
STATE OF THE ART

Imaging Advances in Chronic Obstructive Pulmonary Disease
Insights from the Genetic Epidemiology of Chronic Obstructive Pulmonary
Disease (COPDGene) Study
Surya P. Bhatt1, George R. Washko2, Eric A. Hoffman3, John D. Newell, Jr.3, Sandeep Bodduluri1, Alejandro A. Diaz2,
Craig J. Galban4, Edwin K. Silverman5, Raúl San José Estépar6, and David A. Lynch7; for the COPDGene Investigators
1UAB Lung Imaging Core and UAB Lung Health Center, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama
at Birmingham School of Medicine, Birmingham, Alabama; 2Division of Pulmonary and Critical Care Medicine, 5Channing Division of
Network Medicine, and 6Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts;
3Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa; 4Department of Radiology and Center for
Molecular Imaging, University of Michigan, Ann Arbor, Michigan; and 7Department of Radiology, National Jewish Health, Denver, Colorado

ORCID ID: 0000-0002-8418-4497 (S.P.B.).

Abstract

The Genetic Epidemiology of Chronic Obstructive Pulmonary
Disease (COPDGene) study, which began in 2007, is an ongoing
multicenter observational cohort study of more than 10,000 current
and former smokers. The study is aimed at understanding the
etiology, progression, and heterogeneity of chronic obstructive
pulmonary disease (COPD). In addition to genetic analysis, the
participants have been extensively characterized by clinical
questionnaires, spirometry, volumetric inspiratory and expiratory
computed tomography, and longitudinal follow-up, including
follow-up computed tomography at 5 years after enrollment. The
purpose of this state-of-the-art review is to summarize the major
advances in our understanding of COPD resulting from the imaging
findings in the COPDGene study. Imaging features that are
associated with adverse clinical outcomes include early interstitial
lung abnormalities, visual presence and pattern of emphysema, the
ratio of pulmonary artery to ascending aortic diameter, quantitative

evaluation of emphysema, airway wall thickness, and expiratory gas
trapping. COPD is characterized by the early involvement of the
small conducting airways, and the addition of expiratory scans has
enabled measurement of small airway disease. Computational
advances have enabled indirectmeasurement of nonemphysematous
gas trapping. These metrics have provided insights into the
pathogenesis and prognosis of COPD and have aided early
identification of disease. Important quantifiable extrapulmonary
findings include coronary artery calcification, cardiac morphology,
intrathoracic and extrathoracic fat, and osteoporosis. Current
active research includes identification of novel quantitative
measures for emphysema and airway disease, evaluation of dose
reduction techniques, and use of deep learning for phenotyping
COPD.
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The Genetic Epidemiology of Chronic
Obstructive Pulmonary Disease
(COPDGene) study, which began in 2007, is
a large multicenter observational cohort
study of more than 10,000 current and
former smokers, the aim of which is to
identify the etiology, progression, and
heterogeneity of chronic obstructive
pulmonary disease (COPD). Although
searching for genetic associations with
COPD has been a central goal since the
initiation of COPDGene, many other
aspects of COPD have been studied
as well. With participants undergoing
extensive characterization and computed
tomographic imaging at two time points
approximately 5 years apart, the
COPDGene study has served as a rich
resource of chest imaging data. The study is
ongoing, and further follow-up evaluation of
the cohort, including computed
tomography (CT), is planned at 10 years
after enrollment. More than 80 imaging
papers have resulted from the COPDGene
study, and these have substantially advanced
knowledge of the underlying disease
processes. CT complements spirometry,
which is a global measure of the presence of
disease and adds to disease characterization
by providing anatomic localization,
differentiating airway disease from
emphysema, characterizing emphysema
subtypes, and evaluating extrapulmonary
manifestations of COPD. Novel quantitative
metrics have provided insights into the
pathogenesis and prognosis of COPD, and
they have aided early identification of
disease. Table 1 summarizes the CT metrics
developed or tested in COPDGene. Reviews
of important imaging findings have recently
been published elsewhere (1–3). The
purpose of this review is to provide a
summary of the most important imaging-
related findings resulting from or
confirmed in the COPDGene study
and to highlight key topics for future
imaging research, including early detection
of disease, detecting imaging biomarkers

for predicting disease progression as
well as prediction of exacerbations,
and identifying phenotypes for targeted
therapy.

COPDGene Cohort

The COPDGene study is an ongoing
multicenter cohort study of 10,192
current and former smokers with at least
a 10–pack-year smoking history enrolled
at 21 centers across the United States
(www.clinicaltrials.gov [NCT00608764]) (4).
Participants underwent extensive clinical
characterization and volumetric CT at
baseline (details in the online supplement),
and approximately 5,800 returned for a
similar follow-up evaluation 5 years later. A
10-year follow-up evaluation is currently
being organized. This cohort has a number
of unique features that have made it a
particularly rich dataset for understanding
the imaging features of smoking-related
thoracic diseases. Volumetric computed
tomographic scans were acquired at
full inspiration and end expiration (4).
Although spirometric gating was not used
for the scans, all participants were coached
to full inspiration and end expiration. The
cohort enrolled a high number (33%) of
African Americans, and approximately half
of the subjects had COPD at enrollment. In
addition, 457 lifetime nonsmokers were
also enrolled as control subjects. Follow-up
data on exacerbations and vital status
were prospectively obtained via periodic
contact (5).

Visual Assessment of Lung
Parenchyma

Visual inspection of computed tomographic
images provides a qualitative
characterization of lung parenchyma and
airway disease that is complementary to the
global assessment of disease gleaned from
spirometry and density-based quantitative

measures (Figure 1 and Table 2). Data from
COPDGene were analyzed at a workshop
of 33 pulmonologists and 25 radiologists
to evaluate the agreement in subjective
assessment of visual abnormalities between
expert readers on a semiquantitative
scale and on quantitative measures (6).
The concordance between visual and
quantitative assessment of emphysema, gas
trapping, and bronchial wall thickening was
75%, 87%, and 65%, respectively. Visual
subtypes can reliably be estimated at the
lobar level with good agreement between
readers (7). These observations were
instrumental in the development of the
Fleischner Society statement on CT-
definable subtypes of COPD (8). This
statement provides a schema for
quantification of visual estimates of disease
subtypes, thus allowing comparison across
studies. Emphysema classifications include
centrilobular (further subclassified as trace,
mild, moderate, confluent, and advanced
destructive emphysema), panlobular, and
paraseptal (further subclassified as mild or
substantial) (Table 2). The classification
also allows quantification of other
abnormalities, including bronchial wall
thickening (probable or definite),
centrilobular nodules, bronchiectasis,
pulmonary arterial enlargement, tracheal
abnormalities, and interstitial lung
abnormalities (ILAs) (8). Studies from
COPDGene have shown that this
classification system is useful and
correlates with important physiologic and
respiratory morbidity outcomes, and
visual estimates provide information
complementary to quantitative CT for
disease characterization (9).

