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Abstract

The alteration of water balance and related disorders has emerged as being
strictly linked to the state of activation of the vasopressin—aquaporin-2
(vasopressin—-AQP2) pathway. The lack of responsiveness of the kidney to the
vasopressin action impairs its ability to concentrate the urine, resulting in
polyuria, polydipsia, and risk of severe dehydration for patients. Conversely,
non-osmotic release of vasopressin is associated with an increase in water
permeability in the renal collecting duct, producing water retention and
increasing the circulatory blood volume. This review highlights some of the new
insights and recent advances in therapeutic intervention targeting the
dysfunctions in the vasopressin~AQP2 pathway causing diseases
characterized by water balance disorders such as congenital nephrogenic
diabetes insipidus, syndrome of inappropriate antidiuretic hormone secretion,
nephrogenic syndrome of inappropriate antidiuresis, and autosomal dominant
polycystic kidney disease. The recent clinical data suggest that targeting the
vasopressin—AQP2 axis can provide therapeutic benefits in patients with water
balance disorders.
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Introduction

The maintenance of water balance is essential for all physio-
logical processes and is critically dependent on water intake via
thirst and water output in the kidney under the control of the
antidiuretic hormone vasopressin. An increase in plasma osmo-
lality, sensed by osmoreceptors situated in the brain, represents
the most important input to cause thirst and stimulation of vaso-
pressin release. Vasopressin is secreted into the circulation by the
posterior pituitary gland in response to an increase in serum osmo-
lality or a decrease in blood volume. In the kidney, vasopressin
binds to the type 2 vasopressin receptor (V2R) and increases
osmotic water transport through the regulation of the aquaporin-2
(AQP2) water channel localized in the kidney connecting tubules
and collecting ducts'”. V2R is a G-protein-coupled receptor
(GPCR) localized at the basolateral plasma membrane of the prin-
cipal cells of the kidney collecting duct. A recent transcriptome
study of 14 microdissected nephron segments of rat kidney dem-
onstrated the V2R mRNA expression from the medullary thick
ascending limb to the inner medullary collecting duct’. Upon bind-
ing of vasopressin to V2R, a G_ protein is activated, leading to
stimulation of adenylyl cyclases, increase in intracellular cAMP,
and activation of protein kinase A (PKA). The cAMP/PKA signal
transduction cascade results in multiple phosphorylating events
in the C-terminus of the water channel AQP2 regulating its
trafficking and the water luminal permeability™*. Vasopressin
also triggers increases in intracellular calcium required for AQP2
trafficking”*.

Most of the effect of vasopressin is thought to be related to PKA-
mediated phosphorylation currently explored by large-scale
phosphoproteomics to identify regulated proteins’ downstream
PKA activation’. On the other hand, several proteins participat-
ing in the control of cAMP-dependent AQP?2 trafficking, including
SNARE:S, annexin-2, hsc70, A-kinase anchoring proteins (AKAPs),
and small GTPases of the Rho family proteins controlling cytoskel-
etal dynamics, have been identified'*'®. In addition to phosphor-
ylation, AQP2 undergoes different regulated post-translational
modifications, such as ubiquitination and glutathionylation,
which are likely to be fundamental for controlling AQP2 cellular
localization, stability, and function'**'.

Besides short-term regulation of AQP2 trafficking, vasopressin
regulates the total amount of the water channel within the cell and
alters the protein half-life of AQP2*. Alterations in AQP2 abun-
dance as well as defects in vasopressin signaling in the renal col-
lecting duct can seriously compromise renal function and the
maintenance of water balance in the body.

