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Abstract

This article is a how-to guide on Bayesian computation using Gibbs sampling, demonstrated in the 

context of Latent Class Analysis (LCA). It is written for students in quantitative psychology or 

related fields who have a working knowledge of Bayes Theorem and conditional probability and 

have experience in writing computer programs in the statistical language R. The overall goals are 

to provide an accessible and self-contained tutorial, along with a practical computation tool. We 

begin with how Bayesian computation is typically described in academic articles. Technical 

difficulties are addressed by a hypothetical, worked-out example. We show how Bayesian 

computation can be broken down into a series of simpler calculations, which can then be 

assembled together to complete a computationally more complex model. The details are described 

much more explicitly than what is typically available in elementary introductions to Bayesian 

modeling so that readers are not overwhelmed by the mathematics. Moreover, the provided 

computer program shows how Bayesian LCA can be implemented with relative ease. The 

computer program is then applied in a large, real-world data set and explained line-by-line. We 

outline the general steps in how to extend these considerations to other methodological 

applications. We conclude with suggestions for further readings.

Overview

Bayesian data analysis is thriving in social and behavioral sciences, thanks in an important 

part to the rapid growth in introductory textbooks on practical analytic skills (e.g., Gelman 

and Hill (2007), M. D. Lee and Wagenmakers (2013), Kaplan (2014), McElreath (2016)). 

Syntax examples, such as those distributed with WinBUGS (Lunn, Thomas, Best, & 

Spiegelhalter, 2000), OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009), JAGS 

(Plummer, 2003), and Stan (Stan Development Team, 2017), also help to put Bayesian 

analytics into immediate use with minimal requirements on understanding how the Markov 
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Chain Monte Carlo (MCMC) simulations actually work. There are also programs that serve 

as shells for backend computations done in JAGS (blavaan package in R, Merkle and 

Rosseel (2016)) and Stan (rstanarm, Stan Development Team (2016)). Several commercial 

computer software packages popular among social scientists also support model fitting by 

Bayesian MCMC simulations (e.g., Mplus, Muthén & Muthén, 2011). It has never been 

easier to carry out Bayesian data analysis if all one wants to do is to find a practical solution 

for a statistical problem. A systematic review (Van de Schoot, Winter, Ryan, Zondervan-

Zwijnenburg, & Depaoli, 2017) showed that accessible tutorials and software programs 

contributed to a proliferation of Bayesian analytics in psychology in the past 25 years. 

Indeed, why would non-specialists ever bother with the complex details in Bayesian 

computation when practical solutions abound?

We can offer several reasons. Coding a computer program facilitates a deeper understanding 

of Bayesian computation. A computer program has to be explicit and precise, thereby 

forcing the learner to understand the abstract Bayesian model with great specificity. 

Computer programming also complements clarity in theoretical expositions, as shown in 

introductory textbooks (e.g., Albert (2007), Lynch (2007), and Gelman and Hill (2007)) and 

an acclaimed textbook on rethinking Bayesian analytics (McElreath, 2016). Computer 

programming skills allow students and researchers to develop new methods and to invent 

new solutions not yet fully supported by commercial or open-source software programs 

(e.g., Neelon, O’Malley, and Normand (2011), Neelon, Zhu, and Neelon (2015), Neelon, 

Swamy, Burgette, and Miranda (2011), and Elliott, Gallo, Ten Have, Bogner, and Katz 

(2005)). The ability to code one’s own Bayesian computation promises other new 

possibilities, such as Bayesian nonparametric methods (e.g., Gershman and Blei (2012), 

Karabatsos and Walker (2009b), Karabatsos, Talbott, and Walker (2015), Karabatsos and 

Walker (2009a), Karabatsos (2006), Jara, Hanson, Quintana, Müller, and Rosner (2011)).

This tutorial shows how a non-technician can implement Bayesian computation, using 

Latent Class Analysis (LCA) as an illustrative example. We aim to demonstrate that abstract 

mathematics can be followed one simple step at a time by working out the simple 

calculations first and then by piecing them together to yield the full Bayesian model. The 

pedagogical plan is to follow a worked-out example step-by-step with mathematics kept at 

the most essential. It is about making Bayesian computation accessible to students who have 

never contemplated tackling such technically challenging topics. We also hope that 

instructors of Bayesian methods and/or advanced statistical modeling may use this tutorial as 

a teaching aid.

The intended readers are students involved in behavioral research who: 1) have a working 

knowledge of Bayes Theorem (e.g., Berry (1995) and Winkler (2003)); 2) have taken 

graduate-level statistics classes (e.g., regression and/or ANOVA; Gelman and Hill (2007), 

particularly Chapter 18 on Bayesian computation); 3) understand basic probability theory 

(e.g., Chapter 1 of P. M. Lee (2012); Lindley (1980); or a more accessible monograph by 

Rozanov (1977)); and 4) familiarity with computer programming in the statistical language 

R (e.g., Bayesian computation in Albert (2007)). Familiarity with computer programming is 

needed. However, the required programming skills are not much more advanced than the 

basics. This background may describe an advanced graduate student in quantitative 
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psychology or a related field. More advanced knowledge in Bayesian statistical theory and 

MCMC simulation is helpful but not required.

Our ultimate goal is to illustrate how readers can go beyond the present example and begin 

exploring other Bayesian computation solutions. This necessitates a somewhat unique style. 

We have attempted, at the risk of being pedantic, to be extremely explicit in working through 

the details in the exposition and notation, much more specifically than what is typically 

available in elementary introductions. Graphics are used to visualize the general shapes of 

the parameters. Explanations and comments are added as we proceed. Detailed annotations 

are provided to connect the equations with the R code. At first, this tutorial may appear to 

require rigorous courses in mathematical statistics which most behavioral researchers have 

not taken. However, the worked-out examples should help make the equations more concrete 

and easier to follow.

This tutorial is organized as follows. We begin with an example on how Bayesian 

computation is typically described in methodology papers with a rigorous and succinct style 

that delves relatively rapidly into the conditional posterior distributions. The complex 

derivations can be hard to understand. Next, we provide an alternative to offer a more 

straightforward presentation without the loss in clarity and rigor. Each component of the 

LCA is explicitly described and mathematics carefully described. We then introduce a 

simple R program to carry out Gibbs sampling. The final section includes suggestions for 

further reading.