Visual estimates of emphysema are
inversely associated with DLCO, independent
of quantitative emphysema (10). A study
of 3,156 COPDGene subjects showed
that the presence of any degree of visual
emphysema beyond trace is associated with
an increased risk of death, even after
adjustment for quantitative severity of
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Table 1. Summary of Quantitative Metrics for Parenchymal and Airway Disease Based on Computed Tomography Used in the
COPDGene Study

Quantitative Metric Definition Comments

Bronchial measures

Segmental or subsegmental
bronchial wall thickness

Average thickness of a given airway segment,
measured on curved multiplanar reformat

Correlates with increased risk of COPD
exacerbation

WA% (34, 35) Total area of airway2 [(area of airway
lumen)/total area of airway]3 100

Correlates with physiologic airflow obstruction and
with impaired respiratory quality of life

Pi10 (34) The square root of the wall area of a theoretical
airway with internal perimeter 10 mm, derived
by plotting the internal perimeters of all
measured airways against the square root of
the wall area of airways

A useful summary measure of airway wall
thickness, adjusted for airway size

Measures of emphysema

LAA-950 Percentage of lung voxels with CT attenuation
less than or equal to 2950 HU, measured on
inspiratory CT

Correlates with physiologic airflow obstruction and
with impaired respiratory quality of life. Several
genetic markers have been identified for these
measures. May be disproportionately elevated in
current cigarette smokers, presumably owing to
smoking-related lung inflammation

Perc 15 CT attenuation at the 15th percentile of the lung
CT histogram

Lung mass (27) Lung mass (g) = [(HU1 1,024)/1,024]3 voxel
volume3 number of voxels

—

Lung density at 15th percentile,
corrected for lung volume

Perc 15 converted to lung density in g/L and
corrected for baseline total lung volume

Can be used to evaluate progression of
emphysema on sequential scans

Local histogram measures Can be used to estimate the severity of different
patterns of emphysema

—

Measures of airway disease
Excessive central airway
collapse (46)

.50% decrease in cross-sectional area of
the trachea between inspiration and end
expiration

Associated with increased incidence of respiratory
exacerbations

LAA-856exp Percentage of lung voxels with CT attenuation
less than or equal to 2856 HU measured on
expiratory CT scan

Measures of gas trapping; correlate well with
physiologic airflow obstruction but do not
discriminate between emphysematous and
nonemphysematous gas trappingE/I attenuation ratio (47) Ratio of mean lung attenuation on expiratory

and inspiratory scans

E/I volume ratio (47) Ratio of lung volume on expiratory and
inspiratory scans

PRM (50) Coregistration of inspiratory and expiratory
images on a voxel-by-voxel basis to examine
the change in density between inspiratory and
expiratory images

This method is used to separate gas trapping due
to emphysema from gas trapping due to small
airways obstruction

PRMfSAD (50) Percentage of lung voxels with CT attenuation
greater than 2950 HU on inspiration but less
than or equal to 2856 HU on expiration on
coregistered scans

Measure of nonemphysematous gas trapping,
presumed due to small airway obstruction. This
is an independent predictor of lung function
decline

ND-E/I (49) Ratio of mean lung density at end expiration to
end inspiration in lung voxels with normal
density (inspiratory attenuation greater than
2910 HU and expiratory attenuation greater
than 2856 HU)

A potential measure of early small airway disease in
lung that would have been classified as normal
by traditional metrics

Jacobian determinant (55) Derived from the deformation of lung volumes at
end of respiratory phases to map local volume
change between inspiration and expiration

Provides a measure of the level of lung expansion
and contraction with respiration

MAL2 (57) The percentage of normal voxels within 2-mm
distance from emphysematous voxels

Mean Jacobian determinant of these voxels is
associated with subsequent FEV1 decline

(Continued )
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emphysema (11). A further COPDGene
paper evaluating the relationship between
COPD and lung cancer showed that
visually evident emphysema is associated
with a 2.3-fold increased risk of future
development of lung cancer, but standard
quantitative CT measures were not
associated with increased risk (12). This
discordance between quantitative and

visual measurement emphasizes the
importance of developing more sensitive
and more specific quantitative metrics of
emphysema.

COPDGene has led to the increased
recognition of a category of smokers
who have a preserved FEV1/FVC ratio
but reduced FEV1 (preserved ratio with
impaired spirometry) (13). Compared

with subjects with normal spirometry,
subjects with preserved ratio with impaired
spirometry have increased prevalence of a
striking range of comorbidities, including
chronic bronchitis, coronary artery disease,
diabetes, hypertension, obesity, and
gastroesophageal reflux (13). Associated
imaging features include a higher frequency
of unilateral diaphragm eventration, greater
airway wall thickening, centrilobular
nodules, reticular abnormalities, paraseptal
emphysema, linear atelectasis, kyphosis,
and smaller internal transverse thoracic
diameter compared with control subjects
(14). It is important to recognize these
imaging features as contributors to spirometric
restriction.

Quantitative Phenotyping of
Emphysema

Emphysema can be objectively measured by
quantifying the fraction of low-attenuation
areas of the lung below a selected Hounsfield
unit (HU) density threshold. CT
abnormalities are found in a substantial
proportion of smokers without airflow
obstruction, suggesting that the effects
of cigarette smoking are substantially
underestimated when spirometry alone is
relied on for diagnosis; these findings have
been confirmed in other cohorts (15, 16).
A threshold of 2950 HU is the standard

Table 1. (Continued )

Quantitative Metric Definition Comments

Vascular measures

PA/A ratio (67) Ratio of the diameter of the pulmonary artery
to the diameter of the aorta

An indirect measure of pulmonary hypertension.
Correlates with increased frequency of
exacerbations of COPD

BV5 (74) The aggregate blood volume in the small
pulmonary vessels ,5 mm2, a measure of
pulmonary vascular disease

Correlates with pulmonary vascular pressure

Extrapulmonary measures

Coronary artery
calcification (79)

Agatston-based scoring system Coronary calcification scoring on nongated scans
correlates with gated scores

Osteoporosis (88) Measurement of bone mineral density on
thoracic CT scans

Bone density is substantially reduced in cigarette
smokers

Chest wall composition (100) Automated measurement of pectoralis muscle
and subcutaneous fat

Pectoralis area is associated with several indices of
COPD severity, including mortality

