and explain why this variant is only risk factor rather than a more penetrant allele like 

p.G2019S.

Perhaps counter-intuitively, the lower GTPase activity of several pathogenic mutations is 

likely to enhance overall LRRK2 function as hydrolysis of GTP to form GDP is typically an 

inactivation event for GTPases. Thus, it has been postulated that while different mutations 
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have slightly different biochemical mechanisms, they rapidly converge with consistent 

direction of effect on immediate downstream biology (Cookson, 2010). This contention has 

received support from experiments arising from an understanding that LRRK2 interacts with 

several small RAB family GTPases. First, LRRK2 interacts with a specific RAB at the trans-

Golgi network (TGN) and all pathogenic mutations enhance the recruitment of LRRK2 to 

the TGN relative to WT, with the risk factor variant p.G2385R having an intermediate effect 

(Beilina et al., 2014). Second, LRRK2 can phosphorylate a series of RAB proteins and in 

cells (but not in vitro) all mutations enhance RAB phosphorylation (Steger et al., 2016). 

Therefore, all pathogenic coding mutations appear to have consistent effects on cellular 

events that are likely linked to intracellular membrane sorting, a well-defined function of 

RABs.

In early GWAS studies, the LRRK2 locus was noted to have potential association signal in 

both European and Japanese populations. However, the association did not pass correction 

for genome-wide significance in the European population and so was labeled as a suggestive 

association (Simón-Sánchez et al., 2009; Satake et al., 2009). As GWAS study sizes have 

significantly increased, it has become evident that there is a common non-coding risk variant 

at the LRRK2 locus (Nalls et al., 2014). The most recent meta-GWAS identified rs76904798 

as the most significantly associated SNP in the LRRK2 region with a p-value of 1.52×10−28 

(Nalls et al., 2018). It has been suggested that this specific PD risk variant is associated with 

higher expression of LRRK2 mRNA, being an example of an expression quantitative trait 

locus (eQTL) (Ryan et al., 2017). Although this result needs to be confirmed in additional 

sample series, it suggests that non-coding risk factor variants act in the same direction as 

pathogenic alleles, i.e., by increasing overall LRRK2 activity. Thus, as for SNCA, the 

pleomorphic risk locus containing LRRK2 likely has several genetic variants that lead to 

disease by similar mechanisms.

Heterozygous mutations in recessive genes may increase PD risk

Pathogenic mutations in PRKN, PINK1, DJ1, ATP13A2, PLA2G6, FBXO7, and DNAJC6 
are causes of recessive, predominantly early-onset PD (EOPD) (Hauser et al., 2017). In each 

case, disease is associated with homozygous or compound heterozygous loss of function 

mutations in the same gene. In many ways, the phenotypes associated with recessive gene 

mutations are distinct from sporadic PD. Recessively inherited forms of PD are rare and 

often found in consanguineous pedigrees that may have other symptoms in addition to those 

characteristic of typical PD. Furthermore, unlike most PD cases, mutations in these genes 

result in early onset disease, sometimes as early as teenage years. EOPD cases tend to 

progress more slowly than typical sporadic PD or dominant gene mutations. Finally, autopsy 

examination of brains from EOPD suggests that α-synuclein deposition does not always 

occur, unlike sporadic PD where Lewy pathology is required for a definitive diagnosis (Mori 

et al., 1998; Hayashi et al., 2000; van de Warrenburg et al., 2001; Farrer et al., 2001; Sasaki 

et al., 2004; Samaranch et al., 2010). However, this data is complicated to interpret as 

LRRK2 PD cases also show variable protein deposition pathology despite high clinical 

overlap (Kalia et al., 2015; Poulopoulos et al., 2012).
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Although the classical definition of recessive disease genes is that carriers of one risk allele 

are not affected, it has been reported that heterozygous mutations in some of these genes 

may act as risk factors for sporadic PD (Klein et al., 2007). One possible mechanism for this 

proposal is that heterozygous nonsense mutations predispose an individual to PD through 

partial loss of function. However, it is more likely that some individuals have a second 

undiscovered mutation or structural genetic variant that might explain their disease and be 

consistent with compound heterozygosity. None of the published PD GWAS, including the 

largest and most recent meta-analysis (Nalls et al., 2018), have identified a recessive PD 

gene as a risk locus. Most likely these variants are not detected because they are too rare for 

identification by GWAS or on their own they do not act as risk variants for PD. Most of the 