Hypothetical Example of LCA

The hypothetical LCA begins with a neuroscientist who sees cancer survivors with 

symptoms of mild cognitive problems. She gives a brief screening tool with 4 survey 

questions taken from the 48-item Multiple Abilities Questionnaire (MASQ) (Seidenberg, 

Haltiner, Taylor, Hermann, & Wyler, 1994), a self-reported symptom assessment for mild 

neurocognitive impairment. The 4 screening questions are:

• “After putting something away for safekeeping, I am able to recall its location,”

• “I can recall phone numbers that I use on a regular basis,”

• “I can keep my mind on more than one thing at a time,” and

• “I find it difficult to keep my train of thought going during a short interruption.”

The first three items are reverse-coded to screen for the presence of problems (1=‘present’ 

and 0=‘absent’).

Suppose the neuroscientist collects pilot screening data and analyzes the data with LCA 

looking specifically for a solution with three latent groups. The computer program outputs 

two sets of parameters: 1) the frequency distribution of the latent groups (in this case, the 

sample distribution is 50%, 30%, and 20% for latent class 1, 2, and 3, respectively); and 2) 

item response probabilities, or the probability of endorsing the 4 screening items among 

members of each of the latent groups (see Table 1).
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Table 1 shows how the neuroscientist describes the three latent groups. The first group is 

named the ‘few or no symptoms’ group based on the low item response probabilities of 0.20, 

0.20, 0.10, and 0.10, for the 4 symptoms respectively. The second group is named the 

‘memory lapses’ group because of the relatively higher probability of its members reporting 

memory problems (questions 1 and 2). And group 3 is named ‘attention issues’ because of 

the relatively more frequent endorsement of problems in attention. The ‘few or no 

symptoms’ group is the largest, accounting for 50% of the patients, with 30% in the 

‘memory lapses’ group and the remaining 20% in the ‘attention issues’ group. These are 

latent groups (or ‘classes’) in the sense that they are not known a priori and not directly 

observable but their commonalities are revealed in how members of each latent group report 

neurocognitive problems. Throughout this tutorial they are called latent ‘groups’ or ‘classes’ 

interchangeably.

In the next section, we present the equations in the technical manner that is typical of many 

presentations, with a style that favors mathematical rigor and succinctness rather than 

detailed expositions. A beginner may find the derivations difficult to follow, complex, and 

impenetrable. However, we then show how these complex derivations can be made 

accessible to beginners. The rest of this paper provides a detailed didactic presentation, 

providing a step-by-step explanation of these equations. We recommend reading through this 

tutorial, paying close attention to how we substitute hypothetical numbers into these 

equations to demonstrate what they do, and then revisiting the technical steps section to 

reinforce the materials you have digested.

Bayesian Computation: Technical Steps

This section outlines Bayesian computation as typically described in an academic paper. The 

difficulties that arise, especially in the more technical steps, highlight the need to spend the 

rest of this tutorial going over them step by step with a concrete example.

Step 1: Likelihood Function.—The likelihood of observing the data vector yi, as defined 

by Garrett and Zeger (2000), is a function of parameters πj and pjk,

f yi; π, p = ∑
j = 1

C
π j ∏

k = 1

K
p jk

yik 1 − p jk

1 − yik, (1)

where πj represents the distribution of latent class membership in the population (in the 

hypothetical case in Table 1, πj = [π1 = 0.50, π2 = 0.30, π3 = 0.20]). Also, pjk represents the 

probability that a person in the jth latent group endorses the kth symptom. The overall 

likelihood is summed over latent classes c = 1,2,...,C.

As a result, the likelihood function of yi always depends on ci, typically written as

p yi, ci j π j, p jk = ∏
j = 1

C
π jp yi p jk

ci j . (2)
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Note that, for example, c1j (for person 1) may take on the specific value of (1, 0, 0) (member 

of latent class 1), so that the exponents in Equation 2 produce a likelihood based solely on 

π1 and p1k because the likelihood is not affected by other latent groups (any number raised 

to a power of 0 yields the constant 1).

Step 2: Bayes’ Theorem.—Equation (2) is reversed by Bayes’ Theorem to find the joint 
posterior distribution of parameters πj, pjk given yi and cij,

p π j, p jk yi, ci =
p yi, ci π j, p jk p π j, p jk

p yi, ci
=

p yi, ci π j, p jk p π j p p jk
p yi, ci

,

The denominator, p(yi, ci), is a constant because its value is not affected by either πj or pjk.

The numerator contains three terms, the likelihood function p(yi, ci|πj, pjk) (which is just 

Equation (2)) and two priors, p(πj) (prior for the latent class distribution) and p(pjk) (prior 

for the response probabilities).

The denominator can be dropped because it does not affect the model. So the joint posterior 

distribution is proportional to the numerator, written with the ∝ symbol thusly

p π j, p jk yi, ci ∝ p yi, ci π j, p jk p π j p p jk ,

or for a simpler notation,

π j, p jk yi, ci ∝ yi, ci π j, p jk π j p jk . (3)

We know what goes into [πj, pjk|yi, ci], which is Equation (2). However, what goes into the 

two priors?

Priors Resulting from Step 2.—At this stage of presentation, most academic articles 

invoke conjugate priors. They are aspects of theoretical distributions well known in Bayesian 

statistics and thus typically assumed understood. In keeping with the same style, we simply 

describe what they are. Details (and visual explanations) are provided in the next section, in 

which we make them more accessible to non-technicians.

Since pjk are proportions derived from Bernoulli trials, their conjugate priors follow a Beta 

distribution with two parameters α and β; πj is a categorical variable, thus its conjugate 

prior follows the Dirichlet distribution with parameters uj. They are:
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p π j Dirichlet π j; u j =
Γ u1 + … + u j

Γ u1 ⋯Γ u j
π1

u1 − 1
⋯π j

u j − 1
∝ ∏

j = 1

C
π j

u j − 1
,

p jk Beta p jk; α, β = Γ(α + β)
Γ(α)Γ(β) p jk

α − 1 1 − p jk
β − 1 ∝ p jk

α − 1 1 − p jk
β − 1 .

Incorporating these priors into Equation (3) yields a fully specified joint posterior 

distribution:

π j, p jk yi, ci ∝ yi, ci π j, p jk π j p jk

= ∏
i = 1

N
∏
j = 1

C
π jp yi p jk

ci j

Equation (2)

∏
j = 1

C
π j

u j − 1

Dirichlet prior

∏
k = 1

K
p jk

α jk − 1
1 − p jk

β jk − 1

Beta priors

.