Definition of abbreviations: COPD = chronic obstructive pulmonary disease; COPDGene =Genetic Epidemiology of Chronic Obstructive Pulmonary
Disease; CT = computed tomography; E/I = expiratory/inspiratory; HU =Hounsfield units; LAA = low-attenuation area; MAL2 =mechanically affected lung
within 2 mm of emphysematous voxels; ND-E/I = normal-density E/I; PA/A = pulmonary artery/aorta; Perc 15 = lung attenuation at 15th percentile; PRM=
parametric response mapping; PRMfSAD = PRM measure of functional small airway disease; WA%=wall area percentage.
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Figure 1. Visual analysis of parenchymal emphysema. Kaplan-Meier survival curves show distinct
differences in survival for different emphysema patterns based on the Fleischner Society grading
system: the best survival was with absent and trace emphysema (top); those with moderate
centrilobular emphysema (center) had intermediate survival; and those with confluent or advanced
destructive emphysema (bottom) showed poor survival. These differences persisted after adjustment
for potential covariates. Adapted by permission from Reference 11.
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accepted threshold, and it has been
validated by correlation with histopathology
(17, 18). Data from 4,542 COPDGene
participants with and without COPD
confirmed that quantitative emphysema
correlates significantly with both FEV1/FVC
and FEV1 (r =20.76 and 20.67,
respectively) (19). In a separate analysis of
1,200 participants with COPD, quantitative
emphysema was associated with respiratory
quality of life measured by the St. George’s
Respiratory Questionnaire (SGRQ) (20).
Quantitative emphysema was also associated
with the BODE (body mass index, airflow
obstruction, dyspnea and exercise capacity)
index, a multidimensional score predictive
of mortality in patients with COPD, and the
effect of emphysema on the BODE score was
greater than the effect of airway disease
(20, 21). The enrichment of the cohort with
African Americans has enabled comparisons
of racial differences. In a study of 1,063
subjects with moderate to severe COPD,
African Americans had similar lung
function impairment compared with non-
Hispanic whites, with less CT emphysema
but similar airway wall thickness and gas
trapping (22). Sex differences also exist for
emphysema. Women with early-onset
COPD had emphysema similar to that
of men despite a markedly lower smoking
burden, suggesting greater susceptibility
to cigarette smoking in women (23).
COPDGene data from normal
nonsmoking participants have allowed

derivation of normative data for
inspiratory and expiratory lung densities
by age and sex, as well as normal ranges
for lobar densities and lobar size, which
may be useful in assessing regional lung
dysfunction and response to interventions
such as lung volume reduction procedures
(24, 25). Sources of variation in density-
based measures include inspired lung
volume, scanner make and model,
increased body mass index (BMI), and
increased lung density in individuals who
are currently smoking (26, 27). Further
information on standardization of density-
based measures may be found in the online
supplement.

Emphysema quantification using HU
density thresholds is based on regional air
content. This is influenced by the volume of
scan acquisition as well as other processes
that affect density, such as active cigarette
smoking (26). Recognizing that voxel
density is a composite of multiple processes
with differing effects on lung density,
including the air and tissue content,
lung mass was separately calculated in
the COPDGene cohort by converting
HUs to grams of lung tissue using the
following formula: lung mass (in g) =
[(HU1 1,024)/1,024]3 voxel volume3
number of voxels (27). Participants with
Global Initiative for Chronic Obstructive
Lung Disease (GOLD) spirometry grade 1
had greater lung mass than both smokers
with normal lung function and those with

GOLD spirometry grades 2 to 4 disease.
Although the analysis was cross-sectional,
these findings suggest that lung mass
changes in COPD are bimodal, with an
early increase likely resulting from ongoing
lung inflammation and a later decrease
resulting from tissue destruction outpacing
inflammation (27).

Density threshold–based quantitative
CT does not provide information on the
visual CT emphysema subtypes, and visual
estimation is associated with interrater
variability. In COPDGene, regions of
interest (ROIs) on inspiratory scans were
first labeled in a training dataset, and these
labels were used to learn a k-nearest
neighbor classifier based on location and
local histogram-based assessment of lung
density that would classify new ROIs into
one of six categories (nonemphysematous
areas; mild, moderate, and severe
centrilobular emphysema; advanced
destructive emphysema; and pleura-based
emphysema) (Figure 2) (28). Compared
with density-based quantitation of overall
emphysema, these local histogram-based
measures of distinct CT subtypes in
COPDGene were associated with lung
function, dyspnea, and quality of life.
Local histogram-based quantification
of pleura-based emphysema also
provides a quantification of the risk of
pneumothorax (29). Pneumothorax was
reported by 3.2% of the participants in the
COPDGene cohort, and the risk of past

Table 2. Visual Features Evaluated in the COPDGene Study

Visual Metric Definition Comments

Centrilobular emphysema (8) Focal lucencies in the lung, classified as
trace, mild centrilobular, moderate
centrilobular, confluent, and advanced
destructive

Present in up to 44% of cigarette smokers
without COPD. Associated with increased
risk of mortality and increased risk of lung
cancer

Panlobular emphysema Diffuse decrease in density in the lung, often
lower lung predominant

This term is usually reserved for emphysema
occurring in patients with known alpha-1
antitrypsin deficiency

Paraseptal emphysema Subpleural lucencies, classified as mild or
substantial

—

Bronchial wall thickening Subjective thickening of the walls of bronchi,
classified as probable or definite

—

Interstitial lung abnormalities (60) Nondependent abnormalities affecting
.5% of any lung zone, including reticular,
ground-glass changes, centrilobular nodularity,
nonemphysematous cysts, honeycombing, and
traction bronchiectasis

Associated with restrictive lung physiology and with
increased risk of mortality

Definition of abbreviation: COPD = chronic obstructive pulmonary disease; COPDGene = Genetic Epidemiology of COPD.
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pneumothorax increased by 5% for
each 1% increase in pleura-based
emphysema.

Quantitative Phenotyping of
Airway Disease

Airway disease has historically been
measured on the basis of visual inspection,
but it is subject to higher interobserver
variability than visual measures of
emphysema. Newer quantitative tools for
airway disease are described below.

