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Abstract

Background: In mice, bacteria from the mouth can translocate to the pancreas and impact 

pancreatic cancer progression. In humans, oral bacteria associated with periodontal disease have 

been linked to pancreatic cancer risk. It is not known if DNA bacterial profiles in the pancreas and 

duodenum are similar within individuals.

Methods: Tissue samples were obtained from 50 subjects with pancreatic cancer or other 

conditions requiring foregut surgery at the Rhode Island Hospital (RIH), and from thirty-four 

organs obtained from the National Disease Research Interchange. 16S rRNA gene sequencing was 

performed on 189 tissue samples (pancreatic duct, duodenum, pancreas), 57 swabs (bile duct, 

jejunum, stomach), and 12 stool samples.
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Results: Pancreatic tissue samples from both sources (RIH and NDRI) had diverse bacterial 

DNA, including taxa typically identified in the oral cavity. Bacterial DNA across different sites in 

the pancreas and duodenum were highly subject-specific in both cancer and non-cancer subjects. 

Presence of genus Lactobacillus was significantly higher in non-cancer subjects compared with 

cancer subjects and the relative abundance of Fusobacterium spp., previously associated with 

colorectal cancer, was higher in cancer subjects compared to non-cancer subjects.

Conclusions: Bacterial DNA profiles in the pancreas were similar to those in the duodenum 

tissue of the same subjects, regardless of disease state, suggesting that bacteria may be migrating 

from the gut into the pancreas. Whether bacteria play a causal role in human pancreatic cancer 

needs to be further examined.

Impact: Identifying bacterial taxa that differ in cancer patients can provide new leads on 

etiologically relevant bacteria.
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Introduction

In 2018, an estimated 55,440 individuals will be diagnosed with pancreatic cancer in the US, 

and only 8% of these individuals are expected to survive the next five years [1]. Given this 

high fatality rate, and the silent progression of early disease, identifying risk factors for the 

prevention and early detection of pancreatic cancer is critical to reducing its mortality. To 

date, known risk factors for pancreatic cancer, including smoking, obesity, diabetes, heavy 

alcohol consumption, family history and markers of genetic susceptibility, cannot, even 

collectively, be used for early detection and risk stratification of pancreatic cancer in the 

general population [2].

Studies have suggested a link between bacteria and pancreatic cancer risk [3], highlighting 

the need to more critically explore the underlying factors that affect the microbiome of the 

oral cavity and upper digestive tract in both cancer patients and cancer-free individuals. The 

current research on oral bacteria and pancreatic cancer risk stems from a number of 

observational studies that reported a higher risk of pancreatic cancer among individuals with 

periodontitis, when compared to those without periodontitis [3, 4]. Periodontitis, an 

inflammatory disease of the gums, is largely driven by keystone pathogens and pathobionts 

[5]. Two large prospective cohort studies have reported positive associations between 

periodontal disease pathogens and subsequent pancreatic cancer risk [6, 7]; in these two 

studies, detection of elevated antibodies to Porphyromonas gingivalis, measured in blood 

collected prior to cancer diagnosis, was associated with a two-fold higher risk of pancreatic 

cancer [6], and presence (vs absence) of P. gingivalis in saliva collected prior to cancer 

diagnosis was associated with a 60% increase in risk of pancreatic cancer [7]. 

Aggregatibacter actinomycetemcomitans, another periodontal pathogen, was also associated 

with pancreatic cancer risk in the prospective study using saliva [7].
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Few investigations to date have attempted to detect bacteria in pancreatic tissue. Earlier 

studies reported the presence of bacteria in pancreatic ducts of subjects with chronic 

pancreatitis or bile duct obstruction [8–10]. Other studies have investigated the presence of 

specific bacterial DNA in the pancreatic tissue of pancreatic cancer subjects, namely species 

of Helicobacter [11] and Fusobacterium [12]. The most comprehensive molecular 

microbiome studies to date reported the presence of a diverse bacterial populations in fluids 

collected from the bile duct, pancreas and jejunum of subjects undergoing 

pancreaticoduodenectomy [13], and in pancreatic cyst fluid removed endoscopically from 

pancreatic cysts [14]. In mice, bacteria have been shown to translocate from the mouth to the 

pancreas, and germ-free mice have reduced progression of pancreatic ductal 

adenocarcinoma [15].

Metagenomics studies on DNA isolated from tissue samples from cancer subjects have been 

conducted for lung [16], colorectal [17], esophageal [18], stomach [19], and breast cancer 

[20]. These studies demonstrate that 16S rRNA gene sequencing can be effectively 

conducted on fresh tissue samples where the ratio of bacterial to human DNA is much lower 

than at other human sites (e.g., stool or oral cavity)[21]. Moreover, these studies have shown 

that bacterial profiles at different organ sites are often unique [16, 20] and that changes may 

be associated with cancer [18, 19]. In two recent studies, bacterial DNA was measured in 

tumor tissue samples obtained from patients with pancreatic ductal adenocarcinoma (PDAC) 

using 16S rRNA gene sequencing [15, 22]; however, comparison of microbiota in pancreas 

and different gastrointestinal tissue was not conducted in these patients.

To date, no study to our knowledge has characterized the overall microbiome in pancreatic 

and normal surrounding tissue samples, a critical step to understand whether and how 

bacteria may play a role in carcinogenesis. In an effort to address the specific question of 

whether the pancreas has its own microbiome, we recruited subjects from the Rhode Island 

Hospital (Providence, RI) with planned foregut surgery to obtain tissue samples for 16S 

rRNA gene microbiome analysis. In addition, for comparison to controls, we obtained 

pancreatic and duodenum tissue from National Disease Research Interchange (NDRI) from 

non-cancer subjects.

Materials and Methods

Study population and sample collection

Seventy-seven subjects, enrolled between January 2014 and March 2016, were included in 

this study. Subjects were eligible if identified as candidates for surgery of the foregut by Dr. 

Charpentier (the lead surgeon at the RIH) and included those with pancreatic cancer, 

pancreatic cystic neoplasms, pancreatitis, bile duct or small bowel diseases. All recruited 

subjects were between 31–86 years old (Table 1). Participants were asked to complete a self-

administered questionnaire to provide data on demographic and behavioral factors, and 

included a question on past use of antibiotics; this variable was included in the statistical 

analysis to control for changes that may have occurred due to antibiotic use in recent past. 

Questions on family history of cancer, use of other over-the-counter medications were also 

included on the questionnaire. Stool collection kits with ethanol as a fixative (95% (wt/wt) 
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ethanol) were provided prior to surgery [23]; participants were asked to return the samples 

using a pre-paid box.