(4)

Steps 3 and 4: Joint Posterior and Gibbs Sampling.—Equation (4) is often further 

expanded in a typical technical presentation to include all details:

yi, ci π j, p jk π j p jk

= ∏
i = 1

N
∏
j = 1

C
π jp yi p jk

ci j Γ u1 + … + u j
Γ u1 ⋯Γ u j

π1
u1 − 1

⋯π j
u j − 1 Γ(α + β)

Γ(α)Γ(β) p jk
α − 1 1 − p jk

β − 1 ,

which makes the equations hard to follow even for an expert, not to mention for readers who 

are not familiar with the Beta and Dirichlet priors. These issues can easily take away a 

beginner’s confidence in going any further in understanding a technical paper. They will 

have to be addressed before we can complete steps 3 and 4. We now segue to a more didactic 

presentation to cover these fundamental concepts. The next two sections cover steps 3 and 4 

in great detail. Equations are explained with concrete and specific examples. Hypothetical 

numeric values are plugged into these equations to show what they do. Afterwards, we will 

put everything together to work out the Gibbs sampling algorithm and thus complete the 

Bayesian exercise.

Priors in a Bayesian Analysis

This section provides more details on specific conjugate priors in LCA. In Bayesian theory, 

a prior is said to be conjugate of the posterior distribution if both are in the same distribution 

family (Raiffa & Schaifer, 1961). Conjugate priors are often preferred in Bayesian 

computation because they are much easier to implement. We use graphics to provide an 

intuitive understanding of conjugate priors in Bayesian LCA.
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Beta Prior for Binary Item Response Probabilities.

The conjugate prior probability distribution for proportions is the Beta distribution. If, for 

example, our hypothetical neuroscientist asked 10 patients and 3 reported a specific memory 

problem, then this piece of prior information about the prevalence of this problem could be 

represented as a Beta(α = 3, β = 7) distribution where the α,β parameters can be thought of 

as the prior sample sizes for the number of patients reporting the symptom being present and 

absent, respectively.

The shape of the Beta prior is determined by the prior data. Figure 1 shows some examples. 

Figure 1 (a) represents the Beta(α = 3, β = 7) prior above. This prior information comes with 

some uncertainty because of the somewhat small sample size of 10. The second example, in 

(b), represents a belief equivalent to 2 patients endorsing a cognitive problem out of a 

sample of 4. The uncertainty is greater because the sample is smaller still. The example in 

(c) represents a total lack of knowledge—the percentage can be any proportion in [0, 1] with 

equal possibility. This is what is often referred to as a flat, or non-informative, Beta prior. 

Non-informative priors are used throughout this tutorial, including the Beta(α = 1, β = 1) for 

pjk.

If the neuroscientist collected another, larger sample of 120 patients, and 45 endorsed this 

symptom, then the posterior could be calculated by combining the prior and the new data to 

yield a posterior Beta(α = 3 + 45, β = 7 + 75). This shift in the posterior distribution is 

shown in Figure 1 (d). The priors in (b) and (c), when combined with the new symptom data 

of (45 present, 75 absent), yield the Beta posteriors in (e) and (f), respectively. Note that, if 

the new dataset is large enough, it causes all three priors to converge to a posterior of a 

similar shape, despite the initial differences.

The density function of a Beta distribution is Γ(α + β)
Γ(α)Γ(β) p jk

α − 1 1 − p jk
β − 1

, where Γ(α) = (α − 

1)!, or simply as pjk ~ Beta(pjk; α,β).

Dirichlet Prior for Class Membership Distribution.

The Beta prior deals with a parameter with only two categories. If the parameter requires 

three or more categories, then the Beta distribution is no longer sufficient. The Dirichlet 

distribution is an extension of the Beta prior to three categories or more. The Dirichlet 

distribution is the conjugate prior for a categorical distribution. Figure 2 illustrates the 

Dirichlet distribution with three categories representing, for example, a sample of 20 divided 

into three latent classes, with 10, 6, and 4 in the three respective latent classes. This is 

represented mathematically as pjk ~ Dirichlet(πj; uj).

The contour lines in (b) better illustrate where the peak of the distribution is, at 

π1* = 0.50, π2* = 0.30, π3* = 0.20 , although π3* is not plotted because π3* is fixed once π1* and π2*

are known. The plots show that the observed counts of 10, 6, and 4 out of a sample of 20 is 

most likely from an underlying probability distribution of 50% in the first category, 30% in 

the second category, and 20% in the third and last category, represented as 

π1* = 0.50, π2* = 0.30, π3* = 0.20 .
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It is important to note that other combinations of probabilities, such as 

π1* = 0.40, π2* = 0.50, π3* = 0.10  can also yield the same observed counts, although much less 

likely. We do not precisely know the underlying distribution of the latent groups, so we 

represent this uncertainty by the entire Dirichlet density surface covering all possible values 

of π1*, π2* and π3* that can yield the observed counts. The Dirichlet density is: 

Γ u1 + … + u j
Γ u1 ⋯Γ u j

π1
u1 − 1

⋅ ⋅ ⋅ π j
u j − 1

, where the product of all category probabilities πj raised to 

the power of their prior sample sizes uj − 1. A flat, non-informative Dirichlet prior can be 

represented by setting all values to 1 in the prior sample size, πj ~ Dirichlet(πj; uj = (1, 1, 

…, 1)).

It is worth highlighting that everything in Bayesian statistics is represented in a probability 

distribution, which better captures the uncertainty in the prior as well as in the posterior. 

Conjugate priors make the derivation of the posteriors easier to understand, which we will 

turn to next.

Worked-Out Examples for Better Accessibility

To better understand the technical steps, we will first put hypothetical numbers into the 

equations and work through the mathematics step by step to explain what the equations 

actually do. It is important to keep in mind that the actual Bayesian computation is more 

comprehensive than the simplified version here.

Suppose our neuroscientist sees a new patient, John, who responds to the four screening 

questions with ‘present’, ‘present’, ‘absent’, and ‘absent’, which yields the data vector y = 

(1, 1, 0, 0). The likelihood function in Equation (1) can be used to find the probability of 

observing y = (1, 1, 0, 0). First, we need to know which latent class John belongs to. There 

are 3 possibilities in our hypothetical 3-class solution. If John belongs to the ‘memory 

lapses’ group, then according to Table 1 the probability of observing y is 0.70 × 0.70 × (1 

− 0.20) × (1 − 0.20), that is, a 0.70 probability of endorsing item 1, a 0.70 probability of 

endorsing item 2, a 1 − 0.20 probability of not endorsing item 3, and a 1 − 0.20 probability 

of not endorsing item 4. By assuming that these individual probabilities are independent 

given the model, they can be multiplied together to yield the probability of observing y. A 

more general way to write it is to follow the binomial probability formula to find 

(0.7010.300)× (0.7010.300)× (0.2000.801)× (0.2000.801) = 0.3136.