This review highlights some of the new insights and recent
advances in targeting the vasopressin—AQP2 pathway in some rel-
evant diseases associated with water balance disorders, such as
congenital nephrogenic diabetes insipidus (NDI), idiopathic syn-
drome of inappropriate antidiuretic hormone secretion (SIADH),
nephrogenic syndrome of inappropriate antidiuresis (NSIAD),
and autosomal dominant polycystic kidney disease (ADPKD).
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Vasopressin—AQP2 pathway in water balance disorders
Plasma copeptin as a surrogate marker of vasopressin
secretion in renal disorders

Significant progress in studying the role of vasopressin in renal
disorders came from the identification of copeptin, a stable sur-
rogate marker of vasopressin secretion that is relatively easily
measured*~*. Copeptin is a peptide corresponding to the COOH-
terminal portion of pro-vasopressin and is co-secreted in equimo-
lar amounts with vasopressin, representing a good biomarker for
vasopressin®. Indeed, it has been reported that plasma con-
centrations of copeptin correlate strongly in several clinical
conditions®™***% In a large cross-sectional study, plasma
copeptin and microalbuminuria positively correlated”’, and this
correlation was also found to persist with a 16-year follow-up™.
The increase in urinary albumin excretion is likely to reflect not
only glomerular damage but also systemic endothelial dysfunc-
tion and is consistent with the hypothesis that vasopressin induces
urinary albumin excretion as previously reported in rats and
humans™*. Conversely, suppressing vasopressin by administer-
ing a V2R antagonist or by simply increasing water intake might

be beneficial for renal function and diabetes™*'.

As shown previously, vasopressin levels are also increased in
diabetic nephropathy characterized by dysregulation of water bal-
ance displaying water depletion as a consequence of osmotic diu-
resis due to glycosuria*, probably to limit water loss. Of interest,
in patients with type 2 diabetes, plasma copeptin was found to
be associated with a faster decline in glomerular filtration rate
(GFR) in two distinct studies**.

The role of vasopressin is particularly central in the pathogenesis
of another severe disease, ADPKD, characterized by the expan-
sion of renal cysts eventually leading to loss of renal function.
Association of urinary copeptin with the severity of ADPKD was
also recently demonstrated*, suggesting that copeptin can repre-
sent a novel marker to predict renal prognosis in ADPKD. Copep-
tin levels are negatively associated with GFR, kidney size, and
number of renal cysts**<°. While ADPKD is the most advanced
disease for the therapeutic use of vasopressin receptor blockade,
this strategy is also currently being explored in chronic kidney
diseases (CKDs).

In summary, the vasopressin—AQP2 system has a critical role in
various stages of CKD*~" and in several kidney diseases’, mak-
ing this pathway very promising from a therapeutic perspective.
Indeed, high water intake (particularly plain water) has been
proven to be beneficial in preventing CKD progression in several
studies (reviewed in 46), based on the expected suppression of
vasopressin release that can be easily monitored by plasma copep-
tin measurements. On the other hand, the association between
total fluid intake (excluding water intake) and change in kidney
function requires additional prospective studies, since other data
do not support the hypothesis that total fluid consumption (exclud-
ing water intake) protects against CKD"; therefore, additional
study with prospective evaluation of kidney function is required.
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Targeting defective vasopressin—AQP2 pathway in
nephrogenic diabetes insipidus

NDI is a disease characterized by the kidney’s inability to con-
centrate urine despite elevated concentrations of vasopressin.
The congenital form of NDI can be due to mutation of either the
vasopressin receptor or AQP2 and is associated with marked poly-
uria, polydipsia, and electrolyte imbalance with a constant risk
of severe dehydration for patients’->. Most of the forms of NDI
are due to non-functional V2R (X-linked NDI)*. X-linked NDI
accounts for 90% of cases of congenital NDI and occurs with a
frequency of 4 to 8 per 1 million male live births. Autosomal
NDI accounts for about 10% of the remaining cases™.

NDI can also be acquired and is a frequent side effect of lithium
therapy™ or other drugs’**’. Hypokalemia or hypercalcemia
with associated hypercalciuria also cause acquired NDI?#¢!=%%,

The year 2013 was the 100th anniversary of vasopressin treat-
ment for central diabetes insipidus due to vasopressin hormone
deficiency®”. Despite extensive research in the field, a real cure
for NDI is still missing and treatment is rather symptomatic with
a continuous supply of water and drugs such as ibuprofen and
indomethacin in combination with hydrochlorothiazide, which
however only partially (by 25% to 50%) reduce the abundant
polyuria® 47",

The therapeutic approaches under investigation regard the res-
cue of mutated V2R or AQP2, in case of defective trafficking of
these proteins, or bypassing the V2R signaling, in case of inactive
V2Rs, finalized to increasing the cell surface expression of
AQ})zi],?l—ﬂ.