A protocol was established for processing tissue samples collected during surgery to reduce 

contamination. A technician from the Pathology Department was informed in advance of the 

surgery date and time, and was paged as soon as the specimens had been obtained. Surgical 

tissue samples were frozen within one hour of the surgery time, as well as tissues swab 

samples from the stomach, jejunum, and bile duct that were collected using DNA-free 

forensic sterile swabs whenever possible. During surgery, the surgeon also recorded (on a 

surgery form for the study) if the patient had received prior pre-OP endoscopic ultrasound 

(EUS), had previously had their gallbladder removed, or had received prior placement of a 

stent (for treatment of symptoms); all subjects received a single dose of perioperative 

antibiotics immediately prior skin incision at the time of the operation. Tissue samples 

(pancreatic tumor tissue, pancreatic cysts, normal pancreatic tissue, pancreatic ducts and 

duodenums) were prepared by a Rhode Island Hospital pathologist; cancerous and non-

cancerous tissues were identified, separated and labeled. All samples were de-identified and 

stored at −80°C until processing.

Upon review of pathology records, ICD10 codes were assigned to each subject; 39 subjects 

had pancreatic cancer (ICD10 codes C25.0-C25.9; the majority of cases were 

adenocarcinomas, only 2 subjects had neuroendocrine tumors of the pancreas), 12 subjects 

had periampullary cancer (ICD10 codes C24.0-C24.1), 18 subjects had other pancreatic 

conditions (ICD10 codes K86.0-K86.3), and the remaining 8 had other gastrointestinal 

conditions. The study was approved by Lifespan’s Research Protection Office for 

recruitment at RIH, as well as the Institutional Review Boards for Human Subjects Research 

at Brown University, Tufts University and the Forsyth Institute.

In addition, we obtained pancreatic specimens without known conditions of pancreatic 

diseases from the National Disease Research Interchange (NDRI) to serve as control 

samples in the absence of available healthy pancreatic tissue in non-cancer subjects. Snap-

frozen ‘control’ whole-pancreas and duodenum (~ 5cm) human specimens from 34 deceased 

donors were obtained from NDRI with an average post-mortem recovery time of 13 hours. 

Control pancreas (head and tail), pancreatic ducts and duodenums were dissected under 

sterile conditions, and stored at −80°C until processing. To remove additional contamination, 

we removed a thin tissue layer around each sample prior to extracting DNA. Details for 

DNA extraction and sequencing procedures are provided in the Supplementary Methods.

16S rRNA amplicon Illumina sequencing

The 16S rRNA gene dataset consists of Illumina MiSeq sequences targeting the V3–V4 

hypervariable regions. The DNA target sequencing was performed by the Forsyth Institute 

Sequencing Core. To evaluate effect of running samples on MiSeq runs at different times, 

we included bacterial mock community samples on each run and then compared their 

relative abundances across the MiSeq runs; the results for the mock communities were 

consistent across run, demonstrating minor fluctuations (Supplementary Figure 1).
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The MiSeq reporter analysis was used to discard low quality sequences and to generate 

FASTQ files containing only filtered quality sequences, subsequently the overlapping 

paired-end reads were stitched together and further processed using used a multi-stage 

BLASTN-base search taxonomy read assignment pipeline that maximizes species level 

classification [24].

Taxonomic assignment pipeline of 16S rRNA amplicon sequencing data

Sequences were BLASTN-searched against a combined set of 16S rRNA reference 

sequences that consist of the HOMD (version 14.5)[25], Greengenes Gold [26], and the 

NCBI 16S rRNA reference sequence set. All assigned reads were subject to several down-

stream bioinformatics analyses, including alpha and beta diversity assessments, provided in 

the QIIME (Quantitative Insights Into Microbial Ecology [27]) software package version 

1.9.1.

Statistical analysis

Samples with < 500 total read counts were excluded from all analysis. In addition, only 

OTUs with a minimal read count of 100 sequences (across all samples) were included in the 

analyses. For QIIME analyses, we normalized the number of sequences in the different 

MiSeq runs by rarefying each library to 500 reads to account for differences in sequencing 

depth across runs (increasing rarefaction cutpoint to higher read number did not result in 

changes in alpha-diversity results or OTU numbers in samples; 500 reads was used as the 

cutpoint to reduce number of samples lost from the analysis). Range of sequencing counts 

for the different sample types are provided in Supplementary Figure 2. Across samples, 

OTU relative abundance was computed as the ratio of an OTU’s absolute abundance to the 

total number of reads for that sample.

To create relative abundance plots, we restricted bacterial taxa (at genus-level) present at 

>2% relative abundance and with >35% prevalence in both NDRI and RIH samples (this 

was done to simplify comparison between the RIH and NDRI samples). Jaccard Index was 

used for paired comparison of proportion of shared microbiota taxa present at >2% relative 

abundance in tissue/swab samples within subjects.

To examine the variation in the microbial profile across the different habitats/sites 

(Supplemental Table 1) among the NDRI and RIH subjects, we calculated the distance/

dissimilarity between samples using the Bray-Curtis and Sorensen indices [28]. Computed 

distances were subsequently used to generate principal coordinate analysis (PCoA) plots to 

visualize the arrangement of the samples in the ordination space. PERMANOVA (available 

in QIIME) was used to test whether the distances are more similar within a group of samples 

than that from other groups of samples.

To identify demographic and clinical correlates of pancreatic microbial composition, we fit a 

series of zero-inflated beta regression models to examine associations between genus-level 

relative abundances and demographic (i.e., age, gender, race, BMI) and clinical (i.e., health 

status, chemotherapy, antibiotics use prior to surgery, anxiety medications, presence of stent 

prior to surgery, whether pre-operative endoscopic ultrasound [pre-OP EUS] was conducted 

prior to surgery, tumor surgery classification by International Code of Disease [ICD10 
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code]). In the results, we refer to relative mean abundance among non-zero observations (μ) 

merely as relative mean abundance. More details are provided in the Supplemental Methods.

We explored which factors obtained in the questionnaires and medical files in RIH subjects 

were associated with bacterial communities in the pancreatic tissue samples. The most 

influential factors were sequencing run, presence of stent, and chemotherapy prior to surgery 

(only 5 patients with available tissue/swab samples had chemotherapy in the past 6 months); 

each of these factors was significantly associated with a large number of genera tested in 

marginal models. Given that the mock bacterial communities were similar across runs (see 

Supplemental Materials), it is possible that “run” was associated with certain genera due to 

differences in number of samples per sequencing run. To adjust for potential confounding, 

we considered this covariate in the final models comparing cancer to non-cancer subjects 

and the different ICD-codes among the RIH subjects. Similarly, age, BMI and sex were 

adjusted for as these features were shared between the studies and were found to explain 

variation in the relative abundance of some of the genera. Smoking was not found to explain 

variation in relative abundance in our data.

Results

The present analysis included a total of 246 pancreatic tissue and swab samples collected 

from 82 subjects (50 subjects from RIH providing 133 samples [57 swabs, 76 tissue] and 34 

subjects from NDRI providing 113 tissue samples; Supplemental Table 1). In addition, 12 

RIH subjects provided stool samples. There were no significant differences in the 

distribution of age, gender, BMI, race, and smoking status between RIH and NDRI subjects 

(Table 1). The Illumina-based sequencing of V3–V4 hypervariable regions of the bacterial 

16S rRNA gene resulted in a total of 19,498,743 high quality sequences (with a median 

sequence length of 427 nucleotides).