If the probability of an event is pk, and the presence of an event is represented by 1 and 0 

otherwise, then the overall probability of observing y = (1, 1, 0, 0) is 

p1
1 1 − p1

0 × p2
1 1 − p2

0 × p3
0 1 − p3

1 × p4
0 1 − p4

1, or generally as ∏k = 1
4 pk

yk 1 − pk
1 − yk, 

where y = (y1 = 1, y2 = 1, y3 = 0, y4 = 0) and the Greek upper-case letter Π represents the 

product of a series of numbers.

If, instead, John belongs to one of the other two latent groups, then his response probability 

is (0.2010.800) × (0.2010.800) × (0.1000.901) × (0.1000.901) = 0.0324 or (0.1010.900)× 
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(0.1010.900)× (0.7000.301)× (0.7000.301) = 0.0009, respectively. Because John has a 50% 

probability of being in the ‘few or no symptoms’ group, 30% probability of being in the 

‘memory lapses’ group, and a 20% probability of being in the ‘attention issues’ group, the 

overall probability of observing y = (1, 1, 0, 0) is a weighted average, using Equation (1),

f (y; π, p) = 0.50 × 0.2010.800 × 0.2010.800 × 0.1000.901 × 0.1000.901 +

0.30 × 0.7010.300 × 0.7010.300 × 0.2000.801 × 0.2000.801 +

0.20 × 0.1010.900 × 0.1010.900 × 0.7000.301 × 0.7000.301

= 0.50 × 0.0324 + 0.30 × 0.3136 + 0.20 × 0.0009

= 0.0162 + 0.09408 + 0.00018 = 0.11046 .

Each row is the binomial probability of a response of yi = (1, 1, 0, 0) for a specific latent 

class, weighted by the probability of the person belonging to that class. The overall 

probability of 0.11046 takes into account all three latent membership possibilities. Equation 

(1) may look intimidating to a beginner at first. However, a pattern emerges when the 

equation is unpacked with its components explicitly written down as above. It helps to 

follow the equation carefully and fill in appropriate numbers.

Now we turn to Equation (2). If we really want to be detailed in the notation, the 

probabilities summed above can be expressed as

p yi = (1, 1, 0, 0), ci = (1, 0, 0) π j, p jk = 0.01620,
p yi = (1, 1, 0, 0), ci = (0, 1, 0) π j, p jk = 0.09408, and
p yi = (1, 1, 0, 0), ci = (0, 0, 1) π j, p jk = 0.00018,

(5)

where the ci in bold represents a vector for the ith person’s specific latent class membership.

If a person’s class membership is known and fixed (e.g., in latent class 1), then his/her 

probability of response by Equation (2) gives [0.50 × 0.0324]1· [0.30 × 0.3136]0·[0.20 × 

0.0009]0 = [0.50 × 0.0324] ·1 · 1 = 0.01620, exactly the same as the value derived from 

Equation (1). Therefore, we can rewrite Equation (2) to incorporate these details:

p yi, ci j π j, p jk = ∏
j = 1

C
π jp yi p jk

ci j

= ∏
j = 1

C
π j ∏

k = 1

K
p jk

yik 1 − p jk
1 − yik

ci j

= ∏
j = 1

C
π j

ci j ∏
k = 1

K
p jk

yikci j 1 − p jk
1 − yik ci j ,

(6)

where the cij exponents outside the square brackets in the second line are distributed into the 

exponents of specific parameters in the third line.
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Equations (5) and (6) give us three useful quantities, 0.01620, 0.09408, and 0.00018—the 

probabilities of the item responses arising from each of the three latent classes. They sum to 

0.11046. Latent class 1 represents 14.7% of this sum (0.01620 ÷ 0.11046 = 0.14666). Latent 

classes 2 and 3 share 85.2% and 0.1%, respectively. A response of yi = (1, 1, 0, 0) is most 

likely given by a patient in class 2, specifically at 85.2% probability. Intuitively, the ratio 

between each of the three proportions and the total sum defines the conditional probability 

of a person belonging to that specific latent class. The conditional probability of each 

person’s class membership is expressed as

p ci j yi, π j, p jk = ∏
j = 1

C π jp yi p jk

∑ j = 1
C π jp yi p jk

ci j

, (7)

where the denominator is the sum of all probabilities calculated from Equation (2). The 

purpose of explaining Equations (2) and (7) in such great detail is because they will be 

revisited later to complete the Bayesian analysis.

Technical Details Explained

Now we turn to Equation (4), to show how it arises naturally from Bayes’ Theorem, and to 

give details previously omitted. Recall, in step 2, we have

p π j, p jk yi, ci =
p yi, ci π j, p jk p π j, p jk

p yi, ci
=

p yi, ci π j, p jk p π j p p jk
p yi, ci

,

where on the left side of the first equal sign we have the joint posterior distribution of the 

class membership distribution πj and the item response probability pjk. On the right we have 

the reverse in the numerator, the probability of observed responses yi if the latent class 

membership ci is also known and fixed, which we have already dealt with in Equation (5) 

and the more general Equation (2). Moreover, because πj and pjk are assumed independent, 

p(πj, pjk) = p(πj)p(pjk) and thus the final fraction.

We use square brackets below to make the equation easier to follow:

π j, p jk yi, ci =
yi, ci π j, p jk π j p jk

yi, ci
. (8)

We have already seen examples of the quantities on the right side of this equation. Let us 

take a look at each of these in turn.

• [yi, ci|πj, pjk]: We have seen these in Equation (5), e.g., p(yi = (1, 1, 0, 0), ci = (1, 

0, 0)|πj, pjk) = 0.01620, the probability of observing yi when the class 

membership is known.
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• [πj]: The prior probability of class membership distribution. Our pilot sample of 

20 (10 in group 1, 6 in group 6, and 4 in group 3) gives a prior of 

π j ∝ Dirichlet πic; uic = πi1
10 − 1 × πi2

6 − 1 × πi3
4 − 1, whose visual representation is in 

Figure 2.

• [pjk]: The prior probability of item response probabilities in the 3 by 4 matrix in 

Table 1. We may choose to assign a flat prior to all 12 probabilities, [pjk] ∝ 
Beta(pjk; α = 1, β = 1), which is the flat prior in Figure 1.

• [yi, ci]: The probability of observing the raw data yi, over all possibilities of ci. 

We have already seen a simpler version of it, in the total probability in Equation 

(5).

Now the probability we seek is expressed in terms of quantities we can easily calculate. 

Also, the mathematics are explained in terms of quantities that make sense at a more 

intuitive level.

