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Abstract

Background: Lung cancer is the leading cause of cancer mortality in the United States (US). 

Squamous cell carcinoma (SQCC) represents 22.6% of all lung cancers nationally, and 26.4% in 

Appalachian Kentucky (AppKY), where death from lung cancer is exceptionally high. The Cancer 

Genome Atlas (TCGA) characterized genetic alterations in lung SQCC, but this cohort did not 

focus on AppKY residents.
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Methods: Whole exome sequencing was performed on tumor and normal DNA samples from 51 

lung SQCC subjects from AppKY. Somatic genomic alterations were compared between the 

AppKY and TCGA SQCC cohorts.

Results: From this AppKY cohort, we identified an average of 237 non-silent mutations per 

patient and, in comparison to TCGA, we found that PCMTD1 (18%) and IDH1 (12%) were more 

commonly altered in AppKY versus TCGA. Using IDH1 as a starting point, we identified a 

mutually exclusive mutational pattern (IDH1, KDM6A, KDM4E, JMJD1C) involving 

functionally-related genes. We also found actionable mutations (10%) and/or intermediate or high 

tumor mutation burden (65%), indicating potential therapeutic targets in 65% of subjects.

Conclusions: This study has identified an increased percentage of IDH1 and PCMTD1 
mutations in SQCC arising in the AppKY residents versus TCGA, with population-specific 

implications for the personalized treatment of this disease.

Impact: Our study is the first report to characterize genomic alterations in lung SQCC from 

AppKY. These findings suggest population differences in the genetics of lung SQCC between 

AppKY and US populations, highlighting the importance of the relevant population when 

developing personalized treatment approaches for this disease.
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Introduction

Lung cancer is the leading cause of cancer death worldwide, with 160,000 deaths in the US 

annually1. The state of Kentucky ranks highest in lung cancer incidence and mortality, and 

Appalachian region of Kentucky (AppKY) is the major driver of this extraordinary 

healthcare burden2, see Supplementary Fig. S1 for lung cancer characteristics in Kentucky. 

We undertook the present study of lung squamous cell carcinomas (SQCC) from residents of 

AppKY to provide the first genomic characterization of lung cancers from this region and to 

test the hypothesis that genetic mutations in AppKY SQCC are distinct from the general 

population and may help explain the region’s extremely high cancer incidence. Essential to 

this effort was the full sharing of the comprehensive genomic profile of lung SQCC in The 

Cancer Genome Atlas (TCGA) 3, which provided the comparison of the initial 178 subjects 

from a US genomic profile that does not focus on Central Appalachians (the distribution of 

TCGA tissue source sites is provided in Supplementary Table S1).

Previous studies reported distinct genetic abnormalities in lung SQCCs: TP53, NFE2L2, 

CDKN2A, PTEN and ALK13-7, and copy-number alterations in SOX2, PDGFRA, FGFR1, 

WHSC1L1, and CDKN2A3,8–10, which are targets of therapeutic interventions. We present 

the results from whole-exome sequencing (WES) and analysis of 51 SQCC patients from 

AppKY, which includes an overview of somatic alterations and copy-number variations, 

explores unique mutational patterns, and provides a clinically actionable assessment of 

mutations in this population.
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Materials and Methods

Patient cohort

This study was approved by the Institutional Review Board (IRB) of the University of 

Kentucky (protocol # 14–0071-P3H). Cancer, adjacent normal tissue and associated clinical 

data were obtained from 51 AppKY patients (2002–2013) with previously untreated stage I 

– III lung SQCC, excluding mixed histology. All specimens were collected from single 

surgical procedures prior to any cancer therapy and fresh frozen. All surgical samples were 

reviewed by a board-certified pathologist and confirmed to be SQCC by the Markey Cancer 

Center’s (MCC) Biospecimen Procurement and Translational Pathology (BPTP) Shared 

Resource Facility (SRF). The study was carried out in accordance with the Declaration of 

Helsinki and all subjects provided written informed consent in accordance with local IRB 

requirements.