Taxonomy

Over 99% of the reads from RIH pancreatic samples were attributed to 5 bacterial phyla 

(45.9% Proteobacteria, 35.6% Firmicutes, 9.5 % Bacteroidetes, 4.3% Fusobacteria, and 

3.9% Actinobacteria). The remaining low abundance phylotypes (0.6% of the total) 

belonged to six bacterial phyla (Synergistetes, TM7, Deinococcus-Thermus, 

Verrucomicrobia, Spirochaetes, and Tenericutes). 99.6% of the reads observed among the 

NDRI pancreatic samples belonged to the same five bacterial phyla as observed in RIH 

subjects. The phylum Tenericutes (Bacteria) was present only in RIH samples, and the 

phylum Euryarchaeota (Archaea) was present only in NDRI samples, but both of these phyla 

were uncommon.

While the microbial communities in the pancreatic tissues were dominated by the phyla 

Firmicutes and Proteobacteria, substantial inter-individual variability was observed. In RIH 

samples, Proteobacteria relative abundance ranged from 2 to 99%, and similarly, Firmicutes 

relative abundance ranged from 0.6 to 84%. Large inter-individual variability was also 

observed in the NDRI samples.
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Within and between sample diversity analysis

Mean relative abundance for bacterial taxa (mostly at the genus-level) in the pancreatic 

tissue samples (duct, head, tail, normal and tumor), duodenum tissue samples, and jejunum, 

bile duct and stomach swabs are presented for each subject with more than one available 

sample in the RIH Figure 1 and NDRI in Figure 2 (males and females are presented 

separately for ease of comparison – no major differences were observed by sex). Three 

striking patterns emerge: 1) bacterial profiles in the pancreas are subject-specific rather than 

site-specific, 2) bacterial profiles in duodenum tissue are remarkably similar to those in 

pancreatic tissue in the same subjects, 3) concordance of paired comparisons of bacterial 

profiles in cancer subjects (RIH) are slightly lower across tissue type or site than those for 

non-cancer subjects (NDRI) (Figure 3). Subjects from RIH with only one sample available 

(n=5) demonstrate similar bacterial profiles as those with multiple samples. Bacterial taxa 

commonly recognized as oral bacteria, including Fusobacterium spp., Prevotella spp., 

Dialister spp., Veillonella spp., and Haemophilus spp. were identified in many of the tissue 

samples, both cancer and non-cancer subjects (Figure 1). Other oral bacterial taxa, including 

Parvimonas micra, Selenomonas noxia, Capnocytophaga spp., Peptostreptococcus spp. and 

Solobacterium moorei were also identified in tissue samples but were less common (present 

in 20%−35% of all samples).

With the exception of the stool and the jejunum, all the bacterial communities were 

characterized as habitats with low bacterial richness including the pancreatic sites, 

duodenums and the bile ducts (Figure 4A). Among RIH subjects, the microbial communities 

of the stool samples were represented by higher richness than the microbial communities in 

the tumors of the pancreas (p=0.007), duodenums (p=0.013) and bile duct swabs (p=0.017). 

Likewise, the stool bacterial communities had higher richness than the NDRI pancreatic 

heads (p=0.012), pancreatic ducts (p=0.020) and duodenums (p=0.005). The microbial 

communities in the jejunum swabs showed more richness than the communities in the RIH 

pancreatic head (p=0.014) and duodenums (p=0.028). In general, the bacterial communities 

in the pancreas of RIH subjects had slightly higher richness when compared to those from 

the pancreas of the NDRI matching sample types. Similar results were observed using 

additional alpha diversity measures of the bacterial communities (Figure 4B–D). As 

expected, the stool samples were the most diverse with a Shannon index ≥ 4 (Figure 4B). As 

the number of phyla represented in high abundance in these samples was relatively low (~5), 

we observed relatively low levels of phylogenetic distances across all samples (Figure 4D).

The ordination beta-diversity analysis revealed that the majority of samples belonged to a 

single cluster, without any visually apparent groupings by the nature of the sample, health 

status or anatomical site (Figure 5A–C). However, the PERMANOVA tests revealed 

statistically significant differences between NDRI and RIH samples (p<0.001), and for the 

swab samples obtained from the bile duct, jejunum and stomach (compared to pancreas 

tissue samples). Differences between sites within the pancreas (i.e., head, tail, duct), and 

compared to the duodenum (for NDRI and RIH, separately), were not statistically significant 

(after accounting for multiple comparisons). The principal component analyses of both 

Bray-Curtis and Sorensen distances between all samples (tissues and swabs) showed that 

both RIH and NDRI samples clustered mostly by subject.
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Associations of host factors with microbial communities

Using multiple regression analyses, we examined presence or absence, and relative mean 

abundance of bacterial taxa (at the genus and species level) among present (non-zero) 

observations using all tissue and swab samples comparing RIH subjects to NDRI subjects. 

Table 2 presents the bacterial taxa (at the genus level) that were present in at least 20% of all 

tissue and swab samples; each model includes both a zero-inflated component (testing for 

differences in presence/absence of bacterial taxa) and a relative mean abundance 

comparison. Lactobacillus taxa were present in almost all non-cancer tissue samples 

(estimated proportion of presence [P1]=0.98), but were much less likely to be present in 

cancer tissue samples (P1=0.58, p<0.0001), and mean relative abundance was higher in non-

cancer subjects (μ=0.06 vs μ=0.02 in RIH subjects, p<0.0001; Table 2). In contrast, a 

number of bacterial taxa, including Porphyromonas, were present in higher mean relative 

abundance in cancer subjects than non-cancer subjects (Table 2, and species level data 

presented in Supplemental Table 2). Oral bacteria Fusobacterium spp. and Prevotella spp. 

had higher mean relative abundance in cancer subjects than non-cancer subjects (p-values 

<0.0001 according to Wald tests for μ). Although these two bacteria do not appear in Table 2 

because they were not significant according to the joint permutation (based test for 

prevalence and mean relative abundance at the genus-level), a number of Fusobacterium 
species, e.g., Fusobacterium nucleatum _subsp._vincentii, were much more prevalent in RIH 

samples and are significant in the species-level models (Supplemental Table 2).

Table 3 presents the bacterial taxa (at genus level) for which statistically significant 

associations remained after multiple comparison correction (at p<0.10) when comparing 

bacterial taxa in tumor tissue (RIH) by ICD code to those identified in normal pancreatic 

head tissue from NDRI subjects (labeled as “controls” in Table 3; given that the bacterial 

profiles were highly similar by subject, we included only pancreatic head tissue for this 

analysis). In the marginal models (prior to adjusting for other covariates), a total of 16 

bacterial genera were identified as being significantly associated with disease status prior to 

correction for multiple comparisons (Supplemental Table 3); a number of these taxa have 

representative strains in the Human Oral Microbiome Database (http://www.homd.org) (e.g., 

Fusobacterium, Capnocytophaga, Prevotella, Porphyromonas, Parvimonas, Selenomonas, 

and Haemophilus). Mean relative abundances for some of these taxa (namely, 

Capnocytophaga, Prevotella, Selenomonas) were higher in samples coming from subjects 

diagnosed with pancreatic cancer (ICD C25) compared to NDRI samples. The model with 

Porphyromonas had the strongest association overall (p=4.5 × 10−7); the relative mean 

abundance for periampullary cancer tissue samples was substantially higher than that of 

NDRI samples (p=5.8 × 10−19), as were the IPMNs (K86.2) samples (p=3.6 × 10−7). The 

associations with Porphyromonas remained elevated in multiple regression models (Table 3).

