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ABSTRACT Cancer cells are required to rewire existing metabolic pathways to sup-
port their abnormal proliferation. We have previously shown that, unlike glucose-
addicted cancers, Kaposi’s sarcoma-associated herpesvirus (KSHV)-transformed cells
depend on glutamine rather than glucose for energy production and amino acid
and nucleotide syntheses. High-level consumption of glutamine is tightly regulated
and often coupled with the citrulline-nitric oxide (NO) cycle. We have found that
KSHV infection accelerates nitrogen efflux by upregulating the expression of argini-
nosuccinate synthase 1 (ASS1), a key enzyme in the citrulline-NO cycle. KSHV utilizes
multiple microRNAs to upregulate ASS1 expression. Depletion of either ASS1 or in-
ducible nitric oxide synthase (iNOS) in KSHV-transformed cells suppresses growth
proliferation, abolishes colony formation in soft agar, and decreases NO generation.
Furthermore, by maintaining intracellular NO levels, ASS1 expression facilitates KSHV-
mediated activation of the STAT3 pathway, which is critical for virus-induced trans-
formation. These results illustrate a novel mechanism by which an oncogenic virus
hijacks a key metabolic pathway to promote growth transformation and reveal a po-
tential novel therapeutic target for KSHV-induced malignancies.

IMPORTANCE We have previously shown that Kaposi’s sarcoma-associated herpesvirus
(KSHV)-transformed cells depend on glutamine rather than glucose for energy produc-
tion and amino acid and nucleotide syntheses. In this study, we have further examined
how the KSHV-reprogramed metabolic pathways are regulated and discovered that
KSHV hijacks the citrulline-nitric oxide (NO) cycle to promote growth proliferation and
transformation. Multiple KSHV-encoded microRNAs upregulate argininosuccinate syn-
thase 1 (ASS1), a key enzyme in the citrulline-NO cycle. ASS1 is required for KSHV-
induced proliferation, colony formation in soft agar, and NO generation of KSHV-
transformed cells, which also depends on inducible nitric oxide synthase. By maintaining
intracellular NO levels, ASS1 mediates KSHV activation of the STAT3 pathway, which is
essential for KSHV-induced abnormal cell proliferation and transformation. These results
illustrate a novel mechanism by which an oncogenic virus hijacks a key metabolic path-
way to promote growth transformation and reveal a potential novel therapeutic target
for KSHV-induced malignancies.
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Metabolism is a process that occurs in cells that utilize nutrients to generate
macromolecules and energy for anabolic proliferation or homeostatic mainte-

nance (1). Numerous intermediates, such as nitric oxide (NO) and reactive oxygen
species (ROS), produced during metabolic processes can act as messengers to regulate
cellular signaling and physiological functions (2, 3). In cancer cells, metabolism is
commonly dysregulated as a result of aberrant expression of oncogenes and/or tumor
suppressors (1).

Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus
associated with four malignancies: Kaposi’s sarcoma (KS), primary effusion lymphoma
(PEL), a subset of multicentric Castleman’s disease (MCD), and KSHV inflammatory
cytokine syndrome (KICS) (4). KSHV latent infection is essential for the development of
KSHV-induced malignancies. During KSHV latency, a small subset of KSHV genes is
expressed, including vFLIP (ORF71), vCyclin (ORF72), LANA (ORF73), and a cluster of 12
precursor microRNAs (pre-miRNAs) (5). These latent genes play essential roles in
KSHV-induced cellular transformation and tumorigenesis (5).

Viruses often induce metabolic alterations in host cells to facilitate their persistence
and spread. KSHV infection alone is sufficient to trigger cellular metabolic reprogram-
ming. KSHV infection or expression of KSHV-encoded miRNAs increases glucose con-
sumption and the Warburg effect (6–9). Both KSHV-infected endothelial cells and PEL
cells have increased lipogenesis (9, 10). In addition, KSHV-infected endothelial cells
have increased levels of glutamine consumption and require glutaminolysis for survival
(11, 12). However, in KSHV-transformed cells, the alterations of metabolic pathways are
different from those in untransformed cells. KSHV-transformed cells consume glu-
tamine and depend on glutamine but not glucose for proliferation and transformation
(12, 13). In fact, there are reduced levels of glucose consumption and production of
lactate in KSHV-transformed cells (13).

It has been reported that high-level consumption of glutamine is tightly regulated
and often coupled with the citrulline-nitric oxide (citrulline-NO) cycle (14). In this study,
we have shown that the citrulline-NO cycle is indeed reprogramed in KSHV-transformed
cells. Two indispensable enzymes in the citrulline-NO cycle, argininosuccinate synthase
1 (ASS1) and inducible nitric oxide synthase (iNOS), are upregulated in KSHV-
transformed cells. The coordinated expression of ASS1, iNOS, and argininosuccinate
lyase (ASL) ensures the flow of the citrulline-NO cycle and NO production. iNOS converts
arginine into citrulline, which is recycled back to replenish intracellular arginine for NO
production through ASS1 and ASL (15–17).

Elevated expression levels of ASS1 have been reported in primary epithelial, ovarian,
gastric, colorectal, and lung cancers (18–21). However, the consequences of ASS1
upregulation in these cancers are largely unknown. In contrast, ASS1 silencing through
promoter methylation supports the proliferation of osteosarcoma by fostering de novo
pyrimidine synthesis (22, 23). Loss of ASS1 causes genetic diseases, such as type I
citrullinemia, as a result of decreased nitrogen flux, indicating a critical role of ASS1 in
nitrogen metabolism, the citrulline-NO cycle, and NO production (17, 24).