The last bullet point needs more explanation. Recall the total probability in Equation (5), its 

value is 0.11046 = (0.0162 + 0.09408 + 0.00018), identical in all cases of ci. The total 

probability in the denominator is the same in all three scenarios.1 It serves as a scaling 

constant to convert the numerator vector [0.0162, 0.09408, 0.00018] into [0.1467, 0.8517, 

0.0016] so that it sums to one. It has no effect on how the numerators are compared with one 

another. The unscaled numerator vector contains all the information we need. The 

distribution is said to be proportional to the numerator vector. and thus the notation:

π j, p jk yi, ci ∝ yi, ci π j, p jk π j p jk .

The cumbersome total probability can be dropped from the equation because the 

proportional to relationship still holds true.

Step 3: Joint Posterior of LCA

Pooling all relevant information, we add additional details to help understand the joint 

posterior [πj, pjk|yi, ci] and its components:

1Accessible and more detailed expositions on the general “total probability” can be found in introductory texts such as Berry (1995, 
section 5.3), Winkler (2003, section 2.7), P. M. Lee (2012, chapter 2, specifically p.245), and also the “extended form” in Wikipedia’s 
entry on Bayes’ Theorem, with further expositions linked to the “law of total probability” entry.
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π j, p jk yi, ci ∝ yi, ci π j, p jk π j p jk

= ∏
i = 1

N
∏
j = 1

C
π jp yi p jk

ci j

Equation (2)

∏
j = 1

C
π j

u j − 1

Dirichlet prior

∏
k = 1

K
p jk

α jk − 1
1 − p jk

β jk − 1

Beta priors

= ∏
i = 1

N
∏
j = 1

C
π j

ci j ∏
k = 1

K
p jk

yikci j 1 − p jk
1 − yik ci j

Equation (6)

∏
j = 1

C
π j

u j − 1 ∏
k = 1

K
p jk

α jk − 1
1 − p jk

β jk − 1

= ∏
i = 1

N
∏
j = 1

C
π j

ci j + u j − 1

Dirichlet posterior

∏
k = 1

K
p jk

y j jci j + α jk − 1
1 − p jk

1 − yi j ci j + β jk − 1

Beta posteriors

.

(9)

Equation (9) defines the joint posterior probability distribution of the parameters by a 

Dirichlet posterior and Beta posteriors. The first two lines are described Equation (4). The 

third line replaces Equation (2) with the more detailed version found in Equation (6). We 

combine the likelihood of π j
ci j with the Dirichlet prior of π j

u j − 1
 to form the posterior 

π j
ci j + u j − 1

. Similarly, we combine p jk
yikci j with the matching part of the Beta prior to yield 

the Beta posterior p jk
yi jci j + α jk − 1

. Finally, we combine 1 − p jk
1 − yik ci j with the matching 

part of the Beta prior to yield 1 − p jk
1 − yi j ci j + β jk − 1

. Thus, the Beta(1, 1) prior may be 

combined with, for example, a data likelihood of [45, 75] to yield a posterior of Beta(46, 

76).

The Dirichlet posterior requires first calculating π j
ci j based on each person’s known latent 

class and they are multiplied together, across the N respondents, to produce the data 

likelihood. The data likelihood is then multiplied by the prior to yield the posterior. 

Similarly, the Beta data likelihood also requires multiplication across the N respondents.

Before we move on to Step 4, we pause to reflect on two key concepts in Bayesian 

inference. They are easily missed in introductory tutorials that focus solely on practical 

analytic skills. First, conjugate priors simplify how priors are converted into posteriors (e.g., 

the parameters in the Dirichlet posterior are simply the prior parameters plus the data 

likelihood). Additionally, the algebraic derivations nicely demonstrate the second key 
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concept we wish to highlight: “post is prior times likelihood” (P. M. Lee, 2012, section 

2.1.2), the posterior density is prior density times the data likelihood.

Step 4: Gibbs Sampling

The essence of Gibbs sampling is to estimate the properties of the joint posterior distribution 

by simulation. Gibbs sampling is merely one of many Markov Chain Monte Carlo (MCMC) 

simulation techniques. What is MCMC simulation? The simple example of a coin toss offers 

an intuitive explanation. If we toss a coin many times, we expect the distribution of heads 

and tails to tell us whether or not the coin is biased. There is only one parameter, the 

proportion of heads. It gets complicated in problems involving many unknown parameters, 

such as in the LCA, where we know the joint posterior distribution of πj, pjk and ci, but we 

cannot easily solve it (recall how we got stuck in Equation (4)).

We are now ready to sample πj, pjk, and ci as per Equation (9). Let us take a look at these 

parameters in turn. To sample πj, we treat all the other parameters in Equation (9) as fixed 

and known, and draw from the posterior Dirichlet distribution. For instance, if yi = (1, 1, 0, 

0), ci = (1, 0, 0), pjk are fixed at the values in Table 1, and the prior parameters are u = (u1 = 

10, u2 = 6, u3 = 4) and α = 1, β = 1, then Equation (9) gives

π1
1 + 10 − 1 0.03241 × 0.31360 × 0.00090 for latent class 1,

π2
0 + 6 − 1 0.03241 × 0.31360 × 0.00090 for latent class 2, and

π3
0 + 4 − 1 0.03241 × 0.31360 × 0.00090 for latent class 3 .

Each of π1, π2, π3 is weighted by the same constant 0.03241 × 0.31360 × 0.00090 that arises 

from the substitution of fixed values into the Beta posterior. The scaling constant does not 

affect the overall shape of the posterior distribution. Thus, the conditional posterior 

distribution for πj becomes a Dirichlet distribution with sample sizes (1 + 10 − 1, 0 + 6 − 1, 

0 + 4 − 1). Another person may have different responses, e.g., yi = (1, 1, 1, 0) and ci = (0, 1, 

0), which yields a different distribution with parameters (0 + 10 − 1, 1 + 6 − 1, 0 + 4 − 1). 

Since πj involves pooling memberships over people, the sampling from the posterior 

Dirichlet distribution also has to add up the posterior sample sizes over people,

π Dirichlet ∑
1

N
ci1 + u1, ∑

1

N
ci2 + u2, ∑

1

N
ci3 + u3 ,

which provides a specific distribution, e.g., Dirichlet(50, 20, 30) in a 3-class solution, from 

which a new value of π may be randomly sampled. We will go into the detailed simulation 

later. For now, let’s assume that a new πj has been drawn, and it happens to be (π1 = 0.670, 

π2 = 0.234, π3 = 0.096).