In patients with NDI due to V2R mutations or as a consequence
of lithium therapy, AQP?2 is in fact theoretically functioning, sug-
gesting the possibility of increasing its apical membrane abun-
dance independently from vasopressin or cAMP. Some studies
suggest that this may be possible. Sildenafil, a phosphodiesterase
inhibitor causing an increase in cyclic guanosine monophosphate,
reduced polyuria in rats with lithium-induced NDI™*. Moreover,
a child affected by X-linked NDI treated with sildenafil had a
beneficial effect in decreasing urine volume and increased urine
osmolality”.

Another approach to bypass defective V2R was altering the cho-
lesterol content of the apical membrane to increase AQP2 accumu-
lation. To this end, different statins have been used. Statins are a
family of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors
commonly used to inhibit cholesterol biosynthesis. Besides this,
in vitro studies showed that statins reduced endocytosis possibly
by inhibiting isoprenylation of Rho GTPase, which leads to actin
cytoskeletal reorganization during protein trafficking”. Of note,
in renal cells and in vivo, statins have been shown to promote
AQP2 localization to the apical membrane’””®, a process known
to require apical depolymerization of the actin network and Rho
inhibition'"'%.

Interestingly, a combination of two statins—fluvastatin and secre-
tin—drastically reduced urine output by nearly 90% and doubled
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urine osmolality in mouse models of NDI in a mouse model”. Sta-
tin treatment was also found to be beneficial in NDI patients with
inactivating mutation of the V2R and in patients under lithium
therapy™. Besides the effect in reducing urinary output in patients
with NDI, the efficacy of the treatment with statins in increas-
ing apical expression of AQP2 has been monitored by measur-
ing the urinary excretion of AQP2 (u-AQP2), which was found
to be increased in a time- and dose-dependent manner®'.

The most recent approach for treating congenital X-linked NDI
is based on treatment with metformin, a drug used for the treat-
ment of diabetes which is able to activate the adenosine monophos-
phate kinase (AMPK)***. In the renal inner medullary collecting
duct, AMPK phosphorylates AQP2 and urea transporter UT-A1,
resulting in water and urea reabsorption®, and improves renal
concentrating ability in X-linked NDI mice®. Therefore, AMPK
activation with metformin might represent an alternative therapeu-
tic approach to treat X-linked NDI. More recently, it was shown
that inhibition of AKAPs binding to PKA increases PKA activ-
ity and activates AQP2 channels in cortical collecting duct cells*.
In line with this finding, in vivo experiments revealed that the
compound 3,3’-diamino-4,4’-dihydroxydiphenylmethane (FMP-
API-1) induced AQP2 phosphorylation, trafficking, and water rea-
bsorption to the same extent as vasopressin in the context of V2R
inhibition. This study points to AKAP-PKA disruptors as a
potential novel category of therapeutic drugs for congenital NDI*.

Targeting selected GPCRs with agonists to increase cAMP has
also been considered an option to treat NDI. Among the GPCRs
expressed in the inner medulla collecting duct, activation of the
calcitonin receptor caused an increase in cAMP and accumu-
lation of AQP2 in the plasma membrane in LLCKP1 cells* and
reduced urinary output in vasopressin-deficient Brattleboro rats’.
Other GPCRs whose activation was found to be associated with
increased AQP2 expression are the angiotensin II AT1 receptor®
and secretin receptor’”®’. However, it has to be underlined that
in vivo testing of this approach targeting GPCRs revealed that the
effect is transient and this is probably due to desensitization of
the receptors”®. In parallel, four other GPCRs, the protein-
coupled E-prostanoid receptors EP1-EP4, have been considered
for their ability to increase cAMP and AQP2 in MDCK cells®.
Selective silencing of EP4 in mice resulted in reduced renal
concentrating ability”. Interestingly, in renal collecting duct cell
models, EP4 activation increased AQP2 trafficking independently
from cAMP elevation’*", although the mechanisms responsible for
EP4-induced stimulation of AQP2 trafficking are not yet clarified.