Endogenous NO is an important gas signal transmitter synthesized from arginine by
a family of NOSs and regulates diverse physiological processes (2, 3). Mammalian cells
express three types of NOS: neuronal NOS (nNOS), iNOS, and endothelial NOS (eNOS)
(25). nNOS and eNOS are constitutively and predominantly expressed in neuronal and
vascular endothelial cells, respectively, whereas iNOS is often expressed in tumor cells.
ASS1 is the rate-limiting enzyme for de novo arginine synthesis, and arginine is the
unique substrate for NO production. Thus, ASS1-driven recycling of citrulline, which
produces arginine, appears to be a prerequisite for all NO-producing cells (15, 26, 27).
NO is known to exert its functions by activating the soluble guanylyl cyclase-cGMP
pathways and causing direct nitrosylation or nitration of proteins, which can be either
cytotoxic or tumorigenic (28–31).

STAT3, a transcription factor often activated in cancer cells, is important for the
proliferation and survival of tumor cells and tumor angiogenesis, immunosuppression,
and invasion (32, 33). Latently KSHV-infected cells have an increased phosphorylation
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level of STAT3 as a result of complement and Toll-like receptor 4 (TLR4) activation,
which promotes the proliferation and survival of KSHV-infected cells (34, 35). Moreover,
both NO donors and ASS1 have been shown to regulate STAT3 to either promote or
inhibit cell proliferation and survival (21, 36, 37).

In this study, we have discovered that multiple KSHV-encoded miRNAs upregulate
ASS1 expression to promote cell proliferation and transformation by inducing NO and
STAT3 activation. Both ASS1 and iNOS are required for maintaining the intracellular NO
level despite excessive extracellular arginine, a process which seems to be at odds with
the arginine paradox (38). Additionally, our data indicated that NO production is
required for STAT3 phosphorylation. These findings have demonstrated that the con-
comitant expression of iNOS and ASS1 is indispensable for NO generation and STAT3
activation.

RESULTS
ASS1 is upregulated in KSHV-infected and -transformed cells. We have previ-

ously shown that KSHV-transformed cells depend on glutamine for anabolic prolifera-
tion (12). Because active glutamine consumption is tightly regulated, we hypothesized
that KSHV-transformed cells would have an active citrulline-NO cycle. ASS1 has a critical
role in the citrulline-NO cycle, and its expression is upregulated in several types of
human cancer by an unknown mechanism (18). Thus, we examined ASS1 expression in
KSHV-infected and -transformed cells. We have recently shown that KSHV can efficiently
infect and transform primary rat embryonic metanephric mesenchymal (MM) cells, and
KSHV-transformed MM (KMM) cells efficiently induce KS-like tumors in nude mice (39).
Since this is the first efficient system of KSHV-induced cellular transformation of primary
cells, which is useful for delineating the mechanism of KSHV-induced growth transfor-
mation, we examined the expression of ASS1 in this system. The expression of the ASS1
transcript was elevated by 108-fold in KMM cells compared to MM cells (Fig. 1A). To
confirm upregulated ASS1 expression in KMM cells at the protein level, we tested
several commercial ASS1 antibodies. However, none of them worked except one, which
detected the ASS1 band and an additional nonspecific lower band. Using MM and KMM
cells with and without overexpression of ASS1, we confirmed that the top band was
indeed the ASS1 protein (Fig. 1B). As expected, the expression level of the ASS1 protein
was much higher in KMM than in MM cells (Fig. 1C). We further examined ASS1
expression in other types of KSHV-infected cells. KSHV infection of a renal carcinoma
cell line stably expressing doxycycline-inducible RTA (iSLK) upregulated ASS1 expres-
sion at both the transcript and protein levels albeit to a lesser extent, which was
possibly due to the relatively high expression level of ASS1 in the uninfected iSLK cells
(Fig. 1D). PEL is an aggressive B-cell non-Hodgkin’s lymphoma associated with KSHV
infection (4). Several KSHV-infected PEL cell lines, including BCBL1, BC3, and BCP1,
expressed high levels of ASS1 with an increase of transcript levels ranging from 1.6- to
7.0-fold compared to BJAB, an Epstein-Barr virus (EBV)- and KSHV-negative Burkitt’s
lymphoma cell line. Interestingly, KSHV infection of BJAB cells increased the expression
of the ASS1 transcript by 11.5-fold (Fig. 1E). These results were further confirmed at the
protein level (Fig. 1E). Hence, latent KSHV infection upregulated ASS1 expression in
different cell types. However, the extent of upregulation varied according to the
individual types of cells.

Multiple KSHV-encoded miRNAs upregulate ASS1 expression. Most KSHV-
transformed cells are latently infected by KSHV and mainly express viral latent genes,
including LANA, vCyclin, vFLIP, and a cluster of 12 pre-miRNAs (39). To identify which
viral product is responsible for ASS1 upregulation in KMM cells, we examined MM cells
latently infected by a KSHV mutant with a deletion of either vFLIP, vCyclin, or a cluster
of 10 of the 12 pre-miRNAs (miR-K1 to -9 and -11), named ΔvFLIP, ΔvCyclin, and ΔmiRs,
respectively (13, 40–42). We were not able to obtain MM cells latently infected by the
KSHV mutant with LANA deleted or mutated because of LANA’s essential role in viral
genome persistence (43, 44). Deletion of vFLIP or vCyclin had a minimal effect on ASS1
expression (Fig. 1F and G). In contrast, deletion of the miRNA cluster completely
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abolished ASS1 expression at both the transcript and protein levels (Fig. 1F and G).
Expression of the miRNA cluster in ΔmiRs cells partially rescued ASS1 expression (Fig. 1H
and I). Interestingly, expression of the miRNA cluster in MM cells was sufficient to
upregulate ASS1 expression although to a lesser extent than in KMM cells (Fig. 1H and