The steps for sampling pjk are more involved, partly because there are 12 values in the 3 by 

4 matrix of pjk. Again, we substitute all the fixed parameters into Equation (9), including the 

newly sampled πj = (0.670, 0.234, 0.096), and allow the pjk values to vary. Assuming fixed 
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values in yi = (1, 1, 0, 0), ci = (1, 0, 0), and the newly sampled πj = (0.670, 0.234, 0.096), we 

get

0.6701 + 10 − 1[(p11
1 (1 − p11)0)1 × (p12

1 (1 − p12)0)1 × (p13
0 (1 − p13)1)1 × (p14

0 (1 − p14)1)1] for class 1,

0.2340 + 6 − 1[(p21
1 (1 − p21)0)0 × (p22

1 (1 − p22)0)0 × (p23
0 (1 − p23)1)0 × (p24

0 (1 − p24)1)0] for class 2, and,

0.0960 + 4 − 1[(p31
1 (1 − p31)0)0 × (p32

1 (1 − p32)0)0 × (p33
0 (1 − p33)1)0 × (p34

0 (1 − p34)1)0] for class 3 .

The first line contains p11
1 1 − p11

0, the binomial probability of class 1 members endorsing 

symptom 1, raised to the power of the observed response (i.e., p11
1  and (1 − p11)0 because the 

person endorses item 1 in yi = (1, 1, 0, 0)). This is subsequently raised to the power 

according to ci = (1, 0, 0) and thus the power of 1 outside the parentheses in (p11
1 (1 − p11)0)1. 

Latent classes 2 and 3 are raised to the power of 0. Note the pattern: the individual pjk’s are 

first raised to the exponents according to the observed responses and then again raised to 

exponents according to the latent classes. The scaling constants, e.g., 0.6701+10−1, are 

ignored because they do not affect the overall shape of the Beta posteriors. Thus, the 

posterior distribution for p11 is Beta(1 · 1 + 1, 0 · 1 + 1) = Beta(2, 1). This calculation is 

repeated 12 times, conditional on this person’s yi and ci. However, another person may get a 

different set of Beta posterior distributions, depending on that person’s responses.

Equation (9) shows that each of the twelve pjk’s follows a Beta posterior distribution with 

the shape parameters ∑1
N yi jci j + α jk − 1 and ∑1

N 1 − yi j ci j + β jk − 1 summed across people. 

We need to: 1) work out the posterior Beta parameters for the twelve pjk’s, one person at a 

time; and 2) sum the parameters across all N persons. This seems like a tedious task. 

Fortunately, it is easy to do with a computer programming language as will be shown later. 

Let us assume that we have worked out all these and added up all resulting Beta parameters 

across N people; then, we have 12 Beta posterior distributions from which we can draw a 

new sample of pjk. Assume further that a draw for p11 happens to yield a value of p11 = 

0.923. We repeat the same steps and (say) get a newly sampled 

p jk =
0.923 0.940 0.237 0.288
0.277 0.082 0.790 0.645
0.397 0.137 0.149 0.179

. We are now ready to update the latent class membership 

parameter based on the newly sampled πj and pjk.

In a three-class solution, each person’s class membership is a categorical variable, either (1, 

0, 0), (0, 1, 0), or (0, 0, 1). Recalling the ‘divide-by-total’ formula in Equation (7), the 

probabilities of a response yi = (1, 1, 0, 0) arising from latent classes (1, 0, 0), (0, 1, 0), or (0, 

0, 1) are 0.1467, 0.8517, and 0.0016, respectively. Using Equation (7), yi = (1, 1, 0, 0), and 

the newly updated πj and pjk, we get the revised multinomial probabilities (0.728, 0.272, 

0.000). Let us assume that we draw an updated ci for ci = (1, 0, 0) from a three-category 

multinomial distribution.
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Putting it All Together: Gibbs Sampling Algorithm

The details and worked-out example in the previous section can be succinctly summarized in 

an algorithm for Gibbs sampling (see also White and Murphy (2014)).

π j
(t + 1) Dirichlet(π j; ci j

(t) + u j) = Dirichlet ∑
i = 1

N
ci1

(t) + u1, …, ∑
i = 1

N
ciC

(t) + ug , (10)

p jk
(t + 1) Beta(p jk; yici j

(t) + α jk − 1, 1 − yi ci j
(t) + β jk − 1)

= Beta ∑
i = 1

N
yici j

(t) + α jk − 1, ∑
i = 1

N
1 − yi ci j

(t) + β jk − 1 ,

(11)

ci
(t + 1) Multinomial 1,

π1
(t + 1)p yi p1

(t + 1)

∑h = 1
J πh

(t + 1)p yi ph
(t + 1) , …,

πJ
(t + 1)p yi pJ

(t + 1)

∑h = 1
J πh

(t + 1)p yi ph
(t + 1) . (12)

Here we use (t + 1) to indicate that these are the most recently sampled parameters π j
(t + 1), 

p jk
(t + 1), and ci

(t + 1). Equation (10) samples the conditional posterior distribution for πj. 

Recall that our prior Dirichlet distribution has parameters (10, 6, 4). Suppose that, in a new 

sample of 50 people, 20 belong to class 1, 18 to class 2, and the remaining 12 to class 3, then 

the posterior distribution follows a Dirichlet distribution with parameters (10 + 20, 6 + 18, 4 

+ 12)—the posterior sample size being simply the prior counts plus the newly simulated 

counts pooled across people. The summation ∑i = 1
N ci1

(t) is simply adding up, over the number 

of N people, the number of newly simulated counts in latent class 1.

Equation (11) shows that the conditional posterior distribution for the item response 

probabilities pjk, like its prior, also follows a Beta distribution with the posterior sample size 

pooled over people. The posterior sample size is the sum of observed responses yi weighted 

by the newly simulated latent class membership, plus the prior Beta parameters. Finally, 

Equation (12) simulates the posterior latent class membership. All is needed is to plug the 

newly simulated π j
(t + 1) and p jk

(t + 1) into Equation (7) to calculate the probabilities of a 

response arising from latent classes (1, 0, 0), (0, 1, 0), or (0, 0, 1). Then these probabilities 

are used to draw samples from a multinomial distribution.

In methodology papers the starting values are often named π j
(0), p jk

(0), and ci
(0), where the (0)’s 

index the order of iteration, not exponents. The next iteration increments the indices by 1 to 

get π j
(1), p jk

(1), and ci
(1). The simulation iterates through the loop, with the latest simulation 
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results denoted as π j
(t + 1), p jk

(t + 1), and ci
(t + 1); until a pre-specified number of iterations is 

reached. The starting values are used to begin the MCMC chain, and once the iteration loop 

begins, we only need to keep track of the values in iteration (t), the previous iteration, and 

the latest, (t + 1) iteration. This concludes all the necessary mathematical derivations in 

Bayesian LCA. The resulting algorithms are ready to go into a computer program for 

computation.