Only residents of AppKY, as defined by the Appalachian Regional Commission’s 

authorizing legislation, were included in the study. All subjects were confirmed to be 

residents of AppKY by the Kentucky Cancer Registry (KCR) using multiple confirmatory 

identifiers, including: address, zip code, county, phone number, and were followed long-term 

by the SEER-KCR. MCC’s Cancer Research Informatics SRF provided all demographic and 

survival data for this project in a de-identified manner and served as the honest broker. The 

cohort includes 36 males, 15 females, median age of 65 years (range, 43 to 82 years) and 30 

stage I, 12 stage II and 5 stage III patients. The median follow-up was 40 months and 35% 

of patients were alive at the time of submission. Reflective of AppKY, 98% of patients were 

of Caucasian race, and 76% were current smokers. Supplementary Table S2 lists summary 

demographic and clinical characteristics, compared with the TCGA SQCC cohort.

Sample preparation and whole-exome sequencing

High molecular weight genomic DNA was extracted from matched tumor and adjacent 

normal tissues in all 51 cases using the DNAeasy Blood & Tissue Kit or the MagAttract 

HMW DNA Kit (both from QIAGEN). Tumor contents of samples are provided in 

Supplementary Table S3. DNA was quantified using the Qubit dsDNA HS Assay Kit 

(Invitrogen), and quality was assessed using E-gel, 0.8% (Invitrogen). Exome capture and 

sequencing were performed using Illumina Nextera Rapid Capture Exome v1.2 targeting 

212,158 exonic regions. Paired-end sequencing (2 × 110bp) was carried out using 

HiSeq2500 sequencing platform at the University of Illinois at Urbana-Champaign.

Somatic mutation analysis

Sequencing reads were trimmed and filtered using Cutadapt (v1.4.1)11, then aligned to 

human reference genome b37/hg19 using BWA (v.0.7.9a)12. PCR duplicates were removed 

using Picard (http://broadinstitute.github.io/picard/, v1.115). The Genome Analysis Toolkit 

(GATK v3.1–1)13 was used for local indels realignment and base quality recalibration. 

Somatic point mutations and indels were detected using MuTect (v1.1.4)14 and 

SomaticIndelDetector (GATK v2.3–9), respectively, with default settings. Mutations were 

annotated using Oncotator (v1.4.1.0)15. Significantly mutated genes were identified using 

MutSigCV (v1.4)16. Gene alteration rates between the AppKY cohort and the TCGA were 
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compared using Fisher’s exact tests with Benjamini–Hochberg procedure to calculate the 

false discovery rate (FDR). For genes that showed a significant difference in alteration rates 

between the two cohorts, the exact logistic regression was used to further evaluate the 

difference between the two cohorts after adjusting for clinical and demographic variables 

including age, gender, stage and smoking. The analyses were performed using R (v3.3.1) 

and SAS (v9.3).

Somatic copy-number alterations (SCNA) analysis was conducted using ExomeCNV17, an 

R statistical package. Exonic CNAs were inferred based on the depth-of-coverage ratio 

between matched tumor and normal samples. Then, CNAs calls were combined into larger 

segments using circular binary segmentation in DNAcopy18. Gistic2.019 with a confidence 

level of 0.95 was used on the copy ratio profiles to identify significantly amplified/deleted 

regions.

To evaluate the clinical relevance of the somatic genomic alterations identified in our cohort, 

we downloaded the OncoKB database20 (accessed in December 2017) to identify FDA 

approved drugs for the FDA-recognized and standard care biomarkers.

The mutual exclusivity of IDH1-related gene sets was examined by MEGSA21, which 

implements a likelihood ratio test. The p-value was calculated based on a mixture 

distribution with 0.5 probability at point mass zero and 0.5 probability as a chi-square 

distribution of 1 degree of freedom, as described in the MEGSA paper21.

Identification of IDH1 homologs

Human IDH1 protein sequence (NP_005887.2) was queried using BLASTP against the 

RefSeq database. The top 500 hits, including representatives from all major eukaryotic 

supergroups (except Rhizaria), were aligned using ClustalX22 with default parameters. The 

neighbor joining tree was built from this alignment. From the tree, a clade containing IDH1 

and IDH2 homologs was identified and sequences from representative genomes of distantly 

related organisms were retrieved and realigned. The maximum likelihood phylogenetic tree 

was built from this alignment using the MEGA6 package23 with default parameters. IDH1 

and IDH2 orthologs were identified in individual clades that had the same topology as the 

eukaryotic ribosomal tree24 and checked for consistency with RefSeq annotations.