FIG 1 Multiple KSHV-encoded miRNAs mediate upregulation of ASS1 expression. (A) The ASS1 transcript
is upregulated in KSHV-transformed cells. RT-qPCR was used to examine the level of the ASS1 transcript.
(B) Validation of the specificity of ASS1 antibody. Western blotting was used to examine MM and KMM
cells stably expressing ASS1 or a vector control. The intensity of the upper band was dramatically
increased in cells expressing ASS1 but not the vector control, indicating that the upper band is specific
for the ASS1 protein. (C) ASS1 protein is upregulated in KSHV-transformed cells. Western blotting was
used to examine the level of ASS1 protein. (D and E) ASS1 transcript and protein are upregulated in
KSHV-infected cells. RT-qPCR and Western blot results show that the expression of ASS1 was upregulated
at both the mRNA and protein levels in iSLK-KSHV cells (D) and BJAB-KSHV cells (E) compared to
uninfected cells and in PEL cells compared to BJAB cells (E). (F and G) The KSHV miRNA cluster is required
for the upregulation of ASS1 expression. Shown are data from analysis of ASS1 expression in cells infected
by different recombinant viruses, including wild-type KSHV (KMM) and a mutant with a deletion of a
cluster of 10 pre-miRNAs (ΔmiRs), vFLIP (ΔvFLIP), or vCyclin (ΔvCyclin), by RT-qPCR (F) and Western
blotting (G). (H and I) Expression of the KSHV miRNA cluster is sufficient to upregulate ASS1 expression.
ASS1 expression was detected by Western blotting (H) and RT-qPCR (I) in MM cells and ΔmiRs cells
overexpressing the KSHV miRNA cluster or the control empty vector pITA (MM�pITA). (J) Expression of
multiple individual miRNAs is sufficient to upregulate ASS1 expression. ASS1 protein was detected by
Western blotting in ΔmiRs cells overexpressing individual miRNAs. �-Actin and �-tubulin were used as
internal controls for RT-qPCR and Western blotting, respectively. ** and *** represent P values of �0.01
and �0.001, respectively, while NS indicates not significant.
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I). These results indicated that KSHV miRNAs were required for KSHV-induced ASS1
upregulation. However, other KSHV genes might also contribute to the maximal
induction of ASS1 expression. To identify the individual miRNA(s) that might mediate
KSHV-induced ASS1 upregulation, we examined ASS1 expression in ΔmiRs cells express-
ing individual miRNAs (miR-K1 to -12) (45, 46). Western blot results showed that
numerous miRNAs, including miR-K2, -K6, -K7, -K8, -K9, -K10, -K11, and -K12, partially
upregulated ASS1 expression in ΔmiRs cells (Fig. 1J).

Suppression of ASS1 inhibits KSHV-induced cell proliferation and cellular
transformation. To explore the role of ASS1 in KSHV-transformed cells, we used 3
different short hairpin RNAs (shRNAs) to deplete ASS1 expression. The shRNAs achieved
approximately 80% knockdown efficiencies at the RNA level, which were confirmed at
the protein level (Fig. 2A and B). Depletion of ASS1 expression with the 3 shRNAs
reduced cell proliferation by 45%, 54%, and 85% in KMM cells, respectively, and by 33%,
41%, and 58% in MM cells, respectively (Fig. 2C). Depletion of ASS1 expression also
significantly reduced the efficiencies of colony formation of KMM cells in a soft agar
assay as shown by the reduced sizes and numbers of colonies (Fig. 2D). As expected,
MM cells with and without depletion of ASS1 expression failed to form any colonies in
soft agar assays (Fig. 2D). Taken together, these results demonstrated that ASS1 was
essential for KSHV-induced cell proliferation and cellular transformation.

To further investigate how ASS1 might regulate KSHV-induced cell proliferation and
cellular transformation, we examined cell cycle progression and apoptosis. Depletion of
ASS1 expression with 3 shRNAs induced cell cycle arrest in KMM cells by increasing the
percentage of G1-phase cells from 50.6% to 55.3 to 70.5% and decreasing the percent-
age of S-phase cells from 36.5% to 10.4 to 20.9% (Fig. 2E). For MM cells, the percentage
of G1-phase cells was increased from 51.1% to 57.9 to 69.7%, while the percentage of
S-phase cells was decreased from 35.5% to 7.3 to 27.2% (Fig. 2E). Depletion of ASS1
expression also significantly increased the numbers of dead cells from 5.3% to 15.4 to
52.7% in KMM cells and from 9.1% to 16 to 27.3% in MM cells (Fig. 2F). Overall,
depletion of ASS1 expression suppressed the proliferation of KSHV-transformed cells by
inducing both cell cycle arrest and apoptosis, while there was a lesser effect on
untransformed cells.