The calcium signaling pathway in the vasopressin response has
also been considered a major target in the treatment of NDI. Spe-
cifically, activators of calcium signaling in collecting duct princi-
pal cells may represent a therapeutic strategy in NDI. In a recent
seminal study, Uchida er al. demonstrated that activation of the
calcium signal transducer Wnt5a, through a calcium/calmodulin/
calcineurin signaling pathway, induced phosphorylation, traffick-
ing, and mRNA expression of AQP2 in mpkCCDCl4 cells”'. Of
note, in isolated cortical collecting ducts from a V2R-inhibited
NDI mouse model, Wnt5a increased osmotic water permeabil-
ity and urine osmolality, activating a different pathway of the
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vasopressin-induced cAMP elevation, involving a functional role
of calcineurin/arachidonic acid known to induce vasopressin-like
effects in mpkCCD cells. These new data point to calcineurin acti-
vators as possible drugs for the treatment of congenital NDI.

Vasopressin—AQP2 pathway in syndrome of inappropriate
antidiuretic hormone secretion and nephrogenic syndrome
of inappropriate antidiuresis

SIADH may be considered an opposite disease with respect to
NDI. Patients with SIADH have high levels of vasopressin even
in the presence of low serum osmolality, leading to dilutional
hyponatremia secondary to elevated renal water reabsorption””*.

Hyponatremia is defined as a serum Na level below 135 mmol/L
and is associated with an increase in mortality in hospital-
ized patients™. In SIADH, high levels of vasopressin are present
even when plasma osmolality reaches values that normally sup-
press vasopressin release and the resulting hyponatremia can be
ascribed to a non-osmotic release of vasopressin™. Nevertheless, a
phenomenon called “vasopressin escape” allows the kidney to
excrete free water through reduced expression of the gene encoding
AQP2, thus increasing water excretion’®”. Interestingly, a recent
study uncovered some signaling mechanisms that defend against
hyponatremia in SIADH”'. A STADH-like condition is frequently
related to aging”. SIADH has several major etiologies, includ-
ing central nervous system and pulmonary disorders, tumors, and
drugs, the last of which is related mainly to psychopharmacologi-
cal treatment. An interesting observation is that treatment with
antipsychotics is associated with elevated activity of calcineurin
and enhanced vasopressin release, which may contribute to activa-
tion of AQP2 trafficking causing drug-induced SIADH. Moreover,
cyclophosphamide, an anti-cancer drug, activates V2R and induces
AQP?2 expression in rat kidney despite the absence of vasopressin
stimulation”. This finding suggested the possibility of drug-induced
NSIAD. The syndrome of inappropriate antidiuresis has been
suggested as an alternative to SIADH, since a subgroup of patients
with features of SIADH does not have high plasma vasopressin
levels”. Therefore, dilutional hyponatremia may result from
either excessive AVP release or constitutive activation of V2R.

The use of antagonists of the vasopressin receptors (vaptans) rep-
resents the most direct treatment for hyponatremia in SIADH.
In this respect, over the last 10 years, significant advances in
the treatment of STADH have been made'”.

Among vaptans, conivaptan represents the first vasopressin
receptor blocker approved by the US Food and Drug
Administration”. Conivaptan is given intravenously and acts on
both V1 and V2 vasopressin receptors, resulting in solute-free
water diuresis (aquaresis). Tolvaptan instead is orally active
and is a selective antagonist of the V2R. It has been shown to
be effective and safe for up to 3 years'’'. Both conivaptan and
tolvaptan are approved for the treatment of hypervolemic
hyponatremia in patients with heart failure or cirrhosis and of
euvolemic hyponatremia in patients with SIADH. We recently
demonstrated that tolvaptan prevents AQP2 trafficking and func-
tion in collecting duct principal cells and reduces AQP2 excre-
tion in two patients with SIADH paralleled by normalization
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of plasma sodium concentration, clearly demonstrating the
central role of AQP2 blockade in the aquaretic effect of
tolvaptan'®”. An alternative approach with broad potential clini-
cal application is the identification of small-molecule inhibitors
of aquaporins'*; however, so far, progress in the field has been
disappointing.