Medium and Large Airways
Airflow resistance in COPD arises primarily
in the small conducting airways less than
2 mm in diameter, but these airways cannot
be visualized with current CT capabilities.
The site of these conducting airways varies,

and it can range from the 4th to the 12th
generations, depending on the size of the
individual subject’s tracheobronchial tree
(30). Based on Weibel’s model of airway
branching, which states that airways have
a dichotomous branching pattern, and
assuming that the rate of reduction in
lumen size between successive bronchiolar
generations is uniform, segmental and
subsegmental airway sizes in normal
control subjects were used to calculate the
projected generation at which the airways
were likely to be less than 2 mm in
diameter. In normal subjects, this ranged
from the 6th to the 10th generations, and
this projected branching generation
number was significantly associated with
FEV1 independent of lung size and airway
lumen size (31). Smaller size of the central
airways was associated with lower FEV1,
and those with lower FEV1 had a lower
number of airway generations to reach the

small conducting airways. These findings
suggest that susceptibility to pathological
involvement of conducting airways and
hence airflow obstruction might be
related to the innate variability of the
tracheobronchial tree. As a result of
inflammation, COPD is characterized
by gradual airway wall thickening and
narrowing of lumen, owing to a combination
of mucous gland enlargement, smooth
muscle hypertrophy, and airway wall
fibrosis, a process termed airway remodeling
(32). Because the inflammation and
remodeling processes are thought to arise
in the small airways but similarly affect
the larger airways, airway remodeling in the
segmental and subsegmental airways is used
as a surrogate measure of small airway
remodeling (33).

A number of metrics are in use to
estimate airway size, including direct
measures of airway wall thickness and

Normal

Mild CLE

Moderate CLE

Confluent CLE

Advanced Destructive CLE

Figure 2. Emphysema subtyping with local histogram. Emphysema subtyping using the local histogram approach for a 61-year-old man with advanced
emphysema (low-attenuation area percentage, 38.2%), FEV1 percent predicted of 26.7%, and body mass index of 16.6 kg/m2. The top panels show
computed tomographic scans for axial and coronal views, and the bottom panels show emphysema subtype labels overlaid on top of the computed
tomographic images. Nonemphysematous parenchyma is shown in red, mild centrilobular emphysema (CLE) in yellow, moderate CLE in cyan, confluent
CLE in purple, and advanced destructive emphysema in dark blue.
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airway wall area percent [WA% = (total area
of airway2 area of airway lumen)/total
area of airway3 100] (34, 35). Summary
measures of airway size are provided by the
Pi10 and Pi15, which are the square roots of
the wall areas of theoretical airways
with internal perimeters of 10 mm and
15 mm, respectively (34). Results from the
COPDGene study confirmed that these
airway metrics are independently associated
with respiratory quality of life measured
using SGRQ. When measures were
standardized for variability, 1-unit increases
in segmental airway wall thickness, WA%,
and Pi10 were associated with 1.9-, 1.5-,
and 2.8-unit increases in the SGRQ score,
respectively (20). These measures of
airway thickness are also associated
with chronic bronchitis (35), with
bronchodilator responsiveness (36),
and with a paradoxical response to
bronchodilators (37), suggesting that
they can predict airway reactivity.
These measures can be extracted in a
fully automated fashion, thus permitting
fast-throughput analysis (38).

Although WA% has strong associations
with lung function and respiratory
morbidity, it does not provide complete
information on the relative remodeling of
airway lumen and airway wall. In addition,
WA% has a narrow range across the
spectrum of normal to severe lung disease,
limiting its utility in assessing response to
therapy and longitudinal changes over time
(39). In an analysis of 5,179 smokers with
and without COPD as well as normal
control subjects, smokers with the greatest
segmental WA% had the greatest degree of
airflow obstruction (40). Increases in WA%
with progressively greater disease stage
were due to a greater reduction in overall
airway size with a more modest decrease in
wall thickness, suggesting that the increase
in WA% with worsening COPD is likely
due to a combination of reduced airway size
and luminal encroachment by thickened
airway walls, findings subsequently
confirmed in another large cohort
study (41).

The differences in native airway
anatomy are also observed as distinct sex
differences. Among 2,047 subjects, women
had smaller lumen area, smaller internal
diameter, and less wall thickness than men
in the segmental and subsegmental airways
(42). However, the WA% was greater in
women than in men. These factors may
explain, in part, the sex differences in

susceptibility to developing airflow
obstruction and COPD (42). Smaller
airways are also seen in subjects with a
history of childhood asthma, and
these subjects are at greater risk of
persistent airflow obstruction in
adulthood (43).

COPDGene also shed light on the
interdependence of airway caliber and lung
parenchyma. Airway diameter is expected
to increase from end expiration to full
inspiration; however, an inverse relationship
between airway diameter change with
respiration and emphysema was shown,
especially in those with emphysema-
predominant computed tomographic
scans as opposed to airway-predominant
computed tomographic scans, and this
decrease in airway diameter change was
progressively worse with greater airflow
obstruction severity grade (44). This might
partly explain the lower response to
bronchodilators seen in emphysema-
predominant disease (45).

In addition to the segmental and
subsegmental airways, the large central
airways are also involved in smokers,
especially those with COPD, owing to either
cartilaginous weakening or redundancy of
the posterior membranous wall (46).
Although expiratory central airway collapse
is traditionally diagnosed on the basis of
bronchoscopy or using dynamic CT, results
from the COPDGene study indicate that
expiratory central airway collapse can be
identified on dual-volume static computed
tomographic scans, which are likely more
specific for more severe collapse. In a study
of 8,820 subjects, expiratory central airway
collapse on CT was present in 5% of all
smokers and was more prevalent in those
with COPD, and its presence was associated
with worse respiratory quality of life as well
as a greater frequency of acute respiratory
events (46).

Small Airway Abnormality and
Expiratory Gas Trapping
With limitations in visualizing small airways
directly, gas trapping on expiratory CT has
been used as an indirect measure of small
airway disease, but this metric is influenced
by underlying emphysema (Figure 3). A
number of studies using data from the
COPDGene study have advanced the
capability to estimate small airway disease.
The ratio of the expiratory to inspiratory
mean lung density (E/I) is an alternative
measure of gas trapping that correlates

with FEV1/FVC (r =20.62) and FEV1

percent predicted (r =20.73) and also
with respiratory morbidity indices,
including dyspnea, quality of life, and
6-minute-walk distance (47). The E/I
ratio of mean lung density correlates
with spirometric indices of small airway
disease and airway resistance on body
plethysmography (48). The E/I ratio may
also be applied to areas of the lung that
have normal inspiratory and expiratory
lung density (greater than 2910 HU on
inspiration and greater than 2856 HU
on expiration), and a new metric termed
the normal density E/I (ND-E/I) was
calculated in 8,034 subjects (49). Among
smokers without airflow obstruction,
26.3% had ND-E/I above the 90th
percentile of normal, and this subthreshold
measure that did not meet criteria for
mild disease by traditional thresholds was
independently associated with FEV1, SGRQ
score, 6-minute-walk distance, and the
BODE index, as well as with FEV1 change
on follow-up. These metrics provide a more
homogeneous measure of gas trapping
adjusted for emphysema, but they do not
provide spatial localization of small airway
disease.