Inhibition of iNOS induces cell cycle arrest and apoptosis of KSHV-transformed
cells. ASS1 is a metabolic enzyme involved in the citrulline-NO cycle, arginine metab-
olism, and NO synthesis (16, 17, 38). To delineate the mechanism by which ASS1
regulates KSHV-induced growth proliferation, we complemented medium with various
ASS1 downstream metabolites to determine which of them could rescue the effect of
ASS1 knockdown. Altogether, we tested polyamines, arginine, glutamine, asparagine,
fumarate, proline, �-ketoglutarate, and their different combinations, but none of them
showed any rescue effect on KMM cells with ASS1 knockdown (data not shown).
Another metabolite related to ASS1 is NO. However, due to the short half-life of
commercially available NO donors, we could not perform NO rescue experiments.

Alternatively, if ASS1 impacts the proliferation of KSHV-transformed cells by regu-
lating NO production, knockdown of the enzymes catalyzing NO production should
induce a phenotype similar to that with ASS1 depletion. There are three different NOSs
in mammalian cells: iNOS, nNOS, and eNOS (2, 3). We first examined the expression
levels of these three NOSs in KMM cells. Surprisingly, KSHV infection had no effect on
the expression of eNOS and increased the expression of nNOS by only 2-fold (Fig. 3A).
In contrast, KSHV infection increased the expression of iNOS by 7-fold, suggesting that
iNOS might play a role in KSHV-transformed cells (Fig. 3A). We then performed
knockdown of iNOS to examine its role in KSHV-induced growth transformation (Fig. 3B
and C). Depletion of iNOS expression suppressed the growth proliferation of both MM
and KMM cells (Fig. 3D). Depletion of iNOS expression significantly inhibited the colony
formation efficiencies of KMM cells in a soft agar assay (Fig. 3E). Upon iNOS depletion,
the percentages of G1-phase cells increased from 51.9% to 61 to 73.1% and from 48.1%
to 70.1 to 72.5% in MM and KMM cells, respectively. Accordingly, the percentages of
S-phase cells were reduced from 31.35% to 9.5 to 12.9% and from 35.6% to 8.6 to 9.7%
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FIG 2 ASS1 is essential for KSHV-induced cell proliferation and cellular transformation. (A and B) Analysis of
ASS1 expression in MM and KMM cells following depletion of ASS1 expression by RT-qPCR (A) and Western
blotting (B). (C and D) ASS1 knockdown inhibits cell proliferation and cellular transformation of KMM cells. Cell
proliferation (C) and colony formation in soft agar (D) were examined following knockdown of ASS1 with 3
shRNAs (sh1, sh2, or sh3) or a scrambled shRNA (control [ctl]). Representative pictures at a �40 magnification
from soft agar assays are shown (D, left). Colonies with diameters of �50 �m were counted, and the relative
number of colonies per field was quantified (D, right). (E and F) ASS1 knockdown induces cell cycle arrest and
apoptosis. (E) The cell cycle was analyzed by flow cytometry 48 h following transduction with ASS1 shRNAs
(shASS1). (F) Apoptotic cells were detected by annexin V staining 72 h following transduction with ASS1
shRNAs. *, **, and *** represent P values of �0.05, �0.01, and �0.001, respectively, while NS indicates “not
significant.”
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FIG 3 iNOS is essential for KSHV-induced cell proliferation and cellular transformation. (A) Examination of
eNOS, iNOS, or nNOS expression by RT-qPCR in MM and KMM cells. (B and C) Analysis of iNOS expression in
MM and KMM cells following iNOS knockdown by RT-qPCR (B) and Western blotting (C). (D and E) iNOS
knockdown inhibits cell proliferation and cellular transformation of KMM cells. Cell proliferation (D) and
colony formation in soft agar (E) were determined following depletion of iNOS expression with 3 shRNAs (sh1,
sh2, or sh3) or a scrambled shRNA (ctl). Representative pictures at a �40 magnification from soft agar assays
are shown (E, left). Colonies with diameters of �50 �m were counted, and the results were graphed (E, right).
(F and G) iNOS knockdown induces cell cycle arrest and apoptosis. (F) The cell cycle was analyzed by flow
cytometry 48 h following transduction with iNOS shRNAs. (G) Apoptotic cells were detected by annexin V
staining 72 h following transduction with ASS1 shRNAs. *, **, and *** represent P values of �0.05, �0.01, and
�0.001, respectively, while NS indicates “not significant.”
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in both MM and KMM cells, respectively (Fig. 3F). The results of apoptosis assays
showed that the percentages of dead cells were increased from 11.0% to 33.0 to 40.0%
in MM cells and from 6.23% to 24.3 to 37.3% in KMM cells (Fig. 3G). Taken together,
these data showed that depletion of iNOS expression gave phenotypes similar to those
with depletion of ASS1 expression, indicating that ASS1 and iNOS might function
through the same downstream effector, NO.