Mutagenesis

pCSC-SP-PW-GFP (aka:pBOB-GFP) was a gift from Inder Verma (Addgene plasmid 

#12337). pCSC-Sp-pw-IDH1-GFP and pCSC-Sp-pw-IDH1 R132H-GFP were a gift from 

Hai Yan, which encode for wildtype human IDH1 (GenBank:CAG38738.1) and mutant 

IDH1 R132H (encoding for human IDH1 protein that has mutant aa132 from Arg to His), 

respectively. Both plasmids were digested with EcoRI and NOT1, and ligated into 

pcDNA3.1 to make pcDNA3.1-IDH1-GFP. Then pcDNA3.1-IDH1-GFP used for 

mutagenesis to make pcDNA3.1-IDH1 R132H-GFP, pcDNA3.1-IDH1 V178A-GFP, 

pcDNA3.1-IDH1 A307S-GFP and pcDNA3.1-IDH1 L352P-GFP (shortened as WT, R132H, 

V178A, A307S and L352P hereafter). Primers used for mutagenesis are listed in 

Supplementary Method S2. Mutagenesis was performed with Fushion E in a 50μl reaction 

volume. PCR reactions consisted of 19 cycles as follows: 95°C for 50 sec, 60°C for 50 sec, 
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68°C for 3 min. The PCR reaction product was digested with DpnI at 37 °C for 1 h, and 

transformed into DH5a competent cells. Colonies were selected for sequencing to verify the 

mutations.

Isocitrate dehydrogenase activity assays

HEK293T (ATCC) cells (see Supplementary Method S3 for the authentication) were 

transfected with the above plasmids using Calcium Phosphate transfection. Each well of 

cells from the 6-well plate were transfected with 1μg of plasmids. Cells were then suspended 

in 0.02% Triton-X100 PBS, homogenized 48 h post-transfection, and sonicated with three 

20s pulses. 10 μg cell lysate (in 5 μl of 0.02% Triton-X100 PBS) was added to the reaction 

mix (including 33 mM Tris-Cl pH7.5, 2 mM MnCl2, 107 μM NADP+) in total volume of 

180 μl at room temperature. 20 μl of 800 μM isocitrate was added to start the reaction. 

Absorbance at 340 nm was monitored for 1 h at 10 min intervals. NADPH production was 

calculated as: μmole of NADPH produced/ml sample/min = DA340×3×1000/6220. The 

enzyme activity assay was based on previous reports25.

Immunohistochemistry (IHC) staining to confirm IDH1 R132H mutation

Tissue samples were stained with anti-IDH1 R132H antibody (Dianova DIA-H09, 1:20) 

using Target Retrieval Solution (Dako) according to manufacturer’s instructions. Known 

IDH1 R132H positive controls and negative mouse IgG controls were run simultaneously. A 

detailed protocol is in Supplementary Method S4.

Pathway construction via systems biology analysis

Gene families that are grouped based on sequence or function were downloaded from the 

HGNC database26 and gene families with similar or complementary functions to 

significantly mutated genes in our AppKY cohort were extracted. Likewise, protein-protein 

interactions involving the gene-products of significantly mutated genes and their related 

gene families were extracted from protein interaction databases27,28 to find interaction 

partners. Both sets of genes were used to identify and expand mutually exclusive mutational 

patterns in the AppKY mutational dataset. The resulting mutually exclusive patterns were 

then used to construct pathways around IDH1 based on known interactions, guided by the 

principle that similar functions may be modified for cancer-related processes.

Results

Somatic alterations identified from the AppKY cohort

Overview of somatic alterations—The mean coverage of WES across the targeted 

regions was 104× with 92% of targeted bases being covered at ≥ 30× (Supplementary Table 

S4). Raw sequencing data are available at dbGaP (Accession: phs001651.v1.p1). We 

identified 16,005 somatic single-nucleotide variants and 217 somatic insertions or deletions 

(indels) across 51 matched tumor and normal pairs in the protein coding regions 

(Supplementary Table S5). Of those mutations, 12,117 were predicted to be non-silent 

mutations resulting in an amino acid change. The mean mutation rate in our cohort was 237 

non-silent mutations per patient, corresponding to 8.5 mutations per megabases (Mb). 