EOPD mutations are too rare to have been studied in the heterozygous state however for two 

of the most commonly mutated autosomal recessive PD genes (PRKN and PINK1) there are 

some reports that heterozygous mutations have a potential role in development of PD, and 

each will be discussed separately below.

PRKN (PARK2)

Mutations in PRKN are diverse in nature, owing to its large genomic size of 1.3Mb on 

chromosome 6 and recognition as a common fragile site in the genome (Smith et al., 2006). 

PD-linked PRKN mutations consist of homozygous or compound heterozygous point 

mutations as well as partial deletions or duplications (Abbas et al., 1999). Parkin mutations 

are the most common cause of EOPD with frequency estimations ranging from 4.6% to 

10.5%, depending on the population (Abbas et al., 1999; Leroy et al., 1998; Taghavi et al., 

2017). PRKN encodes the cytosolic E3 ubiquitin ligase parkin which is recruited to the 

mitochondrial membrane when phosphorylated by PINK1 to induce mitophagy (Kane et al., 

2014).

Several studies have suggested that PRKN variants increase risk for sporadic PD (Lincoln et 

al., 2003; Lücking et al., 2000; Lesage et al., 2008; Clark et al., 2006; Wang et al., 1999; 

Hedrich et al., 2002) and/or influence age at onset (Foroud et al., 2003; Sun et al., 2006). 

However, others have shown that heterozygous mutations and structural genetic variants are 

observed with the same frequency in cases and healthy controls (Kay et al., 2007; Lincoln et 

al., 2003; Lücking et al., 2000; Kay et al., 2007). These conflicting studies make the role of 

heterozygous PRKN mutations in disease development uncertain. A meta-analysis of 4,538 

cases and 4,213 controls that screened for PRKN copy number variants (CNVs) supported 

the idea that heterozygous carriers of CNVs containing coding exons had increased risk of 

developing PD compared to non-carriers (Huttenlocher et al., 2015). Additionally, although 

neuroimaging and electrophysiological findings associated with PD have shown some 

premorbid changes in heterozygous mutation carriers, such as reduced fluorodopa uptake in 

the striatum, these individuals have not been reported to be clinically diagnosed with PD 

(Khan et al., 2002; Hilker et al., 2001; Khan et al., 2005; Inzelberg et al., 2005).

One argument that has been advanced to explain the presence of heterozygous mutations in 

PRKN in apparently sporadic disease is that these variants might be associated with 

dominant inheritance but with diminished penetrance, suggesting that partial loss of function 

mutations would lead to milder forms of PD. Several studies have been performed in 
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families, with the expectation that heterozygous carriers would also have PD, but these 

studies have yielded conflicting results. Some have reported that heterozygous relatives of 

PRKN-linked cases suffer from mild parkinsonism (Klein et al., 2000; Farrer et al., 2001) 

but not a full PD-like phenotype. However, others have not replicated any observations of 

parkinsonism in heterozygous carriers (Wang et al., 2013). Due to its large genomic size and 

diversity of mutations it is possible that some mutations in the second allele remain 

undetected in apparently heterozygous individuals.

PINK1 (PARK6)

The PARK6 locus was initially mapped to chromosome 1 in three different consanguineous 

families (Valente et al., 2001; Valente et al., 2002). Upon sequencing candidate genes in the 

region, PINK1 was confirmed to contain homozygous missense mutations (Valente et al., 

2004a). Additional missense mutations have since been identified in several other 

consanguineous pedigrees (Hatano et al., 2004). It has been estimated that PINK1 mutations 

are found in 3.7% of EOPD cases worldwide, with frequencies ranging from 0.6% in 

European descent cases to 13.5% in Asian populations (Kilarski et al., 2012).