R Program to Carry Out Gibbs Sampling

Add Health Study (N = 6,504): a Real-World Dataset

The Gibbs sampling algorithm is applied to a large dataset, the publicly accessible Wave 1 

data of the National Longitudinal Study of Adolescent to Adult Health (Harris et al., 2009, 

Add Health Study, N = 6,504), available at www.icpsr.umich.edu/icpsrweb/ICPSR/studies/

21600.

We extracted data from 6 survey items probing problem behaviors of teenagers: 1) Lied to 

parents; 2) Loud/rowdy/unruly in a public place; 3) Damaged property; 4) Stolen from a 

store; 5) Stolen something worth < $50, and 6) Taken part in a group fight. The raw data 

counts are shown in Table 2.

A subset of it was previously analyzed by Collins and Lanza (2010, Chapter 1, N = 2,087) to 

identify four latent classes of adolescent delinquent behaviors: 1) “Non-/Mild Delinquents” 

(49%), 2) “Verbal Antagonists” (26%), 3) “Shoplifters” (18%), and 4) “General 

Delinquents” (6%). In the example below, we replicate their four-class solution for 

comparative purposes.

R Program Line by Line

The R program to carry out Gibbs sampling is listed in Appendix A. Line numbers are added 

to facilitate the explanation below. The program can be divided into several logical steps: 1) 

line 1 defines the function called gibbs(); 2) lines 2 – 22 set up several variables that will be 

used throughout the simulation; 3) lines 23 – 30 prepare temporary variables to store the 

simulation results; 4) lines 31 – 38 define the Beta and Dirichlet priors; 5) lines 39 – 48 

define the starting values; 6) lines 55 – 131 iterate through the Gibbs sampling; and 7) lines 

132 – 143 perform post-simulation calculations. Each step is described below, under its own 

subsection heading. The most important lines are lines 61 – 87 to sample ci as per Equation 

(12), line 94 to sample πj as per Equation (10), and lines 99 – 100 to sample pjk as per 

Equation (11).

Definition of gibbs().—Line 1 defines a function called gibbs() and the options it accepts. 

The options have to be clearly specified in the function. The user must supply the gibbs() 

function with a data matrix y and the number of latent classes G. By default, the simulation 

runs a total of 7,500 iterations (niter = 7500) with the first 2,500 iterations discarded (what 

are called ‘burn-in’ iterations, n.burn = 2500) and every 10th iteration kept (n. thin = 10). 

The burn-in discards the first few—possibly unstable—iterations. The sampling of every n-

th iterate is called thinning where n is called the ‘thinning interval’ (Jackman, 2009, section 
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6.4). Consecutive values in a Gibbs sampling are highly correlated and contribute limited 

new information to the parameter estimates. By default this function thins by every 10th 

iterate. The function prints out a count of iterations so that the user knows that it is running 

(verbatim = TRUE).

Global Variables Used Throughout MCMC.—Lines 2 – 5 carry out rudimentary 

checks of obvious errors. Line 9 loads an additional R package gtools, where the rdirichlet() 

function for sampling the Dirichlet distribution is found. Lines 10 – 13 prepare a few global 

variables that will be used throughout the MCMC simulation, such as the variable G to 

define the number of latent groups (line 12), the number of items (K, line 10), and the 

number of observations (N, line 11).

Temporary Variables for Storing MCMC Results.—Lines 17 – 30 set up temporary 

variables for storing the MCMC results. For example, the MCMC simulation values for πj 

are stored in a matrix called Pi with G columns and niter rows, so that the values are saved 

after each iteration. We generally name variables in a self-explanatory manner, like Pi for πj. 

Similarly, the storages for pjk and cij are called Pjk and Cij.

Beta and Dirichlet priors.—Line 35 shows the parameter values for a non-informative 

Dirichlet(1, 1, 1, 1) prior. Line 37 – 38 show the non-informative Beta(α = 1, β = 1) prior. 

Both priors are used throughout the simulation. These are convenient priors to make the 

program easier to follow. A user can (and should) change the parameter values to alter the 

priors used.

Starting Values.—Lines 40 – 48 set the starting values of πj and pjk, where they are 

drawn randomly from the Dirichlet and Beta priors. For example, the rdirichlet(n = 1, alpha 

= dirich.prior) draws one observation from the flat Dirichlet distribution. The rbeta() 

function draws one random sample of proportions per latent group from the flat Beta prior. 

The rdirichlet() function will be used again to draw from the posterior Dirichlet distribution.

Main Gibbs Sampling.—The main Gibbs sampling loop begins at line 58. Lines 61 – 76 

follow Equation (6) to calculate each person’s probability of latent class membership. We 

need to carry out the calculations described in the worked-out examples in Equations (5) and 

(6). It may help to read these examples again to understand what is being done here. Recall 

that we need to calculate p jk
yikci j and 1 − p jk

1 − yik ci j. It is easier to calculate them in 

several steps using simpler calculations. First, we get pjk and (1 − pjk) (lines 64 – 65). Next, 

we apply yik to the exponent of pjk and (1 − yik) to the exponent of (1 − pjk), respectively. 

This is done in line 67, using apply(y, MAR = 1, FUN = function(yv) { pr.p^yv * pr.q^(1-

yv) }), where we take the raw data y one row at a time and apply it to pjk and (1 − pjk). An 

example of the detailed calculations can be found in the text describing Equation (5). Line 

67 does the same calculation using apply() to loop over 6,504 rows in y. Here apply() takes a 

function, FUN = function(yv) { pr.p^yv * pr.q^(1-yv) }, and applies it over y one row at a 

time (the MAR = 1 option instructs R to apply the function over rows).
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Next, lines 68 – 69 organize the results into a N by G by K array. Next, line 70 multiplies 

p jk
yik and 1 − p jk

1 − yik  over K, as described in Equation (6) and then the result is weighted 

by the latent class probability distribution in line 72. Lines 74 – 76 calculate the latent class 

membership probability by following Equation (7).

Then the sampling of ci
(t + 1) from a multinomial distribution is done in lines 85–87. The 

sampled values, for example, may be [1, 0, 0, 0] for the first person and [0, 1, 0, 0] for the 

second person, etc. Equation (12) may appear intimidating, but its sampling is 

straightforward in R. Line 94 shows how the latent class distribution π(t+1) is sampled from 

the posterior Dirichlet distribution, as per Equation (10), by pooling the prior sample sizes 

with the data. Note that the colSums() function adds the sample counts across latent classes. 

Lines 96 – 101 carry out the sampling of item response probabilities p jk
(t + 1) from the 

posterior Beta distributions, as per Equation (11), one latent class at a time. The simulated 

values in the current iteration are then moved to the chain storages (lines 103 – 106).