The multivariable regression models for the pancreatic tissue samples identified bacterial 

taxa (at the genus-level) that had not been significant in the marginal regression models, 

including Simonsiella, Helicobacter, and Bilophia (Table 3 vs Supplemental Table 3). 

Helicobacter was commonly identified in periampullary pancreatic tumors (C24) but at very 

low levels; in contrast, Helicobacter was infrequently identified in the NDRI samples, but 

was a dominant genus when present (relative mean abundance 47%; Table 3).
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We further examined the RIH pancreatic tumor tissue samples without the NDRI samples 

given the difference in source of tissue and to account for clinical factors such as prior 

chemotherapy. Porphyromonas were also strongly associated with ICD code in both 

marginal (Supplemental Table 4) and multiple regression models suggesting clinical 

covariates were not confounding the main findings for these bacteria.

To test whether the associations would be similar using pancreatic duct tissue samples (vs 

tumor tissue), we repeated the analysis using RIH and NDRI samples obtained from the 

pancreatic ducts. The associations for Porphyromonas remained detectable and statistically 

significant in these analyses (p=1.53 × 10−11).

Using tissue samples obtained from the duodenum, we compared relative abundance of 

bacterial taxa in NDRI and RIH subjects to examine whether any bacteria from the 

pancreatic tissue analyses were also noticeably different in the duodenum samples. Of the 

significant associations noted in the pancreatic tissues, Selenomonas was also elevated in the 

duodenum tissue of pancreatic cancer subjects compared to duodenum tissue from NDRI 

subjects (p=3.9 × 10−12). A weak association was also observed for Gemella for the 

duodenum samples, consistent with an overall elevated mean relative abundance in the RIH 

samples compared to the NDRI samples (Table 2); other associations were either not 

significant or not consistent in direction of differences.

We only had one pancreatic duct stent to examine microbial community; the bacterial taxa 

from this stent were characterized as the members of the genera Klebsiella and Enterobacter.

Discussion

Using pancreatic and duodenum tissue samples from subjects with pancreatic cysts or 

pancreatic cancer, and comparing them to pancreatic tissue samples obtained from donors 

who died of non-cancer causes, we were able to demonstrate that pancreatic tissue contains a 

number of different bacterial taxa, including taxa that are known to inhabit the oral cavity. 

Our findings provide evidence that the pancreas is not a sterile organ and that there is 

substantial between-person variability in relative abundance of bacterial taxa at the genera 

level in the pancreas, but we also observed marked within-person stability across site 

(Figures 1 and 2); bacterial composition at different sites in the pancreas (i.e., duct, head and 

tail) as well as the duodenum were highly similar in the same individuals. Finally, we noted 

lower presence and relative abundance of Lactobacillus in cancer subjects compared to non-

cancer subjects, and a significant increase in the mean relative abundance of periodontal-

related pathogens in the tissue of pancreatic subjects when compared to non-cancer subjects.

Dissemination of oral bacteria to different parts of the body has been well-reported, and oral 

bacteria have been linked to a number of chronic diseases, including cardiovascular diseases 

[29, 30]. Fusobacterium nucleatum has been associated with colon cancer in a number of 

cross-sectional studies [31, 32]. Mouse models of colorectal cancer provide some support for 

a causal link [17, 33], demonstrating how this bacterium has the ability to initiate 

recruitment of tumor-infiltrating immune cells. Moreover, a recent study demonstrated 

similar microbiome profiles in primary colon cancer tumors and liver metastases from the 
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same individuals (resected at a later time point), especially for Fusobacterium positive 

tumors [17], suggesting stability in the microbiome as the tumor progresses and 

metastasizes. Given the findings from this study, where multiple tissue specimens were 

examined in the same subjects, it may also be plausible that each individual has a unique 

microbiome profile that exists in different gastrointestinal tissue and that certain profiles 

increase cancer susceptibility by impacting the immune environment to allow for tumor 

promotion and growth. Bacterial taxa found in this study were highly consistent with those 

reported in a microbiome study on colon cancer; enriched bacterial taxa associated with 

Fusobacterium nucleatum positive tumors were similar to those we identified in this study 

(e.g. Bacteroides, Prevotella, Selenomonas, and Leptotrichia)[17].

Presence of Lactobacillus spp. was significantly reduced in both periampullary and PDAC 

cancers compared to non-cancer patients (including those with pancreatic cysts). Certain 

strains of this bacterium have been identified as playing a key role in mediating anti-

inflammatory pathways in calorie-restricted mice [34]. Further research on the role of these 

bacteria in pancreatic cancer should be conducted.

Previous studies have reported associations between periodontal disease pathogens and 

pancreatic cancer risk, especially Porphyromonas gingivalis [6, 7]. Periodontal disease is an 

inflammatory disease of the gums that can, in advanced conditions of periodontitis, result in 

systemic inflammation. In this study, we observed significantly higher mean relative 

abundance levels (at the genus-level) for two bacterial taxa previously associated with 

periodontitis in pancreatic tissue, including Porphyromonas and Selenomonas [35–38]; 

however, only Porphyromonas remained statistically significant after adjusting for age, sex, 

BMI and library size. Porphyromonas was also elevated in the pancreatic duct tissue of 

periampullary pancreatic cancers, but no statistically significant associations were noted for 

the other oral bacterial taxa. Whether Porphyromonas play a role in pancreatic 

carcinogenesis will need to be further examined in other studies and confirmed in animal 

models. Proposed mechanisms for carcinogenesis include the ability of certain bacteria to 

induce a pro-inflammatory response in the tumor microenvironment [33]; inhibit the 

immune response targeted at eliminating tumor cells [39]; and modulate key cellular 

pathways associated with cell division [40].

A similar study using swab specimens from the pancreas, bile and jejunum, was conducted 

on subjects with pancreatic cancer undergoing pancreaticoduodenectomy [13]. In that study, 

many bacterial taxa were present in fluids obtained from the pancreatic ducts and the 

common bile duct, including Prevotella, Haemophilus, Aggregatibacter, and Fusobacterium 
[13]. Consistent with our findings, microbial communities in the pancreas, bile and jejunum 

fluids were similar within individuals [13]. Mean relative abundance for the bacterial genus 

Klebsiella was high in the samples from pancreatic cancer subjects in that study [13]; in our 

study, we found Klebsiella to be one of two taxa on a swab taken from the stent itself. 