Similarly to PRKN, several lines of evidence suggest that heterozygous PINK1 mutations 

can act as risk factors for idiopathic PD (Rogaeva et al., 2004; Bonifati et al., 2005; Abou-

Sleiman et al., 2006; Valente et al., 2004b). A recent study reported that carrying one copy 

of the rare p.G411S mutation in PINK1 increases risk of PD to a greater degree than other 

disease-associated variants (Puschmann et al., 2017). The p.G411S variant significantly 

decreases PINK1 kinase activity in neurons and the average age at disease onset is 

significantly younger in p.G411S mutation carriers than in non-carriers. Some clinical 

examinations of heterozygous relatives of homozygous PINK1 carriers have shown signs of 

mild parkinsonism (Criscuolo et al., 2006; Hedrich et al., 2006; Hiller et al., 2007; Djarmati 

et al., 2006). However, not all heterozygous relatives present with such symptoms. Similar to 

PRKN mutations, therefore, whether PINK1 alleles cause disease by haploinsufficiency or a 

low-penetrance dominant mechanism is uncertain. However, a meta-analysis of 

approximately 1,000 cases and 400 controls for heterozygous PINK1 variants found no 

significant difference in frequencies between the populations (Marongiu et al., 2008). The 

conflicting evidence at this locus suggests a role for PINK1 in idiopathic PD but more data 

is needed to validate this correlation.

Deciphering whether heterozygous variants in recessive genes are risk factors for idiopathic 

PD is important for the understanding the etiology of disease. Among individuals with PD, 

the number of carriers of heterozygous mutations in recessive genes surpasses the number of 

homozygous or compound heterozygous carriers, suggesting that they could be 

susceptibility factors or disease modifiers. These genes might also contribute to the 

heritability of idiopathic PD in a subset of carriers making them possible drug targets. 

Conversely, it is also possible that other mutations have been missed in PRKN or PINK1 or 

that there is a secondary mutation in an unknown modifier gene. Theoretically, non-coding 

variation at either of these loci that reduce expression on the unaffected allele may result in a 

PD phenotype if only the mutant allele is expressed. In the coming years, well powered 
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human genetic studies will be decisive in robustly uncovering the role of heterozygous 

variants in recessive genes and their effect in PD.

Genome-wide association studies link sporadic and monogenic 

parkinsonism

There is growing evidence that the multiple pathways identified in monogenic PD also play 

a role in sporadic PD, showing that they are not separate entities and several genes might 

interact to regulate downstream common targets. This type of pleomorphism can be 

extrapolated to several PD related loci identified by GWAS including ACMSD, CSMD1, 
GCH1, and VPS13C. These candidate loci contain common variants linked to sporadic 

forms of PD, and putative rare pathogenic variants have also been described in monogenic 

cases with either PD or a parkinsonism syndrome.

Supporting the link between monogenic and sporadic etiologies, mutations in GCH1 have 

been found to segregate in families with a combination of members with adult-onset 

parkinsonism or dopa-responsive dystonia following an autosomal dominant pattern of 

inheritance with incomplete penetrance (Hagenah et al., 2005). Prompted by this 

observation, a follow-up large exome sequencing study showed that known GCH1 
pathogenic mutations are more frequent in sporadic PD cases than in controls and are 

associated to a 7-fold increase in the risk for developing PD (Mencacci et al., 2014). These 

results were also supported by the latest PD meta-analysis which also nominated this locus 

at a significant level.