Among non-silent mutations, transitions and transversions at CpG sites were the most 
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commonly observed mutation types, with rates of 11.5 per Mb and 15.5 per Mb, 

respectively. For non-CpG sites, transitions were more frequently observed at C:G sites (3.2 

per Mb) than at A:T sites (1.8 per Mb). Similarly, transversions were more frequently 

observed at C:G sites (8.0 per Mb) than at A:T sites (2.0 per Mb). Mutation rate for each 

sample is provided in Supplementary Table S6.

Significantly mutated genes—We identified 3 genes that were significantly mutated 

(i.e., non-silent mutation rates higher than background mutation rates) in the AppKY cohort 

with an FDR < 0.2 using MutSigCV16: TP53, PCMTD1 and IDH1. To increase the 

statistical power of our analysis, we followed the approach of the TCGA SQCC report 3 and 

performed a secondary MutSigCV16 analysis to only consider genes causally implicated in 

cancer according to the COSMIC database29. This approach enabled us to identify 11 

additional genes that were significantly mutated with an FDR < 0.2: PIK3CA, RNF43, 

MLLT10, STK11, NFE2L2, DEK, POT1, ATP2B3, HRAS, HOXA11 and HOXA13 (Fig. 1). 

The description of each gene symbol used in this study is provided in Supplementary Table 

S7.

Copy number variation analysis—SCNAs were analyzed using WES data. We 

identified regions with significant SCNAs using Gistic2.019. There were 18 peaks of 

significant amplification and 34 peaks of significant deletions (FDR<0.25). Significantly 

amplified regions were 3q27 (MCF2L2), 8p11 (FGFR1, TACC1, WHSC1L1, LETM2, 

RNF5P1), 11q13 (CCND1-oncogene), 7q21.2 (CDK6), 19q13, 13q34, 5p15, 8q24 (MYC-

oncogene) and deleted regions were 9p21 (CDKN2A-tumor suppressor, CDKN2B), 8p23, 

10q23 (PTEN, CFL1P1, KLLN), 17p13, 4q28.2 (VEGFC), 22q13.2 (CHEK2). Consistent 

amplification patterns were seen in certain related sets of genes, such as stem cell renewal 

genes. Detailed SCNA results are provided in Supplementary Tables S8-S9, S10-S11 and 

Supplementary Fig. S2-S3.

Comparative mutational analysis with other cohorts—We first compared somatic 

mutations and SCNAs of AppKY lung SQCC to TCGA cohort3,30–32. We focused our 

comparison on significantly mutated genes in at least one cohort by the MutSigCV16 

analysis. Our comparative analysis presented here (Table 1) included somatic mutations 

(point mutations and indels) only in the calculation of gene alteration rate. The comparison 

including both somatic mutations and SCNAs is provided in Supplementary Table S12 with 

similar conclusions. Both cohorts showed similar rates of alterations for TP53 (68.6% 

AppKY, 80.9% TCGA, FDR q-value=1.000), PIK3CA (11.8% AppKY, 15.7% TCGA, FDR 

q-value=1.000), NOTCH1 (11.8% AppKY, 8.4% TCGA, FDR q-value=1.000) and PTEN 
(5.9% AppKY, 7.9% TCGA, FDR q-value=1.000).

Significant differences in mutation rates between the AppKY and TCGA cohorts were 

observed. The IDH1 mutations were observed in 11.8% of patients in the AppKY cohort. In 

contrast, only 1.1% of patients in the TCGA cohort had IDH1 mutations (FDR q-

value=0.039). Similarly, the AppKY cohort also showed a higher rate of mutations in 

PCMTD1 (17.6% AppKY vs. 3.9% TCGA, FDR q-value=0.045). Even after adjusting for 

age, gender, stage, and smoking via exact logistic regression, mutation frequencies are still 
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significantly different between the AppKY and TCGA cohorts for IDH1 (p-value=0.0024) 

and PCMTD1 (p-value=0.019).

We also compared the somatic mutations and SCNAs of AppKY to three other lung SQCC 

cohorts31–33, see Supplementary Table S12. Mutation rates of IDH1 and PCMTD1 were 

significantly higher in AppKY than all other cohorts.

Because IDH1 and PCMTD1 showed significantly higher alteration rates in the AppKY 

cohort, we performed an in-depth analysis of alterations seen in these two genes and in other 

genes based on previously observed mutually exclusive mutational patterns and/or either 

known or reasonably hypothesized interactions.