Placement of stent prior to surgery may impact the type of bacteria present in the pancreas, 

as observed in our study. In a separate study, metagenomics was conducted on freshly frozen 

duodenum samples from 5 normal and 5 obese individuals; Streptococcus (30–32%) and 

Actinomyces (12–17%) were the most common bacterial taxa identified in those samples, 
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and relatively higher counts of Gemella were also identified in all 10 subjects [41]. 

Porphyromonas were not identified in the duodenal samples [41].

In a recent study examining tumor resistance to the drug gemcitabine, bacteria were found in 

tumor tissues of 65 PDAC patients (out of 113), and 51.7% of bacterial taxa belonged to the 

class Gammaproteobacteria [22], which is highly consistent with our findings (Figure 1). 

Similar to our study, there was large inter-individual variability in relative abundance of 

bacteria in each tumor, but in contrast to our study, only 3 out of 20 organ donors were found 

to be positive for bacteria, and no normal tissue samples were included from the same 

patients [22]. In addition, a high number of reads for Porphyromonas was found in one (out 

of 65) pancreatic cancer tissue specimens (mean relative abundance of 0.123; 

Supplementary Material [22]). In our study, read counts for Porphyromonas spp. were also 

extremely high in two RIH subject. In a separate study, 408 genera of bacteria were 

identified in pancreatic cyst fluids obtained from patients through endoscopy [14]; many of 

the taxa found in pancreatic cysts were similar to those in tissue from our study, including 

the presence of Fusobacterium. Furthermore, Porphyromonas was present in 33% of fluid 

samples and relative abundances for those taxa were similar to those in our study (non-zero 

cysts mean relative abundance: 0.00178, range 0.0001–0.004) [14].

In a recent study, Bifidobacterium spp. was found to increase in abundance in the feces of 

mice with Kras mutations (genetically modified to increase pancreatic cancer) as disease 

progressed, compared to wildtype mice [15]. Furthermore, gut repopulation of the germ-free 

(Kras) mouse with Bifidobacterium pseudolongum increased T-cell infiltration and tumor 

growth [15]. Similarly, we also noted a higher prevalence for the genus Bifidobacterium in 

cancer subjects compared to non-cancer subjects (Table 2).

Several studies have looked at the involvement of bacteria in biliary and pancreatic diseases 

and have observed a high number of bacterial taxa present in the calcified pancreatic duct 

epithelium and in pancreatic abscess [8, 42–45]. Anaerobic bacterial taxa have been found at 

a variable rate in pancreatitis; the results depend on the process for bacterial identification 

[8, 42, 43]. Previous studies have also reported the presence of bacteria in bile [46, 47]. In a 

study of 6 subjects with gallstones, 16S rRNA gene sequencing identified high relative 

abundances of Escherichia, Klebsiella and Pyramidobacter in the bile, and the bacterial 

profile of the bile was very similar to the duodenum in the same subjects [47]. 

Pyramidobacter species was originally isolated from the oral cavity [48] and was also found 

in our study samples, but at low levels (<20% of all samples).

Several bacterial taxa we observed with elevated relative mean abundance in RIH samples 

have been previously identified in immunocompromised patients and are largely believed to 

be opportunistic pathogens, including Acinetobacter [49] and Kluyvera [50]. The genus 

Gemella, which was found at higher relative abundance in pancreatic cancer subjects when 

compared to NDRI samples, has been previously associated with a number of infections, 

including endocarditis, soft-tissue abscesses, empyema, bloodstream infection, and bone 

infections [51–54]. Because our analysis was based on a cross-sectional study design, we 

expected to identify bacteria that were present as a result of opportunistic nosocomial 

infections given that the majority of RIH subjects were likely immunocompromised from 
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their cancer. However, our results show that even normal pancreatic tissue harbors a 

microbial community.

The strength of this study was the collection of specimens specifically for the purpose of 

microbiome analysis, with precautions made to reduce contamination during collection and 

processing of samples. Moreover, multiple types of samples were collected on each patient 

at RIH, including obtaining tissue or swabs from multiple sites, to allow for inter vs. intra-

individual differences at different sites. Finally, the multivariable regression analyses was 

conducted to adjust for potential confounding by known pancreatic cancer risk factors, 

including BMI and smoking, as well as other factors that may cause bias, including pre-OP 

EUS and prior chemotherapy.

The major limitation of this analysis was the small number of subjects with pancreatic cysts 

and pancreatic cancer; despite recruiting 77 subjects, not all subjects had tissue resections 

during surgery (as more advanced pancreatic cancer patients are often not operable). We did 

not have sufficient power to examine in great detail the differences in bacterial composition 

between different pancreatic cancer subtypes, including IPMNs; however, we were the first 

to include ICD 24 tumors and to explore differences with ICD 25 tumors. Moreover, cancer 

versus non-cancer comparisons of bacterial presence/absence and relative abundances were 

based on subjects spread across two different data sources (i.e., RIH and NDRI). Differences 

in microbiota between these two sources may have been due to differences in collection 

methods and collection times; DNA was extracted from frozen tissue using the same 

protocol and methods, but tissue samples were either collected during surgery (RIH) or from 

organs that were rapidly frozen after death (NDRI samples had a mean time of 13 hours to 

processing of samples). Consequently, it is possible that the identified genera (and overall 

differences in bacterial taxonomy) merely reflect study-specific differences, rather than real 

cancer-specific differences.

In this culture-independent study, we detected many bacterial taxa in pancreatic tissue from 

cancer subjects as well as non-cancer subjects. Furthermore, the bacterial profiles in the 

pancreas were more similar within individuals across different sites of the pancreas (i.e., 

head, tail, ducts) and duodenum than between individuals at each site. Bacterial taxa known 

to inhabit the oral cavity were common in the pancreas microbiome and several periodontal 

pathogens were also identified in pancreatic tissue samples. Further research is needed to 

address if and how bacteria may be related to pancreatic carcinogenesis or disease 

progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) RIH Males with ICD code (C25, C24 or K86); (B) RIH Females with ICD code (C25, 

C24, or K86). Distribution of bacteria relative abundance by genus level in all the studied 

body habitats based on read taxa attribution using V3–V4 hypervariable region of 16S rRNA 

genes. All names are at genera level except for those with c_ which denotes class for 

multigenera taxa (within that class). Colored bars next to legend reflect taxa at class level: 

TM7 (lime); Gammaproteobacteria (purple); Epsilonproteobacteria (light grey); 

Betaproteobacteria (dark grey); Fusobacteriia (pink); Clostridia (green); Bacilli (blue); 

Bacteroides (Gold); Coriobacteriia (red); Actinobacteria (marron).
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Figure 2. 
(A) NDRI Males; (B) NDRI Females. Distribution of bacteria relative abundance by genus 

level in all the studied body habitats based on read taxa attribution using V3–V4 

hypervariable region of 16S rRNA genes. All names are at genera level except for those with 

c_ which denotes class for multigenera taxa (within that class). Colored bars next to legend 

reflect taxa at class level: TM7 (lime); Gammaproteobacteria (purple); 