Parametric response mapping (PRM)
is an application of image matching in
which inspiratory and expiratory images
are deformed and coregistered voxel to
voxel, and all voxel pairs are classified on
the basis of traditional CT density
thresholds for emphysema (50). Voxels that
are less than 2950 HU on inspiratory CT
and less than 2856 HU on expiratory CT
are termed “emphysematous voxels”
(PRMEmph), and voxels that are greater
than 2950 HU on inspiratory CT and
less than 2856 HU on expiratory CT
are termed “functional small airway
disease” (PRMfSAD) and represent areas
of nonemphysematous gas trapping
(Figure 3). PRM metrics provide spatial
information on the distribution of
emphysema and small airway disease,
thus permitting measurement and
tracking of these disease components
separately. In a study of 1,508 COPDGene
participants, PRMfSAD measured at
baseline was associated with subsequent
FEV1 decline in smokers without airflow
obstruction as well as in those with early
disease, whereas both PRMEmph and
PRMfSAD were associated with change in
lung function in those with more severe
disease (51).
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Mechanical and Functional
Evaluation of the Lungs

Although CT metrics of emphysema
and airway disease correlate with airflow
obstruction on spirometry, disease metrics
derived from static single-volume
computed tomographic scans do not
provide complete information on
parenchymal abnormalities. In addition to
improving spatial localization as described
above, lung deformation between inspiration
and expiration on image matching can also
be used to derive mechanical and functional
measures of lung parenchyma. One such
metric is the Jacobian determinant, ameasure
of voxel-level volume change with respiration
(52, 53). The Jacobian determinant has
values that range from 0 to infinity; values
greater than 1 indicate local expansion,
values less than 1 imply local contraction,
and a value of 1 represents neither local
expansion nor contraction. As a measure of
regional ventilation, the Jacobian determinant
improves the agreement between spirometry
and static CT measures of emphysema
(54) and is independently associated
with SGRQ score, the BODE index, and
mortality (55).

COPDGene shed light on the role of
the mechanical effects of emphysematous
lung on surrounding normal lung in
the progression of disease, especially in
early disease, whereby alveolar rupture
exposes the surrounding normal alveoli to
progressively greater mechanical forces,
eventually resulting in alveolar rupture (56).
The Jacobian determinant was lower not
only in the emphysematous areas but also
in the normal lung regions (57). This
mechanical effect appeared to extend 2 mm
out from the emphysematous regions,
and the mean Jacobian determinant of
this mechanically affected lung within
2 mm of emphysematous lung (MAL2) was
significantly associated with subsequent
FEV1 decline. Quantification of MAL2
provided a risk estimate for lung function
decline, especially in mild to moderate
disease, where FEV1 decline for participants
at or above the median MAL2 was 56 ml/yr
compared with 43 ml/yr for those below the
median (56).

Importance of Mild ILA

In addition to emphysema, cigarette
smoking is associated with fibrotic

Emphysema Emphysema

Gas trapping Gas trapping

PRM
Gold 0

PRM
Gold 4

Figure 3. Parametric response mapping (PRM). Top panels show areas of emphysema (low-
attenuation area percentages less than 2950 Hounsfield units at end inspiration) in red; middle
panels show areas of gas trapping (low-attenuation area percentages less than 2856 Hounsfield
units at end expiration) in yellow; and lower panels show PRM with PRM emphysema voxels in red,
PRM functional small airway disease (fSAD) voxels in yellow, and PRM normal voxels in green.
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and nonfibrotic interstitial lung disease
(58). COPDGene has helped to identify
the prevalence and importance of ILAs
in cigarette smokers without clinical
interstitial lung disease who were excluded
from the study. An efficient sequential
evaluation method to identify and quantify
mild ILA was developed using COPDGene
computed tomographic scans, and this
method had good agreement with existing
consensus definitions (Figure 4) (59).
ILAs were defined as nondependent
abnormalities that affected more than
5% of any lung zone, and they included
one or more of reticular, ground-glass
changes, centrilobular nodularity,
nonemphysematous cysts, honeycombing,
and traction bronchiectasis. In a study of
2,416 participants, ILA was detected in 1 in
12 scans, and this finding was associated
with lower TLC and a lesser degree of
emphysema (60). In a separate analysis of
2,416 smokers, ILA was independently
associated with a shorter 6-minute-walk
distance, and 82% and 19% of participants
with ILA had 6-minute-walk distances
less than or equal to 500 m and less than
or equal to 250 m, respectively (61). A
quantitative analysis of 8,345 participants
revealed that a 5% increase in ILA was
associated with a 2.5% decrease in FVC
percent predicted and a 2.7% reduction in
the FEV1 percent predicted (62). Mortality
data were available for 6,827 participants,
and a 5% increase in ILA was associated
with a 29% increase in mortality risk.
The mortality findings with ILAs were
confirmed in a large pooled analysis of
11,691 participants from four separate
cohorts (63). Between 7% and 9% of
participants had ILAs, and over a median
follow-up of 3 to 9 years, ILA was
associated with increased risk of all-cause
mortality in all four cohorts (adjusted
hazard ratios ranging from 1.3 to 2.7) (63).
Objective approaches have been developed
to identify ILAs and may identify clinically
and genetically relevant abnormalities even
in cases where ILA is not subjectively
visible (62, 64, 65).

Predicting Exacerbations

Acute exacerbations of COPD are associated
with substantial morbidity, including lower
respiratory quality of life, accelerated lung
function decline, and increased mortality.
The frequency of exacerbations varies
quite widely, and predicting acute
exacerbations, especially severe
exacerbations resulting in hospitalization,
can help stratify patients at greatest risk and
hence target therapy. In an early analysis of
1,002 participants, bronchial wall
thickness and CT emphysema were both
associated with the annual rate of
exacerbations, such that each 1-mm increase
in bronchial wall thickness was associated
with a 1.8-fold increase in exacerbation rate
(66). A subsequent study examining 3,464
participants with moderate to severe COPD
showed that a ratio of the diameter of the
pulmonary artery (PA) to the diameter of
the aorta (A) greater than 1.0 was
associated with a greater frequency of
severe exacerbations (odds ratio, 3.44),
findings replicated in the ECLIPSE
(Evaluation of COPD to Longitudinally
Identify Predictive Surrogate Endpoints)
cohort (Figure 5) (67). In addition, the
presence of expiratory central airway
collapse was associated with a 1.5-fold
greater frequency of total number of
exacerbations and a 1.8-fold increased risk
of severe exacerbations (46).