Another example of possible shared etiologies comes from a recent screening of individuals 

in a three generation pedigree affected with familial cortical myoclonic tremor and epilepsy, 

which pointed to p.Trp26Stop in ACMSD as a disease-segregating and predicted pathogenic 

mutation (Martí-Massó et al., 2013). Interestingly, one family member also exhibited 

parkinsonism and ACMSD is in a region associated with sporadic PD by GWAS 

(International Parkinson Disease Genomics Consortium et al., 2011). Subsequently, the 

ACMSD p.Glu298Lys mutation was detected in a single individual with late onset sporadic 

PD (Vilas et al., 2017) suggesting that rare variants within ACMSD may cause PD. Another 

genetic study performed in two unrelated families with PD identified two novel, 

heterozygous variants in the CSMD1, each resulting in mutation of a highly conserved 

amino acid, suggesting that they may cause PD (Ruiz-Martínez et al., 2017). The most 

convincing example, VPS13C was first reported as a susceptibility risk locus for PD (Nalls 

et al., 2014). Later, homozygous and compound heterozygous truncating mutations were 

found to cause a very severe type of autosomal recessive PD (Lesage et al., 2016). The 

shared role of these genes in monogenic and sporadic PD requires further validation in large 

well-powered studies but indicates that loci associated with sporadic forms of PD may also 

contain very rare variants that can cause monogenic PD.
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Mutations in MAPT can cause parkinsonism and are risk factors for 

Parkinson’s disease

Although MAPT, which encodes the neuronal structure protein tau, is not considered a 

PARK gene there are several lines of evidence that link this gene to PD. Rare pathogenic 

variants in MAPT have been identified in several neurodegenerative diseases including 

tauopathies such frontotemporal dementia (FTD) (Hutton et al., 1998) and PSP (Spillantini 

et al., 1998; Clark et al., 1998; Haussmann et al., 2017; Poorkaj et al., 2002). Individuals 

carrying these MAPT mutations often present with a typical behavioral FTD phenotype as 

well as motor symptoms resembling parkinsonism (Wszolek et al., 2006).

The MAPT gene is found within a region of high linkage disequilibrium (LD) that covers ~1 

Mb of chromosome 17. Two major MAPT haplotypes have been identified, H1 and H2, that 

are inverted relative to each other and each have several sub-haplotypes (Steinberg et al., 

2012). Common variants within the H1 haplotype have been associated with PD (Nalls et al., 

2014) and several other neurodegenerative diseases, including FTD (Verpillat et al., 2002), 

PSP (Höglinger et al., 2011) and AD (Jun et al., 2016; Desikan et al., 2015). It is noteworthy 

that MAPT is the only risk locus that is shared between Alzheimer’s disease (AD) and PD. 

A recent study has shown that PD patients who are homozygous for the H1 haplotype have a 

significantly increased burden of Lewy bodies in the neocortex compared to cases with the 

H2 haplotype (Robakis et al., 2016).

There are several transcripts of MAPT expressed in the CNS and multiple eQTLs have been 

identified that are associated with differences in alternate transcript levels (Blauwendraat et 

al., 2016; Ramasamy et al., 2014; Myers et al., 2007). A specific SNP within the H1 

haplotype has been suggested to be involved in the regulation of exon 3 retention and thus 

there may be splicing quantitative traits as well eQTLs at this locus (Lai et al., 2017). This is 

a potential disease mechanism as exon 3 retention may change the interaction partners of tau 

protein. Overall, these findings show that the MAPT locus is highly pleomorphic, although 

the genetic and molecular underpinnings of its association with PD remain to be determined.

Mutations in GBA increase risk of PD

Mutations in GBA, encoding the glucocerebrosidase enzyme, were first identified as the 

cause of the autosomal recessive lysosomal storage disorder Gaucher disease in the 1980s 

(Tsuji et al. 1987). Currently over 300 GBA mutations have been identified which typically 

result in a reduced enzyme activity (Montfort et al. 2004). Clinically, Gaucher disease 

patients can display parkinsonian symptoms, and many studies have identified an increased 

frequency of heterozygous GBA mutations in PD cohorts (Aharon-Peretz et al., 2004; Clark 

et al., 2007). Subsequently, large multicenter studies identified a significant increase of GBA 
coding variants in both PD and DLB cases compared to controls and that the genetic 

influence of GBA is higher in DLB than PD (Sidransky et al. 2009; Nalls et al., 2013). 