Epsilonproteobacteria (light grey); Betaproteobacteria (dark grey); Fusobacteriia (pink); 

Clostridia (green); Bacilli (blue); Bacteroides (Gold); Coriobacteriia (red); Actinobacteria 

(marron).
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Figure 3. 
Jaccard Index (proportion of shared genera) for paired comparison of tissue samples in 

NDRI and RIH subjects.
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Figure 4. 
Comparative alpha diversity analyses of bacterial communities in anatomical sites (based on 

a simulated data set subsampled from the input OTU table). Alpha diversity metrics: (A) 

Richness, (B) Shannon diversity index, (C) Simpson index, and (D) Phylogenetic diversity.

del Castillo et al. Page 19

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
PCoA plots showing the relatedness of microbial communities among samples from RIH 

subjects and NDRI donors using the Bray-Curtis dissimilarity index. Individual datasets are 

colored according to their (A) RIH and NDRI sample type, (B) RIH anatomical site, and (C) 

NDRI anatomical site.
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Table 1.

Distribution of demographic, lifestyle and health conditions variables among patients with diseases of the 

foregut, primarily pancreatic diseases, and deceased controls.

RIH Subjects (n=77) NDRI Subjects (n=34)

Characteristic Mean (SD) Characteristic Mean (SD)

Age 63 ± 13 Age 68 ± 15

BMI 27 ± 6 BMI 29 ± 6.5

N (%)  N (%)

Sex Sex

 Male 38 (49)  Male 21 (62)

 Female 39 (51)  Female 13 (38)

Race Race

 Caucasian 72 (93.5)  Caucasian 30 (88)

 Black 2 (2.6)  Black 2 (6)

 Other 2 (2.6)  Other 2 (6)

Smoking status Smoking status

 Ever smoker 44 (58)  Ever smoker 23 (68)

Chemotherapy Cause of Death

 Never 52 (76.5)  Heart failure 17 (50)

 Prior to past 6 months 7 (10.3)  Cardiopulmonary arrest 5 (15)

 In past 6 months 9 (13.2)  Cerebrovascular accident 1 (3)

 Respiratory arrest 2 (6)

Antibiotic use  Abdominal aortic aneurysm 1 (3)

 Never 13 (18.1)  Intracerebral hemorrhage 1 (3)

 Prior to past 6 months 32 (44.2)  Liver cirrhosis 1 (3)

 In past 6 months 21 (29.2)  Overdose 1 (3)

 Missing 6 (8.3)  Parkinson’s disease 1 (3)

 Pneumonia 1 (3)

Stent prior to surgery (yes) 19  Pulmonary embolism 1 (3)

Pre-OP EUS 20  Pulmonary fibrosis 1 (3)

Surgery for:

 Pancreatic cancer 51 (66.2)

Chronic pancreatitis or pancreatic cysts 18 (23.4)

Other 8 (10.4)
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Table 2 Full OTU (in same order)

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Pseudomonadaceae;g__Pseudomonas

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptostreptococcaceae_[XIII];g__Parvimonas

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__Acinetobacter

k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Ralstonia

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Kluyvera

k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfovibrionales;f__Desulfovibrionaceae;g__Bilophila

k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Gemellaceae;g__Gemella

k__Bacteria;p__Actinobacteria;c__Coriobacteriia;o__Eggerthellales;f__Eggerthellaceae;g__Slackia

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Lachnoanaerobaculum

k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Solobacterium

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Blautia

k__Bacteria;p__Bacteroidetes;c__Bacteroides;o__Bacteroidales;f__Porphyromonadaceae;g__Porphyromonas

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptostreptococcaceae_[XIII];g__Anaerococcus

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Selenomonas

k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Aerococcaceae;g__Abiotrophia

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Veillonellaceae;g__Megasphaera

k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Actinomycetaceae;g__Actinomyces

k__Bacteria;p__Bacteroidetes;c__Bacteroides;o__Bacteroidales;f__Prevotellaceae;g__Prevotella

k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Bifidobacteriales;f__Bifidobacteriaceae;g__Bifidobacterium

k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae;g__Rothia
Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

del Castillo et al. Page 25

Ta
bl

e 
2 

F
ul

l O
T

U
 (

in
 s

am
e 

or
de

r)

k_
_B

ac
te

ri
a;

p_
_F

ir
m

ic
ut

es
;c

__
B

ac
ill

i;o
__

L
ac

to
ba

ci
lla

le
s;

f_
_L

ac
to

ba
ci

lla
ce

ae
;g

__
L

ac
to

ba
ci

llu
s

k_
_B

ac
te

ri
a;

p_
_P

ro
te

ob
ac

te
ri

a;
c_

_G
am

m
ap

ro
te

ob
ac

te
ri

a;
o_

_P
se

ud
om

on
ad

al
es

;f
__

Ps
eu

do
m

on
ad

ac
ea

e;
g_

_P
se

ud
om

on
as

k_
_B

ac
te

ri
a;

p_
_F

ir
m

ic
ut

es
;c

__
C

lo
st

ri
di

a;
o_

_C
lo

st
ri

di
al

es
;f

__
Pe

pt
os

tr
ep

to
co

cc
ac

ea
e_

[X
II

I]
;g

__
Pa

rv
im

on
as

k_
_B

ac
te

ri
a;

p_
_P

ro
te

ob
ac

te
ri

a;
c_

_G
am

m
ap

ro
te

ob
ac

te
ri

a;
o_

_P
se

ud
om

on
ad

al
es

;f
__

M
or

ax
el

la
ce

ae
;g

__
A

ci
ne

to
ba

ct
er

k_
_B

ac
te

ri
a;

p_
_P

ro
te

ob
ac

te
ri

a;
c_

_B
et

ap
ro

te
ob

ac
te

ri
a;

o_
_B

ur
kh

ol
de

ri
al

es
;f

__
B

ur
kh

ol
de

ri
ac

ea
e;

g_
_R

al
st

on
ia

k_
_B

ac
te

ri
a;

p_
_P

ro
te

ob
ac

te
ri

a;
c_

_G
am

m
ap

ro
te

ob
ac

te
ri

a;
o_

_E
nt

er
ob

ac
te

ri
al

es
;f

__
E

nt
er

ob
ac

te
ri

ac
ea

e;
g_

_K
lu

yv
er

a

k_
_B

ac
te

ri
a;

p_
_P

ro
te

ob
ac

te
ri

a;
c_

_D
el

ta
pr

ot
eo

ba
ct

er
ia

;o
__

D
es

ul
fo

vi
br

io
na

le
s;

f_
_D

es
ul

fo
vi

br
io

na
ce

ae
;g

__
B

ilo
ph

ila

k_
_B

ac
te

ri
a;

p_
_F

ir
m

ic
ut

es
;c

__
B

ac
ill

i;o
__

B
ac

ill
al

es
;f

__
G

em
el

la
ce

ae
;g

__
G

em
el

la

k_
_B

ac
te

ri
a;