Clinically actionable mutations assessment—We investigated the somatic 

mutations/SCNAs observed in our cohort in association with FDA approved agents or 

published or ongoing clinical trials for non-small-cell lung carcinoma (NSCLC) or other 

tumor types. 5 subjects (10%) had actionable mutations, defined as FDA approved drugs 

(either for this indication or another cancer type), with a total of 8 somatic mutations/SCNAs 

events found in these 5 individuals. Additionally, we found that 33 out of 51 subjects (65%) 

had high (>20 mut/MB) or intermediate (6–20 mut/MB) tumor mutation burden (TMB), 

indicating an additional group of therapeutic choices for this population using checkpoint 

inhibitors. Overall, 65% of subjects had actionable mutations with FDA approved drugs 

and/or TMB that was high or intermediate. Many others had mutations that are under 

clinical investigation (Supplementary Table S13).

Analysis of alterations in IDH1 and associated pathways

Prediction of the effect of IDH1 mutations—Mutations in IDH1 and its homolog 

IDH2 coding for cytosolic and mitochondrial isocitrate dehydrogenases, correspondingly, 

are common in gliomas33 and myeloid neoplasms34, but rare in lung cancer. We observed 

multiple IDH1 variants: R132H, V178A, A307S and L352P, and the R132H variant was 

confirmed by immunohistochemistry (Supplementary Fig. S4). The IDH1 variant R132H 

(Supplementary Fig. S5A) is reported in a variety of cancers and the role of various R132 

missense substitutions has been studied extensively. These mutations are generally 

heterozygous, suggesting a gain-of-function by the enzyme, and supported by mechanistic 

studies demonstrating that the R132H variant protein has an aberrant enzymatic activity, 

converting α-ketoglutarate (2OG) to (R)-2-hydroxyglutarate (2HG)35. This enantiomer of 

2HG acts as an oncometabolite and interferes with cell differentiation36.

To understand potential consequences of the other detected IDH1 variants (V178A, A307S, 

and L352P) (Supplementary Fig. S5A), we applied a recently developed evolutionary 

approach37, based on the principle that most deleterious, and hence potentially disease-

promoting mutations, result in reduced evolutionary fitness and thus are selected against 

during evolution. Homologous genes derive from a common ancestor gene, while 

orthologous genes diverge after a speciation event in two different species; paralogous genes 

occur within a single species and diverge after a duplication event. Unlike orthologous 

genes, a paralogous gene evolves new function(s), making the distinction between the roles 

of orthologous and paralogous genes in disease critical for estimating disease risk using 
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molecular conservation37. We have identified both IDH1 and IDH2 orthologs in 

representative genomes from all major eukaryotic supergroups and built a maximum-

likelihood phylogenetic tree (Supplementary Fig. S6) from their multiple sequence 

alignment (Supplementary Fig. S7). Satisfactorily, we found that position corresponding to 

R132 in the human IDH1 protein is absolutely invariant, not only in orthologous sequences, 

but in all IDH homologs (Supplementary Fig. S6), which is consistent with deleterious 

effects of its substitution. Similar to R132, both A307 and L352 are also invariant residues in 

all IDH1 and IDH2 orthologs and all other IDH1 homologs with uncertain evolutionary 

history from all major eukaryotic supergroups (Fig. 2A and Supplementary Fig. S7). 

Because no substitutions in these positions occurred since the last eukaryotic common 

ancestor, any changes in these positions were predicted to be disease-promoting. While 

position V178 is not invariable among all homologs, the only allowable substitutions are 

V178I (occasionally found in both IDH1 and IDH2) and V178C (occasionally found only in 

IDH2) (Fig. 2A and Supplementary Fig. S7). No V178A substitution was ever detected in 

any IDH homologs, including the most distant ones, and might be cancer-promoting. We 

therefore tested the activity of these mutations using an enzymatic activity assay.

Effect of IDH1 mutations on enzyme activity—To test the function of IDH1 and the 

effect of different variants on IDH1 functions, we constructed plasmids with wildtype (WT) 

IDH1 and mutant IDH1 genes (pcDNA3.1-IDH1-A307S; pcDNA3.1-IDH1-R132H; 

pcDNA3.1-IDH1-V178A; and pcDNA3.1-IDH1-L352P). We tested the enzymatic activity 

of the WT and each IDH1 variant by analysis of isocitrate dehydrogenase activity that 

directly tests NADPH production. We found that R132H and L352P mutations significant 

attenuated net NADPH production of IDH1 (Fig. 2B), while A307S and V178 mutations had 

no significant effect. In the context of other R132 IDH1 studies, attenuation of net NADPH 

production by the R132H variant enzyme implies that production of 2HG in the oncogenic 

reaction consumes NADPH. These results suggest that R132H is a point mutation that 

disables or attenuates some enzymatic activity of IDH1.