Others have shown that PD patients who are GBA mutation carriers are more likely to 

develop cognitive impairment and dementia (Cilia et al. 2016) that is independent of 

Alzheimer disease pathology (Tsuang et al., 2012). Additionally, mutations in GBA are 
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associated with an earlier age of onset of PD compared to non-carriers (Clark et al. 2007; 

Alcalay et al., 2012, Blauwendraat et al., 2018)

Heterozygous coding variants in GBA are therefore a common genetic cause of PD and they 

have also been associated with sporadic PD by GWAS (Nalls et al., 2014; Chang et al., 

2017; Nalls et al. 2018). Although GBA coding variants explain the majority of the GBA 

GWAS signal there also appears to be independent non-coding signal (Blauwendraat et al., 

2018; Berge-Seidl et al., 2017; Nalls et al., 2018). Interestingly, some coding variants like 

p.E365K are associated with PD and have a significant effect on glucocerebrosidase activity 

(Alcalay et al., 2015) but do not cause Gaucher disease in homozygous state. Reduction of 

functional glucocerebrosidase has been shown to result in an accumulation of SNCA protein 

in neurons (Cullen et al. 2011; Du et al. 2015) highlighting the importance of functional 

lysosomes in healthy aging (Robak et al. 2017). All of this evidence points to GBA as a 

significant, but low penetrant, risk factor for PD with alleles that may or may not cause 

Gaucher’s disease.

Future directions

Remarkable progress has been achieved in the understanding of the genetic architecture 

underlying monogenic and idiopathic PD in the past twenty years. Over 15 genes now have 

been identified to cause monogenic forms of PD and over 40 independent loci are associated 

with increased risk of sporadic PD. It is becoming clear that some genes exist that contain 

both deleterious and highly penetrant coding mutations as well as coding and non-coding 

variants that increase risk for idiopathic disease. This data is prima facie evidence suggesting 

a pathophysiological link between monogenic and idiopathic forms of PD. Monogenic and 

sporadic cases of PD are often clinically indistinguishable and it is clear that both forms 

share common genetic determinants. It is likely that the monogenic and sporadic dichotomy 

will break down in the coming years, when stratifying and redefining disease subtypes 

improves.

Despite the considerable success in identifying the genetic components associated with 

disease risk, a major challenge remains to understand the mechanisms by which 

pleomorphism affects biological function to contribute to PD risk. Observations at both the 

LRRK2 and SNCA loci suggest that risk factors act in a similar manner to more penetrant 

mutations, in both cases by providing an enhancement of function but in a quantitatively 

smaller manner. This has important implications for disease-modifying treatments as it 

suggests that strategies to limit toxicity of dominant PD gene products might be helpful for 

sporadic PD.
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Figure 1. 
Continuum of genes of different phenotypic effect sizes and allele frequencies. Colors 

symbolize modes of inheritance: dominant (yellow), recessive (green), recessive atypical 

parkinsonism (pink), possibly disease-causing genes (blue), dominant with incomplete 

penetrance (orange), risk loci (light orange). Modified from McCarthy et al., 2008 

(McCarthy et al. 2008).
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Figure 2. 
Subcellular localization of genes predicted to be involved in sporadic Parkinson’s disease. 

The most common subcellular localization for genes associated with sporadic PD is in the 

cytosol, mitochondria, and in organelles involved in vesicular trafficking, Golgi Network 

and endosomes.

Reed et al. Page 24

Neurobiol Dis. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	SNCA links protein deposition and genetic risk of PD
	Variation at the LRRK2 polymorphic risk locus nominates common mechanisms in sporadic and monogenic PD
	Heterozygous mutations in recessive genes may increase PD risk
	PRKN (PARK2)
	PINK1 (PARK6)

	Genome-wide association studies link sporadic and monogenic parkinsonism
	Mutations in MAPT can cause parkinsonism and are risk factors for Parkinson’s disease
	Mutations in GBA increase risk of PD
	Future directions
	References
	Figure 1
	Figure 2