p_
_A

ct
in

ob
ac

te
ri

a;
c_

_C
or

io
ba

ct
er

iia
;o

__
E

gg
er

th
el

la
le

s;
f_

_E
gg

er
th

el
la

ce
ae

;g
__

Sl
ac

ki
a

k_
_B

ac
te

ri
a;

p_
_F

ir
m

ic
ut

es
;c

__
C

lo
st

ri
di

a;
o_

_C
lo

st
ri

di
al

es
;f

__
L

ac
hn

os
pi

ra
ce

ae
;g

__
L

ac
hn

oa
na

er
ob

ac
ul

um

k_
_B

ac
te

ri
a;

p_
_F

ir
m

ic
ut

es
;c

__
E

ry
si

pe
lo

tr
ic

hi
;o

__
E

ry
si

pe
lo

tr
ic

ha
le

s;
f_

_E
ry

si
pe

lo
tr

ic
ha

ce
ae

;g
__

So
lo

ba
ct

er
iu

m

k_
_B

ac
te

ri
a;

p_
_F

ir
m

ic
ut

es
;c

__
C

lo
st

ri
di

a;
o_

_C
lo

st
ri

di
al

es
;f

__
L

ac
hn

os
pi

ra
ce

ae
;g

__
B

la
ut

ia

k_
_B

ac
te

ri
a;

p_
_B

ac
te

ro
id

et
es

;c
__

B
ac

te
ro

id
es

;o
__

B
ac

te
ro

id
al

es
;f

__
Po

rp
hy

ro
m

on
ad

ac
ea

e;
g_

_P
or

ph
yr

om
on

as

k_
_B

ac
te

ri
a;

p_
_F

ir
m

ic
ut

es
;c

__
C

lo
st

ri
di

a;
o_

_C
lo

st
ri

di
al

es
;f

__
Pe

pt
os

tr
ep

to
co

cc
ac

ea
e_

[X
II

I]
;g

__
A

na
er

oc
oc

cu
s

k_
_B

ac
te

ri
a;

p_
_F

ir
m

ic
ut

es
;c

__
C

lo
st

ri
di

a;
o_

_C
lo

st
ri

di
al

es
;f

__
V

ei
llo

ne
lla

ce
ae

;g
__

Se
le

no
m

on
as

k_
_B

ac
te

ri
a;

p_
_F

ir
m

ic
ut

es
;c

__
B

ac
ill

i;o
__

B
ac

ill
al

es
;f

__
St

ap
hy

lo
co

cc
ac

ea
e;

g_
_S

ta
ph

yl
oc

oc
cu

s

k_
_B

ac
te

ri
a;

p_
_F

ir
m

ic
ut

es
;c

__
B

ac
ill

i;o
__

L
ac

to
ba

ci
lla

le
s;

f_
_A

er
oc

oc
ca

ce
ae

;g
__

A
bi

ot
ro

ph
ia

k_
_B

ac
te

ri
a;

p_
_F

ir
m

ic
ut

es
;c

__
C

lo
st

ri
di

a;
o_

_C
lo

st
ri

di
al

es
;f

__
V

ei
llo

ne
lla

ce
ae

;g
__

M
eg

as
ph

ae
ra

k_
_B

ac
te

ri
a;

p_
_A

ct
in

ob
ac

te
ri

a;
c_

_A
ct

in
ob

ac
te

ri
a;

o_
_A

ct
in

om
yc

et
al

es
;f

__
A

ct
in

om
yc

et
ac

ea
e;

g_
_A

ct
in

om
yc

es

k_
_B

ac
te

ri
a;

p_
_B

ac
te

ro
id

et
es

;c
__

B
ac

te
ro

id
es

;o
__

B
ac

te
ro

id
al

es
;f

__
Pr

ev
ot

el
la

ce
ae

;g
__

Pr
ev

ot
el

la

k_
_B

ac
te

ri
a;

p_
_A

ct
in

ob
ac

te
ri

a;
c_

_A
ct

in
ob

ac
te

ri
a;

o_
_B

if
id

ob
ac

te
ri

al
es

;f
__

B
if

id
ob

ac
te

ri
ac

ea
e;

g_
_B

if
id

ob
ac

te
ri

um

k_
_B

ac
te

ri
a;

p_
_A

ct
in

ob
ac

te
ri

a;
c_

_A
ct

in
ob

ac
te

ri
a;

o_
_A

ct
in

om
yc

et
al

es
;f

__
M

ic
ro

co
cc

ac
ea

e;
g_

_R
ot

hi
a

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

del Castillo et al. Page 26

Ta
b

le
 3

.

R
es

ul
ts

 f
ro

m
 m

ul
tiv

ar
ia

bl
e 

ze
ro

-i
nf

la
te

d 
be

ta
 r

eg
re

ss
io

n 
m

od
el

s 
co

m
pa

ri
ng

 b
ac

te
ri

a 
pr

es
en

ce
/a

bs
en

ce
 a

nd
 r

el
at

iv
e 

ab
un

da
nc

e 
ac

ro
ss

 s
ub

je
ct

 d
is

ea
se

 I
C

D
 

co
de

s* G
en

us
E

st
im

at
ed

 M
ea

n 
R

el
at

iv
e 

A
bu

nd
an

ce
 (

μ)
**

E
st

im
at

ed
 P

ro
po

rt
io

n 
of

 P
re

se
nc

e 
(P

1)
L

ik
el

ih
oo

d 
R

at
io

 T
es

ts

To
ta

l r
ea

d 
co

un
ts

N
on

-z
er

o 
sa

m
pl

es
C

on
tr

ol
 (

N
=2

9)
C

24
(N

=7
)

C
25

(N
=1

6)
K

86
.2

(N
=6

)
C

on
tr

ol
(N

=2
9)

C
24

(N
=7

)
C

25
(N

=1
6)

K
86

.2
(N

=6
)

p-
va

lu
e

A
IC

 d
if

fe
re

nc
e

p-
ad

ju
st

ed
^

Si
m

on
si

el
la

23
1

15
0.

00
01

0.
00

01
0.

00
18

0.
01

12
0.

16
40

0.
55

59
0.

51
40

0.
15

74
<

0.
00

01
35

.4
1

<
0.

00
01

H
el

ic
ob

ac
te

r
14

75
7

0.
46

70
<

0.
00

01
0.

00
01

0.
00

01
0.

00
79

0.
62

87
0.

00
05

0.
00

39
<

0.
00

01
35

.3
8

<
0.

00
01

Po
rp

hy
ro

m
on

as
70

08
15

0.
00

05
0.

05
12

0.
00

22
0.

00
87

0.
38

86
0.

12
61

0.
03

51
0.

31
75

<
0.

00
01

29
.0

1
<

0.
00

01

C
ap

no
cy

to
ph

ag
a

31
6

12
<

0.
00

01
<

0.
00

01
0.

00
01

0.
00

17
0.

13
75

0.
26

73
0.