Knockdown of ASS1 or iNOS reduces the intracellular NO level. ASS1 is the
rate-limiting enzyme for de novo arginine synthesis, providing an essential substrate
for NO production (16, 17, 38). The reduced expression of ASS1 or iNOS can decrease
NO production despite an excessive extracellular arginine supply (15, 26, 47). To
evaluate the roles of ASS1 and iNOS in NO production in KSHV-transformed cells, the
endogenous NO level was measured in MM and KMM cells with or without
depletion of ASS1 or iNOS expression using DAR-4M AM (DAR), which is a cell-
permeable diaminorhodamine-based dye emitting red fluorescence upon reacting
with NO in the presence of ROS (48–50) (Fig. 4A). Since the presence of ROS is a
prerequisite for DAR to emit fluorescence when reacting with NO, we first compared
ROS between MM and KMM cells. Surprisingly, MM cells had much a higher
intracellular ROS level than that of KMM cells (Fig. 4B). However, treatment with
S-nitroso-N-acetyl-D,L-penicillamine (SNAP), a known NO donor, had no effect on
endogenous ROS in both MM and KMM cells (Fig. 4C), indicating that DAR could be
used as a reliable sensor for endogenous NO detection after depletion of ASS1
expression in these cells. Depletion of either iNOS or ASS1 expression indeed led to
a dramatic decrease in intracellular NO production in both MM and KMM cells (Fig.
5A to D). N�-nitro-L-arginine methyl ester (L-NAME) inhibits the generation of NO by
inhibiting iNOS function but not iNOS expression (51). Treatment with L-NAME
inhibited NO production in both MM and KMM cells (Fig. 6A and B). As expected,
L-NAME also reduced cell proliferation of both MM and KMM cells in a dose-
dependent manner (Fig. 6C), which was consistent with the results of iNOS knock-
down (Fig. 3B to D). Collectively, our results demonstrated that ASS1 and iNOS were
necessary for endogenous NO generation, which was essential for the proliferation
of KSHV-transformed cells.

FIG 4 Detection of intracellular NO levels with DAR is not altered by different intracellular ROS levels. (A) Chemical
equation showing that the reaction of DAR with NO requires ROS. (B) MM cells have higher intracellular ROS levels
than KMM cells. (C) Flow cytometry analysis showing that the NO donor SNAP does not alter intracellular ROS levels
in MM and KMM cells. APC-A indicates allophycocyanin (APC) fluorescent intensity.
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NO produced through the ASS1-iNOS cycle activates STAT3 to promote the
proliferation of KSHV-transformed cells. ASS1 expression has been reported to
correlate with STAT3 protein expression in human gastric cancer cells by an unknown
mechanism (21). We observed a marginal increase of STAT3 protein expression in KMM

FIG 5 Silencing of ASS1 or iNOS expression reduces the intracellular production of NO. (A and B) Detection of NO
with DAR in MM and KMM cells following knockdown of ASS1 with 3 shRNAs (sh1, sh2, or sh3) or a scrambled
shRNA (ctl). The intracellular NO level was examined with a fluorescence microscope (A) and quantified for
relative intensity with ImageJ (B). (C and D) Detection of NO with DAR in MM and KMM cells following
knockdown of iNOS with 3 shRNAs (sh1, sh2, or sh3) or a scrambled shRNA (ctl). The intracellular NO level was
detected with a fluorescence microscope (C), and the relative intensity was quantified with ImageJ (D). CTCF
represents the corrected total cell fluorescence by ImageJ. * and ** represent P values of �0.05 and �0.01,
respectively, while NS indicates “not significant.”
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cells compared to MM cells (Fig. 7A). STAT3 plays a crucial role in promoting tumor
progression and thus is a favorable target for cancer therapy (52, 53). In latently
KSHV-infected and -transformed cells, it has been shown that STAT3 is activated with
increased phosphorylation at Tyr705 through the activation of alternative complement
and TLR4 pathways and that STAT3 activation is essential for the survival of KSHV-
transformed cells (34, 35). Since NO has been shown to activate STAT3 in ovarian cancer
cells (37), we hypothesized that STAT3 might be a potential common downstream
target of NO, ASS1, and iNOS. Depletion of ASS1 expression reduced the phosphoryla-
tion of STAT3 (Tyr705) in KMM cells, suggesting that STAT3 was regulated by ASS1 in
KSHV-transformed cells (Fig. 7A).

To determine if NO mediated ASS1-induced STAT3 activation, we searched for a
method to increase intracellular NO levels. Since SNAP is a known NO donor, we
determined whether SNAP could increase intracellular NO levels. We treated MM and

FIG 6 The iNOS inhibitor L-NAME reduces intracellular NO levels and inhibits cell proliferation of MM and
KMM cells. (A) Detection of intracellular NO levels with DAR in MM and KMM cells with or without
treatment with the NO donor L-NAME. Representative images were captured at a �20 magnification with
a fluorescence microscope. (B) Quantification of intracellular NO levels in MM and KMM cells with ImageJ.
CTCF represents the corrected total cell fluorescence by ImageJ. (C) Inhibition of cell proliferation of MM
and KMM cells by L-NAME. Numbers of MM and KMM cells treated with 0, 4, 6, or 8 mM L-NAME were
counted over time. * and *** represent P values of �0.05 and �0.001, respectively, while NS indicates
“not significant.”
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KMM cells with SNAP and then measured NO by fluorescence live-cell imaging follow-
ing treatment with DAR. As expected, stronger fluorescent DAR signals were observed
in the SNAP-treated cells than in untreated cells (Fig. 7B and C). To rule out the
possibility that SNAP might influence ROS and thereby give rise to stronger fluores-
cence, we checked the intracellular ROS level by flow cytometry after SNAP adminis-
tration. The results showed that there was no change of intracellular ROS levels before
or after SNAP treatment (Fig. 7D), indicating that SNAP is an effective donor for NO in
MM and KMM cells.