Predicting Progression

A number of CT features predict lung
function change over time. Findings from
other qualitative and semiquantitative
studies that demonstrated an association
between the extent of emphysema on
CT and subsequent lung function
decline were confirmed in COPDGene
(51, 68, 69). Among participants with
airflow obstruction, every 5% increase
in CT emphysema was independently
associated with a 3.5 ml/yr additional
decline in FEV1 (51). In a study of 1,623
subjects, lung mass predicted lung function
decline such that a 100-g increase in lung

mass was associated with a 4.7 ml/yr
greater decline in FEV1, suggesting that
inflammatory parenchymal abnormalities
precede progression (27). Small airway
disease likely precedes emphysema in a
substantial proportion of patients with
COPD (70, 71). An increase in functional
small airway disease (fSAD) by 5% in
those with airflow obstruction was
associated with a 4.5 ml/yr additional
decline in FEV1, and in those with GOLD
0 disease, fSAD but not emphysema was
associated with FEV1 decline (additional 2.2
ml/yr decline for every 5% increase in
fSAD) (Figure 3). The normal density lung
E/I ratio (ND-E/I), a measure of small
airway disease adjusted for emphysema
derived using COPDGene data, was also
independently associated with FEV1

decline (49).

Pulmonary Vascular Disease

Pulmonary hypertension frequently
complicates COPD and is often seen in early
disease (72). Although definitive diagnosis
requires invasive right heart catheterization,
chest CT can be used to measure PA
enlargement as a surrogate for pulmonary
hypertension. A PA/A ratio greater than
1 correlates with pulmonary arterial
hypertension and independently predicts
future severe exacerbations requiring
hospitalization (67). Pulmonary
hypertension in COPD is associated with
distal vascular pruning in the peripheral
regions, and the cross-sectional area of
small vessels, less than 5 mm2 in size,
correlates inversely with pulmonary arterial
pressure (73). Computational analyses
using COPDGene scans have advanced
automated segmentation and extraction of
the pulmonary vascular tree to enable the
automatic calculation of total blood volume
and aggregate blood volume in the small
vessels less than 5 mm2 (BV5) in each lobe
(Figure 6) (74, 75). Both total blood volume
and BV5 correlated inversely with CT
emphysema, and after adjustment for
age, sex, and emphysema, they were
independently associated with resting

Figure 3. (Continued). Representative images are shown for subjects with different stages of disease. The left column shows computed tomographic (CT)
images of a 76-year-old woman without airflow obstruction (FEV1 % predicted, 100%; Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 0).
Quantitative CT density analysis showed 6% emphysema and 19% gas trapping. PRM analysis showed that nonemphysematous gas trapping or fSAD was
13%. The right column shows CT images of a 73-year-old man with GOLD stage 4 (FEV1 % predicted, 23%), 19% emphysema, and 54% gas trapping.
PRM analysis showed that fSAD was 38%.
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oxygen saturation and inversely correlated
with SGRQ score and the BODE index (74).
By tracing the origin of the small vessels to
the hilum, small pulmonary arteries and
veins were also separately quantified
(76). COPDGene data have been used
to develop new computational techniques
to separate pulmonary arteries and
veins, which may clarify the role of the
pulmonary vasculature in the pathogenesis
of COPD (77).

Identification of Extrapulmonary
Disease in Smokers

Cardiovascular Disease
There is growing recognition that
COPD is associated with a substantial
number of comorbidities, many of which
share overlapping pathophysiologic
pathways. Although CT of the chest is not
indicated to evaluate these comorbidities,
existing computed tomographic scans lend
themselves to assessment of a number
of these extrapulmonary manifestations.
Cardiovascular disease is two- to
fivefold more common in subjects with
COPD than in control subjects after
adjustment for common cardiac risk factors
(78). Coronary artery calcium (CAC)
visualized by CT provides diagnostic and
prognostic information, and it is commonly
quantified using Agatston scores on
electrocardiographically gated computed
tomographic scans. Given that COPDGene
scans were not electrocardiographically
gated, 50 participants underwent an
additional electrocardiographically
gated scan, and there was excellent
correlation between CAC scores obtained
on gated and nongated protocols
(interclass correlation coefficient, 0.96),
though the ungated scans did provide
a systematically higher estimate of
CAC than the gated scans (79). Similar
results were reported for thoracic aortic
calcification, which provides independent

prognostic information for cardiac
risk (79). These measures can now
be automatically extracted with high
accuracy compared with expert detection
(80, 81).

Non–ECG-gated scans can also be
used to evaluate cardiac morphology. In a
study of 24 participants who also had
cardiac magnetic resonance imaging and
262 participants with two-dimensional
echocardiography, segmentation of the
heart and quantification of ventricular
volume and sphericity were performed with
a statistical model based on nonaffine
deformations of the heart to fit the surface
of the heart (Figure 7) (82). Cardiac
morphometry metrics on CT correlated
with both structural and functional
measures derived from cardiac magnetic
resonance imaging and echocardiography
(82). In a separate study of 3,436
participants with moderate to severe
COPD followed for 2.1 years, cardiac
morphometry was used to predict
reduction in exacerbation frequency
associated with b-blocker use, especially
in those with low left ventricular
volume index as well as high right
ventricular volume index; a right
ventricle/left ventricle ratio of 0.52 can
identify participants more likely to
respond to b-blocker use (83).

Intra- and Extrathoracic Fat
In addition to estimates of arterial
calcification, noncontrast CT can be used
to quantify various sources of fat such as
epicardial and pericardial fat as well as
hepatic fat, all of which are metabolically
active, and higher levels are associated with a
greater prevalence of diabetes mellitus and
subclinical atherosclerosis (79). Abdominal
visceral adipose tissue and subcutaneous
fat were estimated in 1,267 COPDGene
participants, and participants with a
history of myocardial infarction had a
greater mean visceral adipose tissue area
(303.46 208.5 vs. 226.86 172.6 cm2; P =
0.002) than those without a history of
myocardial infarction (84). Participants
in the highest visceral adipose tissue
tertile had a 1.9-fold greater odds of
myocardial infarction than those in lower
tertiles after adjustment for traditional cardiac
risk factors (84).

Cachexia
COPD is also associated with skeletal muscle
dysfunction and muscle wasting, and this

Length: 27.36 mm
Length: 31.67 mm

Figure 5. Pulmonary artery/aorta ratio. A
62-year-old smoker with a high frequency of
exacerbations (n = 6/yr). Computed tomography
shows enlarged main pulmonary artery (3.2 cm)
with ascending aorta diameter of 2.7 cm
(pulmonary artery/aorta ratio, 1.2).