As discussed, SIADH is characterized by hypersecretion of vaso-
pressin. However, 10% to 20% of patients with inappropriate
antidiuresis display low or undetectable vasopressin circulating
levels. This condition was found to be associated with gain-of-
function mutations of the V2R, first discovered in 2005'*, and the
associated disease was defined as NSIAD to distinguish it from
SIADH. NSIAD is a very rare disease representing the mirror
image of NDI; 21 cases have been reported to date and the major-
ity of them come from five families. In the first two cases of
NSIAD, the mutations of the V2R were found at residue R137.

In the first two cases of NSIAD, the mutations of the V2R gene
(AVPR2) result in changes in codon 137 from arginine to cysteine
or leucine (R137C and R137L). Of note, whereas substitution
of R137 to cysteine or leucine results in NSIAD, conversion of
R137 to histidine (R137H) is a well-known loss-of-function muta-
tion associated with NDI, leading to water loss and inability to
concentrate urine'””. Thus, mutations of the same amino acid
of the V2R, R137, can have opposite clinical outcomes. Other
constitutively activating mutations causing NSIAD—namely
F229V'% T130N'", and L312S'*—have been subsequently identi-
fied. Theoretically, NSIAD should be treated with a V2R inverse
agonist; however, tolvaptan and satavaptan had no efficacy in
patients carrying mutations of R137'”. In contrast, both drugs
have an effect on F229V, 1130N mutants, and L312S in vitro,
suggesting that they could be effective in patients carrying these
mutations'**-1%,

Targeting the vasopressin—AQP2 pathway in autosomal
dominant polycystic kidney disease

ADPKD is an inherited disorder with an estimated frequency of
1 in 400 to 1,000 live births'"” and is characterized by the pro-
gressive growth of renal cysts causing disruption of renal
architectures and eventually leading to end-stage renal disease.
Despite high baseline vasopressin levels, patients frequently present
defective urinary concentration, and this is probably due to a
peripheral resistance to vasopressin''""'">. Interestingly, the block-
ade of V2R using tolvaptan in patients with rapidly progressing
ADPKD has been proven to slow cyst growth, supporting the
involvement of the V2R pathway in ADPKD''*!!%,

The hereditary form of ADPKD is due to mutations in PKDI or
PKD?2 genes, encoding for polycystin 1 (PC1) and polycystin 2
(PC2), respectively. PC1 is localized to the primary cilium and
in cell-cell contacts, suggesting a role as an adhesion protein'".
PC2, instead, is a non-selective cation channel permeable to cal-
cium, expressed in the endoplasmic reticulum and in primary
cilium, where it forms a complex with PC1 and has a role in
intracellular Ca>* homeostasis. At the cellular level, mutations in
PKDI or PKD2 are associated with a reduction in intracellular
calcium, increase in cAMP, and constitutive activation of PKA,
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making the collecting duct principal cells under constant tonic
effect of vasopressin. The disruption in calcium and cAMP sig-
naling cascades activates pathways causing cell proliferation,
increased fluid secretion, and interstitial inflammation''®'"”. Our
recent in vitro study demonstrated that in human conditionally
immortalized proximal tubular epithelial cells silenced for PKD1
(ciPTEC-PC1KD) or generated from a patient with ADPKDI1
(ciPTEC-PC1Pt), selective activation of the calcium-sensing recep-
tor increases cytosolic calcium, reduces intracellular cAMP and
mTOR activity'', and rescues defective ATP mitochondrial
production''’, reversing the principal ADPKD dysregulations.