Placing IDH1 within a functional pathway context—As previously mentioned, 

certain variants of IDH1 are known to produce the oncometabolite 2HG,38,39 which showed 

inhibitory effects on 2OG-dependent enzymes, with the histone demethylases (KDM) most 

sensitive to inhibition40. There are two classes of KDMs: 2OG-dependent and FAD-

dependent. The biochemical function of both classes of KDMs is to demethylate specific 

lysine residues in histones, leading to regulation of gene expression41. KDMs may also 

regulate gene expression via demethylation of other residues on histones42. Based on this 

information and our discovery of mutually exclusive mutational patterns between certain 

histone demethylases and methyl transferases, we proceeded to ask if mutations in IDH1 
share a mutually exclusive pattern with 2OG-dependent enzymes in this lung SQCC 

population. We found that mutations in 2OG-dependent KDMs are mutually exclusive with 

IDH1 (Fig. 3), suggesting that mutations in either IDH1 or the 2OG-dependent KDMs lead 

to a common inhibition of histone demethylation. The mutually exclusive mutational pattern 

involving IDH1 is statistically significant (P=0.018 based on the MEGSA21 method). This 

mutual exclusion is a novel observation in lung SQCC, which has not previously been 

reported. More than 35% of AppKY patients have mutations in 2OG-dependent protein 

Liu et al. Page 8

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



demethylases, the vast majority of them in KDMs (Supplementary Fig. S8). Furthermore, 

when all lysine demethylases are included in the analyses, only one FAD-dependent, 

KDM1A, is found to be mutated in one case. These data suggest that IDH1 mutations may 

regulate gene expression via inhibition of 2OG-dependent KDMs. We further evaluated the 

mutations in the KDMs to see if they had functional consequences and found mutations 

possibly affecting a variety of specific regions in each of the different KDMs. The mutations 

in the KDMs are not localized to a specific region, are highly dispersive across each gene, 

and functionally affect protein-protein interactions, post-translational modification sites, and 

metal-binding (Supplementary Table S14), suggesting a general loss-of-function. This loss-

of-function interpretation is further strengthened by the fact that IDH1 mutations responsible 

for the production of 2HG, which is inhibitory to KDMs40, are mutually exclusive with 

mutations in the above mentioned KDMs (Fig. 3). The mutational patterns observed between 

IDH1 and KDMs suggest that restoring the KDM 2HG-inhibited function in cases with 

certain IDH1 mutations may prevent cancer signaling through IDH143.

Analysis of alterations in PCMTD1 and associated pathways

Localization of PCMTD1 mutations—PCMTD1 has an N-terminal canonical iso-

aspartate methyl transferase (PCMT) domain, which in another protein has been shown to 

methylate iso-aspartate and aspartate residues on proteins including histone H4, and 

suggests a role in protein repair or turnover44,45. PCTMD1’s C-terminal domain is not well 

characterized, and the cellular function(s) of the gene-product are not known. In the AppKY 

dataset, mutations in PCMTD1 were always observed in the C-terminus coding region of the 

protein and never in the N-terminus region. These results are similar to other cancer studies 

including pancreatic cancer, melanoma, aggressive rhabdomyosarcoma and others 

(Supplementary Fig. 5B, Table 2 and Supplementary Table S15). Therefore, the C-terminus 

coding region of PCMTD1 appears to be a mutation hotspot.

Smoking signature in TP53 gene and possible relationship to PCMTD1 
mutations—A recent report indicates that lysine methyltransferases (KMTs), KMT2A and 

KMT2D, are upregulated by gain-of-function TP53 mutations (mutations in the DNA 

binding domain)46. PCMTD1 is also a methyltransferase (MT). As mentioned earlier, 

isoaspartate residues of TP53 have been shown to be methylated, and this in turn has been 

shown to regulate levels of TP53 as well as its function during DNA damage47. CUL5, a 

PCMTD1 interacting protein is recruited to target the TP53 protein for proteasomal 

degradation48. We explored the connections between PCMTD1 and TP53, the most 

frequently mutated gene in the AppKY dataset (69%). TP53 mutations in this cohort showed 

a strong signature for a smoking-associated mutational pattern, with frequent mutations in 

the protein regions 157–159 and 192–19349. We also found that the mutations within the 

smoking signature, specifically the 157–159 region frequently co-occur with mutations in 

PCMTD1 (Supplementary Table S16).