Finally, we examined if NO mediated ASS1-induced STAT3 activation. We treated
MM and KMM cells with SNAP after depletion of ASS1 expression and then examined
STAT3 phosphorylation. As expected, SNAP partially rescued the decreased phosphor-
ylation of STAT3 caused by depletion of ASS1 expression, which implied that NO

FIG 7 NO mediates ASS1 and iNOS induction of STAT3 activation. (A) Depletion of ASS1 expression inhibits STAT3 tyrosine phosphorylation. MM
and KMM cells were transduced with 3 ASS1 shRNAs (sh1, sh2, or sh3) or a scrambled shRNA (ctl) and examined for the levels of total and
phosphorylated STAT3 (Y705) by Western blotting. The ASS1 protein level was also examined to monitor knockdown efficiencies, while �-tubulin
was used as a loading control. (B and C) The NO donor SNAP increases intracellular NO levels. MM and KMM cells were treated with 0.5 mM SNAP
for 1 h and examined for intracellular NO by DAR staining. The intracellular NO level was examined with a fluorescence microscope (B), and the
relative intensity was quantified with ImageJ (C). (D) ASS1 knockdown has no effect on ROS production. MM and KMM cells transduced with 3
ASS1 shRNAs (sh1, sh2, or sh3) or a scrambled shRNA (ctl) for 2 days were examined for intracellular ROS levels. (E) The NO donor SNAP partially
rescues STAT3 activation following ASS1 knockdown. MM and KMM cells transduced with an ASS1 shRNA (shRNA3) or a scrambled shRNA (ctl)
for 2 days were treated with 0.5 mM SNAP for 0.5 h and then examined for the levels of total and phosphorylated STAT3 (Y705) by Western
blotting. �-Tubulin was used as a loading control. APC-A indicates allophycocyanin (APC) fluorescent intensity.
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mediated STAT3 activation in KSHV-transformed cells (Fig. 7E). However, SNAP failed to
rescue the reduced cell proliferation rate caused by depletion of ASS1 expression
(results not shown), which was possibly due to its short half-life of 4 h. Taken together,
these results indicated that STAT3 activation in KSHV-transformed cells was at least
partially dependent on ASS1-mediated NO production.

Glucose metabolism does not regulate ASS1 and intracellular NO and vice
versa. We have previously shown that KSHV inhibits aerobic glycolysis to promote cell
survival in KSHV-transformed cells by downregulating the expression levels of GLUT1
and GLUT3 (13). Our results so far showed the importance of ASS1 upregulation and the
citrulline-NO cycle in KSHV-transformed cells. Thus, we further examined the role of
ASS1 in the expression of GLUT1 and GLUT3 in KSHV-transformed cells. Knockdown of
ASS1, which also led to a reduced level of intracellular NO (Fig. 5C and D), did not alter
the levels of GLUT1 and GLUT3 (Fig. 8A). Overexpression of ASS1 also did not alter the
levels of GLUT1 and GLUT3 (Fig. 8B). Hence, it is unlikely that ASS1 and the citrulline-NO
cycle regulate the expression of GLUT1 and GLUT3 and glucose metabolism. Similarly,
glucose deprivation, which increases glutamine uptake (12), did not alter ASS1 expres-
sion and intracellular NO levels (Fig. 8C and D). Therefore, glucose metabolism does not
regulate ASS1 expression and the citrulline-NO cycle.

DISCUSSION

We have previously shown that KSHV suppresses glucose uptake and aerobic
glycolysis but upregulates glutamine metabolism to promote cell survival and growth
proliferation in KSHV-transformed cells (12, 13). In this report, we have demonstrated
that KSHV regulates ASS1 expression to maintain NO production, which is essential for
the survival and proliferation of KSHV-transformed cells. Depletion of ASS1 expression
significantly reduced intracellular NO levels, and knockdown of iNOS gave a phenotype
similar to that of depletion of ASS1 expression. Additionally, ASS1 silencing decreased
STAT3 activation, which was partially rescued by NO. Taken together, these results
reveal a novel mechanism by which an oncogenic virus rewires metabolic pathways to
support the growth proliferation and survival of KSHV-transformed cells by sustaining
NO generation and STAT3 activation (Fig. 9).

ASS1 is a rate-limiting enzyme in the citrulline-NO cycle, arginine synthesis, and NO
production (16, 26, 54). Previous studies have shown that ASS1 expression is upregu-
lated in several types of cancer, but the role of ASS1 in cancer as well as the molecular
basis mediating ASS1 upregulation remain unclear (18–21). In KSHV-transformed cells,
we found that numerous KSHV-encoded miRNAs were sufficient for upregulating ASS1
expression but to much lesser extents than the whole virus (Fig. 1). The contributions
of these miRNAs to ASS1 upregulation also vary with individual miRNAs. Whether they
have any synergistic effects remains to be further investigated. Significantly, we showed
that ASS1 was required for the proliferation and colony formation of KSHV-transformed
cells in soft agar (Fig. 2). These findings are consistent with the results of another study
showing that inhibition of ASS1 results in decreased proliferation and tumorigenicity of
colorectal cancer (55). Interestingly, ASS1 expression is downregulated in several types
of cancer cells, leading to the increased dependence of tumor cells on exogenous
arginine and, hence, enhanced sensitivity to arginine deprivation (56, 57). However, the
significance of ASS1 loss in cancer is currently unclear.