08
65

0.
37

66
<

0.
00

01
28

.8
7

<
0.

00
01

R
al

st
on

ia
15

3
15

0.
00

08
0.

00
61

0.
04

52
0.

00
10

0.
29

55
0.

00
08

0.
60

80
0.

61
44

<
0.

00
01

17
.8

0
0.

00
26

B
ilo

ph
ila

10
68

5
13

0.
00

02
0.

06
63

0.
01

39
0.

00
02

0.
06

96
0.

05
47

0.
00

99
0.

16
53

<
0.

00
01

17
.7

6
0.

00
27

Ps
eu

do
m

on
as

64
12

8
31

0.
01

31
0.

02
31

0.
04

69
0.

52
37

0.
21

39
0.

85
12

0.
61

92
0.

61
93

0.
00

01
15

.3
5

0.
00

76

A
ci

ne
to

ba
ct

er
79

16
43

0.
01

92
0.

06
15

0.
16

37
0.

12
08

0.
44

07
1.

00
00

0.
78

70
0.

78
25

0.
00

02
13

.8
1

0.
01

47

G
em

el
la

77
69

24
0.

00
28

0.
01

13
0.

01
13

0.
00

71
0.

27
78

0.
52

84
0.

84
66

1.
00

00
0.

00
06

11
.8

3
0.

03
43

E
nt

er
oc

oc
cu

s
28

25
4

29
0.

02
30

0.
01

76
0.

00
67

0.
01

73
0.

42
77

1.
00

00
<

0.
00

01
0.

48
57

0.
00

07
11

.3
5

0.
04

19

Pr
op

io
ni

ba
ct

er
iu

m
19

10
<

0.
00

01
<

0.
00

01
0.

00
01

<
0.

00
01

0.
15

89
0.

14
54

0.
01

05
0.

05
97

0.
00

11
10

.2
9

0.
06

55

Pe
pt

oc
lo

st
ri

di
um

41
37

14
0.

00
31

0.
01

91
0.

11
99

0.
00

88
0.

25
98

0.
00

03
0.

22
97

0.
53

80
0.

00
17

9.
19

0.
10

34

So
lo

ba
ct

er
iu

m
14

02
10

0.
00

01
0.

00
02

0.
00

06
0.

00
03

0.
27

89
0.

84
83

0.
15

83
0.

13
26

0.
00

38
7.

20
0.

23
40

Sa
lm

on
el

la
37

7
0.

00
03

0.
62

82
0.

00
01

0.
00

15
0.

03
36

0.
01

59
0.

00
80

0.
10

74
0.

00
89

5.
09

0.
54

55

L
ac

to
ba

ci
llu

s
25

15
85

40
0.

13
43

0.
07

17
0.

14
08

0.
08

91
0.

95
65

0.
69

33
0.

43
54

1.
00

00
0.

01
46

3.
85

0.
88

97

E
nt

er
ob

ac
te

r
64

11
8

30
0.

03
74

0.
03

23
0.

03
03

0.
01

40
0.

44
67

0.
67

46
<

0.
00

01
0.

21
06

0.
01

77
3.

35
1.

00

L
ac

to
co

cc
us

35
92

17
0.

00
18

0.
08

18
0.

85
57

0.
00

09
0.

20
25

0.
06

84
0.

08
55

0.
22

73
0.

01
94

3.
12

1.
00

C
lo

st
ri

di
um

10
05

17
29

0.
06

43
0.

04
59

0.
04

16
0.

06
97

0.
46

00
0.

72
16

0.
04

70
0.

52
43

0.
02

67
2.

27
1.

00

B
ac

te
ro

id
es

15
39

55
34

0.
01

86
0.

01
71

0.
08

18
0.

04
70

0.
37

19
0.

87
99

0.
73

22
0.

71
74

0.
03

81
1.

33
1.

00

R
ao

ul
te

lla
31

68
8

9
0.

05
93

0.
15

74
0.

00
41

0.
00

81
0.

00
10

0.
00

40
<

0.
00

01
<

0.
00

01
0.

05
23

0.
47

1.
00

* A
ll 

m
od

el
s 

ar
e 

ad
ju

st
ed

 f
or

 a
ge

, s
ex

, B
M

I 
an

d 
se

qu
en

ci
ng

 r
un

. O
nl

y 
ba

ct
er

ia
 (

at
 g

en
us

-l
ev

el
) 

as
so

ci
at

ed
 w

ith
 I

C
D

 c
od

e 
(o

ve
ra

ll)
 a

t p
≤0

.0
5 

pr
io

r 
to

 c
or

re
ct

in
g 

fo
r 

m
ul

tip
le

 c
om

pa
ri

so
ns

 a
re

 s
ho

w
n.

 D
ue

 to
 

m
is

si
ng

 B
M

I 
on

 tw
o 

in
di

vi
du

al
s,

 n
um

be
rs

 f
or

 th
e 

fu
lly

-a
dj

us
te

d 
m

od
el

s 
w

er
e 

ba
se

d 
on

 5
8 

tis
su

e 
sa

m
pl

es
. M

ar
gi

na
l m

od
el

s 
w

ith
 a

ll 
sa

m
pl

es
 a

re
 s

ho
w

n 
in

 S
up

pl
em

en
ta

l T
ab

le
 3

.

**
A

m
on

g 
no

n-
ze

ro
 s

am
pl

es
.

^ A
dj

us
te

d 
fo

r 
m

ul
tip

le
 te

st
in

g.

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

del Castillo et al. Page 27

Table 3 Full OTU (in same order)

k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Neisseriales;f__Neisseriaceae;g__Simonsiella

k__Bacteria;p__Proteobacteria;c__Epsilonproteobacteria;o__Campylobacterales;f__Helicobacteraceae;g__Helicobacter

k__Bacteria;p__Bacteroidetes;c__Bacteroides;o__Bacteroidales;f__Porphyromonadaceae;g__Porphyromonas

k__Bacteria;p__Bacteroidetes;c__Flavobacteria;o__Flavobacteriales;f__Flavobacteriaceae;g__Capnocytophaga

k__Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Ralstonia

k__Bacteria;p__Proteobacteria;c__Deltaproteobacteria;o__Desulfovibrionales;f__Desulfovibrionaceae;g__Bilophila

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Pseudomonadaceae;g__Pseudomonas

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__Acinetobacter

k__Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Gemellaceae;g__Gemella

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Enterococcaceae;g__Enterococcus

k__Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Propionibacteriaceae;g__Propionibacterium

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptostreptococcaceae;g__Peptoclostridium

k__Bacteria;p__Firmicutes;c__Erysipelotrichi;o__Erysipelotrichales;f__Erysipelotrichaceae;g__Solobacterium

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Salmonella

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Enterobacter

k__Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Lactococcus

k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Clostridiaceae;g__Clostridium

k__Bacteria;p__Bacteroidetes;c__Bacteroides;o__Bacteroidales;f__Bacteroidaceae;g__Bacteroides

k__Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacterales;f__Enterobacteriaceae;g__Raoultella
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