Discussion

From our analyses and other studies, there is growing evidence that numerous pathways 

converge on protein modification enzymes, including MTs and protein demethylases, that 
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function via direct protein modification, and in the regulation of gene expression via 

chromatin modification. Therefore, regulation of protein MTs and demethylases affects the 

methylation status of histones and other substrates such as signaling proteins50. For 

example, mutations in PI3K/AKT signaling regulate H3K4 methylation through KDM5A50, 

and PIK3CA and AKT phosphorylate KDMs and KMTs, which alters their functions and 

renders them oncogenic50,51. Thus, these methyltransferases and demethylases may be 

promising targets in cancer therapy.

The observation of a smoking-associated mutational signature in TP53 is not surprising52 

given the high rate of smoking in AppKY, and this signature appears to frequently co-occur 

with mutations in PCMTD1. We hypothesize that PCMTD1 could function as a regulator of 

TP53, although further study will be needed to examine this hypothesis. In the AppKY 

population, concentrations of arsenic, chromium and nickel are higher than the US national 

levels53. The toxicity of carcinogenic metals has been shown to be mediated by altering 

histone methylation via 2OG-dependent enzymes54,55. In addition to the known link to 

tobacco exposure, we hypothesize that environmental exposures relevant to AppKY may be 

contributing to the development of this (R)-2-hydoxyglutarate-specific cancer mechanism in 

our cohort. This could help explain the IDH1 and 2OG-dependent KDMs mutually exclusive 

pattern seen only in the AppKY cohort.

This study is the first characterization of the genomic alterations in lung SQCC from 

AppKY residents. Our data shares several findings with the TCGA, namely high rates of 

TP53, NOTCH1, PTEN and PI3KCA, the complexity of genomic patterns, and well-

recognized pathways upregulated in SQCC lung cancer. However, the AppKY SQCC has a 

specific genetic signature characterized by an increased number of IDH1 and PCMTD1 
mutations, as compared to the TCGA. The findings in this study have important mechanistic 

implications for how SQCC lung cancers develop in AppKY residents and provide insights 

into treatment. The 10% potentially actionable mutations/SCNAs observed in our AppKY 

cohort (based on FDA-approved drugs) coupled with 65% of subjects with high or 

intermediate mutation burden indicates that a majority of these patients have potential 

molecular targets for treatment (Supplementary Table S13) including ERBB2 amplification 

with FDA approved monoclonal antibodies and tyrosine kinase inhibitors; PDGFRA, and 

TSC2 where targeted agents are approved in other tumor types; as well as other mutations 

with targeted therapies under active investigation (HRAS, KRAS, PTEN, NOTCH1, NF1, 

BRAF). The current study adds to the body of literature that supports drug development 

based on mutations in lung SQCC and highlights genomic population differences that are 

relevant. By utilizing therapies specific to actionable mutations that are common in our 

AppKY population, we can provide a more personalized approach through directed drug 

discovery targeting highly mutated genes, such as IDH1 and PCMTD1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Significantly mutated genes in lung SQCC.
Significantly mutated genes (FDR<0.2) from whole-exome sequencing of 51 samples from 

Appalachian Kentucky patients. The number and percentage of samples with mutations in 

each gene are shown on the left. Samples are displayed as columns, with the overall number 

of mutations, smoking status, and tumor stage plotted at the top.
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Figure 2. Functional analysis of IDH1 variants.
(A) Segments of multiple sequence alignment for representative IDH1 (upper set) and IDH2 

(lower set) orthologs, showing conservation of Arg132, Val178, Ala207, and Leu352. 