By far, the only known function of ASS1 is to recycle citrulline to synthesize
argininosuccinate that is further converted into arginine by ASL to provide the sub-
strate for NO production. Although the extracellular arginine concentration is much
higher than the reported Km of arginine for iNOS, NO generation still depends on the
availability of intracellular arginine in multiple cell lines (26, 54, 58, 59). Results of a
previous microarray study showed that ASS1 upregulation is positively correlated with
NO production, suggesting a possible role of ASS1 in NO generation (60). Our results
demonstrated that ASS1 was required for NO generation in KSHV-transformed cells.
Suppressing either ASS1 or iNOS expression significantly reduced the NO concentration
in vitro (Fig. 5). Interestingly, we did not detect a higher concentration of NO in KMM
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cells than in MM cells despite higher expression levels of both ASS1 and iNOS in KMM
cells (Fig. 6A) (50). We speculate that higher levels of ASS1 and the citrulline-NO cycle
are required for maintaining the intracellular NO level, which is essential for sustaining
the proliferation of KSHV-transformed cells. Indeed, knockdown of iNOS reduced the
intracellular NO level as well as cell proliferation (Fig. 3B to D and Fig. 5A and B),
indicating that the normal flow of the citrulline-NO cycle carried out by iNOS and ASS1
is indispensable for the proliferation of KSHV-transformed cells. Paradoxically, overex-
pression of ASS1 did not further increase the intracellular NO level (results not shown),
suggesting that ASS1 needs to cooperate with other components of the citrulline-NO
cycle. As excess NO might be toxic to the cells (2, 3), maintaining the homeostasis of
NO could maximize the survival of KSHV-transformed cells.

FIG 8 ASS1 does not regulate the expression of GLUT1 and GLUT3, and glucose deprivation does not
affect ASS1 protein and intracellular NO levels. (A) ASS1 knockdown has no effect on the expression of
GLUT1 and GLUT3 proteins. MM and KMM cells transduced with 3 ASS1 shRNAs (shRNA1, -2, or -3) or a
scrambled shRNA (ctl) for 2 days were examined for the levels of GLUT1 and GLUT3 proteins. (B)
Overexpression of ASS1 has no effect on the expression of GLUT1 and GLUT3 proteins. MM and KMM cells
overexpressing ASS1 or a vector control (V) for 2 days were examined for the levels of GLUT1 and GLUT3
proteins. GAPDH, glyceraldehyde-3-phosphate dehydrogenase. (C and D) Glucose deprivation does not
affect ASS1 protein and intracellular NO levels. MM and KMM cells were seeded overnight in full medium,
cultured in medium with and without glucose for 12 and 24 h, and examined for the level of ASS1 protein
(C) or intracellular NO (D).

KSHV Hijacks the Citrulline-Nitric Oxide Cycle Journal of Virology

February 2019 Volume 93 Issue 4 e01599-18 jvi.asm.org 13

https://jvi.asm.org


NO is a multifunctional regulator implicated in diverse physiological and patholog-
ical processes (30, 61, 62). A known NO donor, SNAP can both activate and inactivate
STAT3 (36, 37, 51), but there is no report that has linked ASS1 to STAT3 activation. Our
results showed that STAT3 was inactivated following depletion of ASS1 expression,
which was partially rescued by SNAP (Fig. 7E). These results linked ASS1 to STAT3
activation, which was mediated by NO. Our previous studies have shown that STAT3
activation is essential for the survival and proliferation of KSHV-transformed cells (35).
Hence, the effect of ASS1 depletion on reduced KSHV-induced growth proliferation and
transformation was likely due to the inactivation of STAT3 resulting from the decreased
intracellular NO level. Our results, for the first time, demonstrated that STAT3 activation
was closely regulated by ASS1, NO, and hence the citrulline-NO cycle. Further mecha-
nistic studies are required to delineate the mechanism by which NO mediates STAT3
activation.

Interestingly, we did not find a role of ASS1 or the citrulline-NO cycle in regulating
the expression of GLUT1 and GLUT3 even though they are downregulated in KSHV-
transformed cells (12). Glucose deprivation also did not alter ASS1 expression and
intracellular NO levels. These results are expected, as the glutamine pathway is not
reprogrammed in MM cells, while KMM cells are already reprogrammed by KSHV to
utilize glutamine with or without glucose deprivation (13). Hence, these are the distinct
properties of MM and KMM cells that define their primary and transformed features,
respectively.

In summary, we have shown that KSHV miRNAs upregulate ASS1 expression in
KSHV-transformed cells, resulting in enhanced cell proliferation and cellular transfor-
mation by regulating NO-mediated STAT3 activation (Fig. 9). These findings might also
be relevant for other types of cancer that have dysregulated ASS1 expression.

MATERIALS AND METHODS
Cell culture and reagents. Rat primary embryonic metanephric mesenchymal (MM) cells; KSHV-

transformed MM (KMM) cells (39); MM cells infected by a KSHV mutant with a cluster of 10 precursor
miRNAs deleted (ΔmiRs) (41), vFLIP deleted (ΔvFLIP) (42), or vCyclin deleted (ΔvCyclin) (40); MM cells
infected by ΔmiRs complemented with individual miRNAs (45, 46); and HEK293T cells were maintained
in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS;
Sigma-Aldrich St. Louis, MO) and antibiotics (100 �g/ml penicillin and 100 �g/ml streptomycin). SNAP
(NO donor) was purchased from Cayman Chemical. ROS detection dye was purchased from Thermo
Scientific (catalog number C10422).