Figure 4. Interstitial lung abnormalities. Images shown are from a 73-year-old male former smoker
with FEV1 percent predicted of 72%, FVC percent predicted of 75%, and no evidence of emphysema
by quantitative computed tomographic density analysis (low-attenuation area percentage, 3.2%). Left
panel: Computed tomography through the midlungs shows predominantly posterior reticular
abnormality. Right panel: Local histogram analysis shows reticular abnormalities outlined in gray
(arrows). Purple represents normal lung. Volumetric analysis shows that 11.6% of the lung has
reticular abnormalities by the local histogram approach.
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COPD-related cachexia is not adequately
captured by BMI (85). In a study of 966
COPDGene subjects, pectoralis major and
minor muscle areas were measured on a
single slice at the level of the aortic arch
(Figure 8) (86). A new anthropometric
measure, the summative pectoralis
muscle area, was shown to be associated
with fat-free muscle mass and progressively
decreased with worsening disease

stage. The pectoralis size was more
strongly associated than BMI with lung
function, dyspnea, and 6-minute-
walk distance, and these relationships
remained significant after adjustment for
BMI (86).

Osteoporosis
COPD is associated with an increased risk
of osteoporosis, most likely owing to a

multitude of factors, including the use of
steroids as well as the systemic inflammation
seen in COPD (85). Current guidelines for
osteoporosis do not list COPD or cigarette
smoking as risk factors (87). CT can be
used to estimate bone density, and in a
study of 3,321 current and former smokers
from COPDGene, a low volumetric bone
mineral density (vBMD) was present in
58% of all participants, and 37% had
evidence of vertebral fractures (88). The
frequency of low vBMD increased with
worsening disease stage and was seen in
84% of those with very severe COPD. A
notable finding was that male smokers
had a higher risk of low vBMD and
more fractures than female smokers.
These results suggest that radiologists
should actively seek evidence of osteopenia
and fractures in both male and female
smokers.

Computational Advances

Deep Learning and Emerging Artificial
Intelligence Techniques
The rich data features in COPDGene
lend themselves to the use of artificial
intelligence to derive supervised metrics
as well as unsupervised or deep
learning unbiased metrics for disease
quantification and subtyping in an
automated fashion.

Figure 7. Cardiac remodeling. Computed tomographic images showing left (blue) and right (red)
ventricles for two former smokers (anterior view). (A) Image of a 73-year-old man with minimal
emphysema (low-attenuation area percentage [LAA%], 3.2%); FEV1 percent predicted of 72.4%; left
ventricular (LV) and right ventricular (RV) volumes of 319.1 ml and 183.3 ml, respectively; and RV/LV
ratio of 0.57. (B) Image of a 61-year-old man with advanced emphysema (LAA%, 38.2%); FEV1

percent predicted of 26.7%; LV and RV volumes of 208.2 ml and 190.3 ml, respectively; and RV/LV
ratio of 0.91.

GOLD 1 GOLD 3GOLD 2 GOLD 4

A B C D
Figure 6. Pulmonary vascular remodeling. Vascular tree rendering showing vascular pruning across Global Initiative for Chronic Obstructive Lung
Disease (GOLD) stages. Panels show anterior views of the vascular tree color coded by vessel diameter from small (red to orange) to medium (yellow
to green) to large (green to blue) vessels. (A) A 58-year-old female current smoker with GOLD stage 1 (FEV1 % predicted, 85%) with mild emphysema
(low-attenuation area percentage [LAA%], 6.0%). The vascular analysis shows a ratio of blood volume for vessels less than 5 mm2 (BV5) to total blood volume
of 0.58 (BV5 was 104.7 ml, and total blood volume was 179.6 ml). (B) A 66-year-old female former smoker with GOLD stage 2 (FEV1 % predicted, 67%)
with moderate emphysema (LAA%, 11.3). The vascular analysis shows apparent pruning in the peripheral vasculature with a ratio of BV5 to total blood volume
of 0.53 (BV5 was 104.7 ml, and total blood volume was 179.6 ml). (C) A 77-year-old male with GOLD stage 3 (FEV1 % predicted, 30.1%) with mild
emphysema (LAA%, 8.5%). The ratio of BV5 to total blood volume is 0.5 (BV5 was 108.8 ml, and total blood volume was 218.2 ml), showing a diffuse vascular
pruning. (D) A 46-year-old male with GOLD stage 4 (FEV1 % predicted, 29.3%) with upper lobe emphysema (LAA%, 25.8%). The vascular analysis shows
pruning in upper lobes with a ratio of BV5 to total blood volume of 0.46 (BV5 was 104.4 ml, and total blood volume was 227.5 ml).
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Supervised learning. Supervised
learning is the machine learning task of
mapping an input to an output based on
examples provided by the investigator.
Supervised learning tools have been used in
COPDGene to task the machine with
identifying emphysema subtypes. The
local histogram approach has used
labeled ROIs from parenchyma subtypes
to quantify the extent of emphysema
and interstitial abnormalities (28).
Advanced approaches have exploited
the use of textural features to
quantify emphysema subtypes on the
basis of Gabor filters and centrilobular
nodularity and centrilobular emphysema
using a logistic regression classifier
from 50 computer-extracted features
(89). Continued smoking is associated
with progression in centrilobular
emphysema, whereas quitting smoking is
associated with a reduction in centrilobular
nodularity (89).

Unsupervised learning. In
unsupervised learning, the machine is
tasked with interpreting input data without
the assistance of labeled responses, most
commonly by way of identifying clusters
or groups of characteristics that tend to
form patterns. There is substantial overlap
between currently known disease subtypes
and cluster analysis of CT data which
identifies four subgroups of smokers
(relatively resistant smokers, mild upper
zone emphysema predominant, airway
disease predominant, and severe
emphysema) that are reproducible and have
strong associations with clinical features as

well as distinct and known genetic variants
(90). In contrast to previous studies that used
supervised classification of ROIs labeled by
experts, a generative model has been
described that jointly captures heterogeneity
of disease subtypes and of the patient
population. The disease subtypes identified in
this unbiased fashion had stronger
associations with FEV1 and 6-minute-walk
distance than those derived from supervised
learning (91).