Numbers are provided for a human IDH1 protein. A complete alignment and sequence 

accession numbers are shown in Supplementary Fig. S7. Positions 132, 178, 307, and 352 

are marked and highlighted in yellow, whereas substitutions in these positions are 

highlighted in blue. For all other positions, residues that are identical to those in the human 

IDH1 are highlighted in gray. Human, Homo sapiens; Frog, Xenopus tropicalis; Fish, 

Takifugu rubripes; Nematode, Caenorhabditis elegans, Worm, Saccoglossus kowalevskii; 
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Lancelet, Branchiostoma floridae. (B) Effect of IDH1 variants on enzyme activity. Left: 

effect of R132H and A307S mutants; Right: effect of V178A and L352P mutants. The two-

sample t-test was performed to compare each IDH1 mutant versus the wild type and the 

Bonferroni correction was used for multiple comparison adjustment. • Statistically 

significant reductions of NADPH production comparing IDH1 R132H versus wild type; 

♦Statistically significant reductions of NADPH production comparing IDH1 L352P versus 

wild type.
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Figure 3. IDH1 mutations and IDH1 associated pathway analysis.
Variant IDH1 may produce the oncometabolite 2HG that inhibits 2OG-dependent 

dioxygenases; the 2OG-dependent dioxygenases are highly sensitive to inhibition by 2HG. 

Mutations in IDH1 and 2OG dependent enzymes are mutually exclusive. The number and 

percentage of samples with mutations in each gene are shown on the left. Samples are 

displayed as columns.
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Table 1.

Somatic alteration rate comparison between AppKY and TCGA of Lung SQCC. The comparison focuses on 

genes that were identified as significantly mutated based on the MutSigCV analysis in at least one of the two 

cohorts.

Hugo Symbol* AppKY (%) TCGA (%) p-value
§

q-value
¥

IDH1Ⓚ 11.80% 1.10% 0.002 0.039

PCMTD1Ⓚ 17.60% 3.90% 0.002 0.045

DEK 5.90% 0.00% 0.011 0.200

NFE2L2⊕ 3.90% 15.20% 0.032 0.584

CDKN2A 鐗 3.90% 14.60% 0.050 0.830

HOXA11 3.90% 0.00% 0.049 0.830

TP53⊕ 68.60% 80.90% 0.082 1.000

PTEN 鐗 5.90% 7.90% 0.770 1.000

PIK3CA⊕ 11.80% 15.70% 0.655 1.000

KEAP1 鐗 9.80% 12.40% 0.806 1.000

KMT2D 鐗 9.80% 19.70% 0.142 1.000

HLA-A 鐗 7.80% 3.40% 0.236 1.000

NOTCH1 鐗 11.80% 8.40% 0.424 1.000

RB1 鐗 2.00% 6.70% 0.307 1.000

RNF43 5.90% 1.70% 0.126 1.000

MLLT10 7.80% 3.90% 0.269 1.000

STK11 3.90% 1.70% 0.309 1.000

POT1 5.90% 2.20% 0.186 1.000

ATP2B3 3.90% 2.20% 0.617 1.000

HRAS 5.90% 2.80% 0.381 1.000

HOXA13 3.90% 0.60% 0.125 1.000

*
Ⓚ: significantly mutated in AppKY only; Ⓣ: significantly mutated in TCGA only; ⊕: significantly mutated in both cohorts

§
The p-value was based on the Fisher’s exact test to compare percentages of samples that had somatic alterations (somatic mutations or SCNAs) in 

the two cohorts.

¥
The q-value was based on the Benjamini–Hochberg procedure. Genes with significant differences (FDR<0.2) in the alteration rate are shown in 

bold.
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Table 2.

PCMTD1 mutations. The PCMTD1 mutations reported in the literature are in the C-terminal SOCS Box. 

PCMTD1 mutations in cancers are rarely found in the PCMT domain. The vast majority of mutations (except 

1 case in TCGA Lung SQCC and 1 case in Glioblastoma) occur in the SOCS Box.

SOCS Box (240–356)

Study PMID Cancer PCMT (1–239) BC (~16) Spacer (~82) Cul5 Box (~15) % of cases

22960745 Lung SQCC Yes No Yes Yes 4%

24793135 Aggressive Rhabdomyosarcoma No No Yes No 65%

22622578 Melanoma No Yes Yes Yes 28%

22610119 Prostrate No No No Yes 1%

24816255 Gastric Carcinoma No No Yes No 7%

25855536 Pancreatic Cancer No Yes Yes No 7%

24120142 Glioblastoma Yes No Yes No 1%

AppKY Lung SQCC No No Yes Yes 18%
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