Knockdown of cellular genes with lentiviral shRNAs. The ASS1 shRNAs were prepared as previ-
ously described (12). The shRNA DNA fragments for ASS1 and iNOS were ligated into the pLKO1 lentiviral
vector. The target sequences for ASS1 included GCTCGCAAACAAGTGGAAATT for shRNA1, GCACATCCT
TGGACCTCTTCA for shRNA2, and GCATGGATGAGAACCTTATGC for shRNA3. The target sequences for
iNOS included GCACAGAATGTTCCAGAATCC for shRNA1, GCATATCTGCAGACACATACT for shRNA2, and
GCTGAAATCCCTCCAGAATCT for shRNA3. The sequence for a scrambled shRNA is TTGTACTACACAAAA
GTACTG. To package the lentiviruses, a vector expressing shRNA of the scrambled control, ASS1, or NOS2
was cotransfected with pMDLg/pRRE, pRSVRev, and pMD2.G packaging plasmids into exponential-phase
HEK293T cells using Lipofectamine 2000 transfection reagent. At day 3 posttransfection, the supernatant
of HEK293T cells was collected and then filtered. Targeted cells were transduced with the lentiviruses by

FIG 9 Working model illustrating that KSHV hijacks the citrulline-NO cycle to promote KSHV-induced cell
proliferation and cellular transformation. Multiple KSHV miRNAs upregulate ASS1 expression to maintain
intracellular NO levels and STAT3 activation, which is essential for KSHV-induced cell proliferation and
cellular transformation.
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spinning infection at 1,500 rpm for 1 h in the presence of 10 �g/ml Polybrene. The knockdown efficiency
was confirmed by both real-time reverse transcription-quantitative qPCR (RT-qPCR) and Western blotting
after day 3 posttransduction.

Soft agar colony assay. A soft agar colony assay was performed as previously described (39).
Generally, a total of 2 � 104 cells suspended in 1 ml of 0.3% top agar (catalog number A5431; Sigma-
Aldrich) were plated onto 1 well of 0.5% base agar in 6-well plates. After 2 to 3 weeks, colonies with
diameters of �50 �m were counted and photographed with a microscope.

RT-qPCR. Total RNA was isolated with Tri reagent (catalog number T9424; Sigma) according to the
instructions of the manufacturer. Reverse transcription was performed with total RNA using a Maxima H
Minus first-strand cDNA synthesis kit (catalog number K1652; Thermo Fisher Scientific, Waltham, MA).
qPCR analysis was performed on an Eppendorf Real Plex system using Kapa SYBR fast qPCR kits (catalog
number KK4602; Kapa Biosystems, Wilmington, MA). The relative expression levels of genes were
normalized with the internal control �-actin, which yielded a 2�ΔΔCT value. All reactions were run in
triplicates. The primers for rat ASS1 were rat ASS1-F (CTGGAGGATGCCCGAGTTTT) and rat ASS1-R
(TCCAGGATTCGAGCCTGGTA), the primers for rat iNOS were rat iNOS-F (CACCTTGGAGTTCACCCAGT) and
rat iNOS-R (ACCACTCGTACTTGGGATGC), and the primers for rat �-actin were rat �-actin-F (CCATGTAC
CCAGGCATTGCT) and rat �-actin-R (AGCCACCAATCCACACAGAG).

Western blot analysis. Total cell lysates were separated in SDS-polyacrylamide gels and electro-
phoretically transferred to nitrocellulose membranes (GE Healthcare, Pasadena, CA). The membranes
were then blocked with 5% nonfat milk for 1 h and sequentially incubated with primary and secondary
antibodies. The signal was revealed with the Luminiata Crescendo Western HRP substrate (catalog
number WBLUR0500; EMD Millipore, San Diego, CA) and imaged with a UVP BioSpectrum imaging
system (UVP, LLC, Upland, CA). The antibodies used for Western blotting included mouse monoclonal
antibodies (mAbs) for ASS1 (catalog number ab124465; Abcam), STAT3 (catalog number 9139; Cell
Signaling Technology), and �-tubulin (clone 7B9; Sigma); a rabbit polyclonal antibody to iNOS (catalog
number sc-651; Santa Cruz); and a rabbit monoclonal antibody to phospho-STAT3 (catalog number 9145;
Cell Signaling Technology).

Cell cycle analysis, apoptosis assay, and bromodeoxyuridine incorporation. Cell cycle analysis
was performed by propidium iodide (PI) staining as previously described (13, 63). Apoptotic cells
were detected by eFluor 660 fixable viability dye staining (catalog number 650864; eBioscience, San
Diego, CA) and with a phycoerythrin (PE)-Cy7 annexin V apoptosis detection set (catalog number
88810374; eBioscience) according to the instructions of the manufacturer. Samples were examined
with a FACSCanto system (BD Biosciences, San Jose, CA) and analyzed with FlowJo (FlowJo, LLC,
Ashland, OR).

Live-cell imaging. Live-cell imaging was performed to detect intracellular NO as previously de-
scribed (48). Cells grown on a 24-well plate at 37°C in 5% CO2 were treated with 5 �M DAR-4M AM for
1 h at 37°C, followed by washing with phosphate-buffered saline (PBS) four times for 5 min each time at
room temperature. Plates were then examined with a Nikon Eclipse Ti-S fluorescence microscope (Nikon
instruments Inc., Melville, NY, USA). Imaging was performed with a 20� objective. ImageJ was used for
fluorescence quantification.

ROS detection. CellROX deep red reagent (catalog number C10422; Thermo Fisher) is a fluorogenic
probe designed to measure ROS in living cells. The cell-permeable CellROX deep red dye is a nonfluo-
rescent dye in a reduced state but exhibits fluorescence upon oxidation with maximal excitation/
emission wavelengths at 640/665 nm. Cells were incubated with CellROX deep red reagent at a final
concentration of 5 �M for 30 min at 37°C. The cells were washed with PBS three times and examined with
a FACSCanto II flow cytometer.

Statistical analysis. A two-tailed t test or F-test of equality of variances was performed on results,
and a P value of �0.05 was considered statistically significant.
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