Currently, there is no cure for the disease; it is clinically manage-
able only through the control of its many complications, and the
existing therapeutic approaches are rather supportive. Neverthe-
less, as mentioned, some drugs targeting the vasopressin—AQP2
pathway have been found to slow the progression of ADPKD in
animal models and clinical trials'”’. Tolvaptan has been tested
on ADPKD patients with higher total kidney volume and was
found to delay the progression of ADPKD, supporting the link
between V2R signaling and ADPKD development''*'*!. Tolvaptan
has been approved to delay the progression of ADPKD in
Japan, Canada, and the European Union, and very recently the
US Food and Drug Administration also approved tolvaptan as the
first drug treatment to slow kidney function decline in adults at
risk of rapidly progressing ADPKD.

Conclusions and perspectives

Over the past decade, interest in the vasopressin—AQP2 pathway
has been renewed, mainly because of the availability of vaptans,

Nephrogenic Diabetes Insipidus (NDI)
(Mutationsin the AVPR2 gene or in the AQP2 gene)

N
e

* Defective urine concentration
+ Polyuria

+ Polydipsia

* High vasopressin levels

Altered
Vasopressin-AQP2
pathway

Autosomal Dominant Polycystic Kidney Disease (ADPKD)
(Mutationsin PKD1 or PKD2 genes)

* Defective urine concentration
* High vasopressin levels
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the orally active vasopressin receptor antagonists, and of the use
of copeptin as a surrogate marker of vasopressin. The dysregula-
tion of the vasopressin—AQP2 system is clearly and tightly asso-
ciated with specific diseases such as NDI, SIADH, NSIAD, and
ADPKD, briefly discussed in this review (Figure 1).

With regard to NDI, many target molecules for the treatment of
congenital NDI have been proposed; however, no specific phar-
macological drugs have yet reached clinical application. In the
development of drugs for the treatment of congenital NDI, it is
important to identify/design drugs that directly activate AQP2
without toxic effects and to pay attention to preserving the med-
ullary osmotic gradient, representing the driving force for water
reabsorption. In this scenario, the screening for calcineurin acti-
vators like Wnt5a is a potentially promising therapeutic strategy
to develop novel drugs for the treatment of heritable NDIL.

Conversely, for the management of opposite diseases such as
SIADH, characterized by hyperactivation of the vasopressin—
AQP2 pathway, as discussed in this review, the use of vaptans to
block vasopressin receptors represents the main avenue for the
direct treatment of hyponatremia. Although among vaptans
tolvaptan is well tolerated, the design of new V2R blockers reduc-
ing the reported side effects should be encouraged. Moreover,
co-targeting V2R and other GPCRs known to increase intracellular
calcium might be a successful approach for ADPKD treatments.

Novel AQP-targeting therapies through modulation of micro-
RNA (miRNA) function have recently been suggested (reviewed
in 122). The possibility of using miRNA alone or in combination

Syndrome of Inappropriate Antidiuretic hormone secretion (SIADH)
(Unsuppressed release of vasopressin or its continued action on V2R
secondary to CNS disturbances; malignancies; drugs; surgery;
hormone deficiency or administration; HIV infection)

* Waterretention
* Hyponatremia
* High vasopressin levels

Nephrogenic Syndrome of Inappropriate Antidiuresis (NSIAD)

(Mutations in the AVPR2 gene)

+« Waterretention
* Hyponatremia
* Undetectable vasopressin levels

Figure 1.Targeting the vasopressin—AQP2 pathway in water balance disorders. Alterations of the vasopressin—AQP2 axis, causes of the
disease, and principal effects observed in selected water balance disorders. AQP2, aquaporin-2; CNS, central nervous system; V2R, type 2

vasopressin receptor.
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with other drugs to modulate the vasopressin—AQP2 pathway
specifically provides new hints for AQP-based therapeutics’'*. In
this respect, the recent identification of miR-132 as a first miRNA
target which blocks vasopressin gene expression has opened
new avenues for drug development'**.
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