Emergence of deep learning. Deep
learning is emerging as a new imaging
analysis approach that is currently used
across multiple imaging identification
problems. Deep learning involves several
levels of analysis whereby the machine uses
information from the previous level to
progressively learn more deeply. Several
groups within COPDGene are working on
deep learning approaches for automated
computed tomographic computation
(92–94). COPDGene data have been used to
train a convolutional neural network
that produces direct detection and staging of
COPD and prediction of multiple
COPDGene outcomes, including acute
respiratory events and mortality. Convolutional
neural networks, rather than focusing on
one specific aspect of the image, integrate
the whole of the imaging information.
These results were independently replicated
in ECLIPSE using the models trained in
COPDGene, suggesting the robustness
of the models. Nevertheless, this is an
emerging field, and more technical
development is needed to be able to
process entire three-dimensional scans.

Relationship between
Imaging and Genetics

Identifying genetic determinants of complex
diseases such as COPD has been transformed
by the availability, at reasonable cost and
high accuracy, of genome-wide panels of
hundreds of thousands of genetic variants
(known as single-nucleotide polymorphisms,
or “SNPs”) that capture most of the common
variation in the human genome. Genome-wide
panels of genetic variants have been tested for
statistical association with many complex
diseases and disease-related phenotypes, and
thousands of associations remain statistically
significant despite the substantial adjustment
for multiple statistical testing that is performed
in genome-wide association studies
(GWAS), typically requiring P, 5E-8
(95). Combining association evidence
from multiple collaborative studies is
often required to obtain adequate power
in GWAS. Although GWAS have been quite
successful at identifying regions
of the genome related to complex
diseases, follow-up studies within
those regions are required to identify the key
genes and their functional genetic variants.

The rich imaging phenotypes in
COPDGene have enabled multiple
successful genetic association studies.
In a collaborative study with ECLIPSE,
GenKOLS (Genetics of COPD, Norway),
and NETT (National Emphysema
Treatment Trial), five genome-wide
significant regions with densitometric
emphysema at 2950 HU were found,
including several regions associated with
COPD (HHIP, CHRNA3/CHRNA5, and
AGER), a novel region near DLC1, and the
alpha-1 antitrypsin (SERPINA1) region
(96). Visual assessments of emphysema and
airway disease in COPDGene have been
associated with genetic loci that were
previously associated with susceptibility to
COPD or with quantitative computed
tomographic measures, suggesting that
genetic associations for visual estimates
and quantitative CT are reproducible (9).
Genome-wide significant associations
have also been identified for emphysema
distribution (97), local histogram
emphysema pattern (98), and PA/A ratio
(99). With each of these imaging
phenotypes, some previously identified
COPD-associated loci have been
confirmed, and new genetic loci have
been discovered. Thus, we anticipate that

Figure 8. Body composition phenotypes. Manual segmentation of pectoralis muscles (blue =
pectoralis major; brown = pectoralis minor) and subcutaneous adipose tissue (yellow) at the level of
the aortic arch. (A) Image of a 62-year-old former smoker with body mass index of 16.6 kg/m2, 37%
emphysema based on computed tomography, and FEV1 percent predicted of 27%. The cross-
sectional area is 3,488 mm2 for the pectoralis muscles and 176 mm2 for the subcutaneous fat. (B)
Image of a 61-year-old former smoker with body mass index of 30 kg/m2, 11% emphysema, and
FEV1 percent predicted of 78%. The cross-sectional area is 3,545 mm2 for the pectoralis muscles
and 7,533 mm2 for subcutaneous fat.
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there will be both shared genetic determinants
for COPD susceptibility that influence
imaging-based phenotypes as well as specific
genetic determinants for those imaging
phenotypes.

Translating these advances in the
genetics of imaging phenotypes to more
specific diagnosis and treatment of patients
with COPD remains a major challenge.
However, unbiased genetic approaches to
uncover pathobiological determinants of
imaging phenotypes could identify key
contributors to the heterogeneous imaging

patterns of COPD and newmolecular targets
for pharmacological treatment development
in specific subtypes of COPD.

Future Directions

The rich dataset of computed tomographic
images from a large number of clinically and
spirometrically well-characterized subjects in
the COPDGene cohort opens new avenues
for research in the future. These will include
assessment of longitudinal change in the
phenotypes described in the earlier sections,

as well as integration of omics data such as
gene expression, protein biomarkers, and
metabolomics with imaging phenotypes.
These studies will improve knowledge of the
relationship between structural, functional,
and biological changes that occur in COPD.
Although there is no therapy that is currently
informed by imaging-based phenotyping
except lung volume reduction procedures, we
anticipate that imaging research will result in
robust biomarkers for early detection of
disease, for predicting disease progression,
and for prediction of exacerbations. Future
research will also focus on imaging-based
phenotypes of emphysema and small
airway disease that will enable targeted
therapy in COPD.

Conclusions

Data from COPDGene and other large
cohorts provide insight into the disease
processes involved and add considerable
information to that obtained by spirometry
(Figure 9). Studies from COPDGene
have advanced awareness in a number
of areas, including early identification
of disease; recognition of symptomatic
smokers without airflow obstruction;
the importance of mild interstitial
abnormalities in smokers; and measurement
of extrapulmonary comorbidities, including
coronary artery disease, pulmonary
vascular disease, cachexia, and osteoporosis.
In those at risk for or with established early
disease, CT provides robust risk estimates
for important respiratory outcomes,
including quality of life, dyspnea, exercise
capacity, exacerbations, lung function
decline, and mortality, over and beyond
that derived from spirometric measures.
With rapid advances being made in the
acquisition of reduced-dose CT without
compromising image quality, CT will
likely be an important tool in the
diagnosis and management of patients
with COPD. These advances will be
hastened by the use of reduced-dose
CT scans for the 10-year follow-up
scans in phase 3 of the COPDGene study. n

Author disclosures are available with the text
of this article at www.atsjournals.org.

Acknowledgment: The authors sincerely
acknowledge the contributions to this review
of MeiLan K. Han, M.D.; Sean B. Fain, Ph.D.;
Stephen Humphries, Ph.D.; Francine L. Jacobson,
M.D.; and Charles R. Hatt, Ph.D.

CT emphysema pattern

Emphysema

Inspiration

Expiration

Quantification

Air Trapping

Image
Matching

Pulmonary
Vessels

Bronchial
Thickening

Parametric
Response
Mapping

Jacobian
Determinant

2.5

2

1.5

0.5

1

Figure 9. Summary of imaging features that can be derived from computed tomography (CT). The
figure shows a summary of the main measurements that can be made using inspiratory computed
tomographic scans. These include qualitative and semiquantitative determination of emphysema and
emphysema subtype, quantitative estimates of emphysema using density histograms, bronchial wall
thickness, and pulmonary vasculature. The addition of expiratory scans enables image matching and
the computation of functional small airway disease using parametric response mapping, as well as
the Jacobian determinant, an estimate of lung mechanics.
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