Table 3 provides a side-by-side comparison between the most important Gibbs sampling 

steps in Equations (10) – (12) and the corresponding R commands. Note the close 

resemblance between the two. For example, sampling from a Dirichlet distribution in 

Equation (10) is done with the rdirichlet() function in R. The user feeds the R function with 

appropriate input parameters, in this case the sizes of latent classes summed over all 

observations in the dataset, and out come the samples of the posterior Dirichlet distribution. 

More generally, Gibbs sampling can be implemented by distilling complex equations into 

functions. All the user needs to do is to call the relevant functions from a library of ready-

made functions and feed them with appropriate input parameters to sample the posteriors.

The next block of commands (lines 108 – 116) addresses the label switching problem in the 

simulation which will be described below.

At the end of the burn-in, the program prints out a message (lines 121– 125). Lines 127 – 

129 show a message every 500 iterations. Line 130 increments the iteration count by 1. The 

closing curly brace on line 131 loops the program back to line 59, where the while() loop 

began.

Output of gibbs().—Line 134 performs the thinning by extracting every n.thin value from 

the end of the burn-in (n.burn + 1) to the end of the iteration (niter). Lines 135 – 142 collect 

the results and return them as the final output of the gibbs() function.

Fitting Add Health Data by gibbs()

The commands below show how to run the gibbs() function. The first few lines import the 

downloaded Add Health raw data into R. The first row is removed because it contains all 

missing data. The original variables (e.g., H1DS3, H1DS15) are renamed to make them 

more readable. Our gibbs() function works with an input data matrix. Thus, we extract 

columns 2 to 7 from the raw data, convert them into a matrix called data for the gibbs() 

simulation. The set.seed(23) command is optional. It sets the seed for the random number 
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generator so that the simulation results can be reproduced exactly. We supply the data, and 

ask gibbs() for a 4-class solution, overriding the default to run 12,000 iterations instead. The 

results are stored in gibbs.out.

> addhealth.dat <- read.csv(file = “addhealth.csv”, row.names = NULL)

> addhealth.dat <- as.data.frame(addhealth.dat)

> addhealth.dat <- addhealth.dat[−1, ] # removing first row, all missing

> attach(addhealth.dat)

> addhealth.dat <- data.frame(AID = AID, lied=H1DS3, publicly=H1DS15,

+ damaged=H1DS2, shoplift=H1DS4, stole50=H1DS13,

+ grpfight=H1DS14)

> data <- as.matrix(addhealth.dat[, 2:7]) - 1 # convert 2, 1 to 0, 1

> set.seed(23)

> gibbs.out <- gibbs(data, G = 4, niter = 12000)

iteration(s) completed:  1  500  1000  1500  2000

burn-in completed

2500  3000  3500  4000  4500  5000  5500  6000  6500  7000  7500

  8000  8500  9000  9500  10000  10500  11000  11500  12000

> gibbs.out$Pi.mean

[1] 0.48071825 0.08776944 0.13884230 0.29267001

> gibbs.out$Pjk.mean

    lied  publicly       damaged   shoplift    stole50    grpfight

G1 0.2715719 0.1699331 0.006004635 0.02063179 0.008127299 0.04123363

G2 0.9185183 0.9676303 0.818434371 0.87509123 0.862129884 0.62657599

G3 0.7283306 0.5605000 0.257569880 0.94894426 0.705638879 0.20065908

G4 0.7282061 0.7747278 0.255566807 0.04994728 0.047320368 0.32502534

The πj and pjk estimates are found in gibbs.out$Pi.mean and gibbs.out$Pjk.mean, 

respectively. The simulation takes approximately 30 minutes on a 64-bit Linux computer 

with two quad-core Intel Xeon CPUs at 2.40GHz clock speed and 32GB of memory.

Results

LCA parameter estimates

A brief summary of the parameter estimates are provided in Table 4. Parameter estimates 

from SAS and the poLCA package in R are also included for comparison (both use EM). 

The latent class distribution parameter in our calculation above shows 

π = [0.481, 0.088, 0.139, 0.293]. SAS shows π = [0.479, 0.086, 0.140, 0.295]. Overall, our results 

agree well with those from SAS. We will not dwell on how to interpret these results and how 

to assign names to the latent classes which have already been covered elsewhere (Collins & 

Lanza, 2010). An observant reader will find that the results from poLCA show a different 

order. A careful inspection and explanation is provided below. The three sets of results are 

otherwise very similar.
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MCMC diagnostics

An important task to do is to inspect signs of problems in Bayesian computation. This is 

often done by visual inspection of the simulated values. Figure 3 provides an illustrative 

example of trace plots for πj, using a randomly selected subset of n = 200 from the full Add 

Health data in a 3-class solution instead of 4. The much smaller subset of data and a 3-class 

solution was selected to make the problem more visible. Subplot (a) shows that the sampling 

of π1 starts at around 0.60. However, it drifts downward to 0.15 as it approaches the 2,000th 

iteration. Then it stays around 0.15. Subplot (c) shows the opposite pattern, π3 drifts upward 

to 0.60 at about the same position where π1 drops to 0.15, an indication that π1 and π3 are 

swapped mid-simulation. The histograms for these posterior estimates may show more than 

one mode.

We need to repair the values swapped mid-simulation. For now, let us just see what the 

repaired trace plots look like. Plots 3(d) through 3(f) contain traces after a relabeling 

algorithm has been applied. The relabeled trace plots show no visibly switched peaks. Next 

we explain why π1 and π3 swap values mid-simulation, a phenomenon called “label 
switching”.

The Label Switching Problem Explained

Label switching is a common complication in Bayesian computation for models like LCA 

(Jasra, Holmes, & Stephens, 2005; Stephens, 2000; Richardson & Green, 1998; Celeux, 

Hurn, & Robert, 2000). A simplified, intuitive explanation is provided below. In the simplest 

LCA with two latent classes, Equation (1) can be written as

f yi; π, p = πA + (1 − π)B,

where A = ∏k = 1
K p1k

yik 1 − p1k
1 − yik for j = 1 (following the item response probabilities for 

latent class 1) and B with the same form for j = 2. It is a weighted average between two 

quantities, weighted by π and its complement. However, the likelihood function can also be 

written in a different labeling scheme,

f yi; π, p = (1 − π)A + πB,

without changing anything else in the model. 2 Since the true value of π is unknown, either 

labeling scheme represents exactly the same model. If the true value of π = 0.40, then 1 − π 
must be 0.60. However, nothing is changed if π = 0.60 by the second labeling scheme—

either one is perfectly acceptable. As a result, two modes arise from the distribution of π 
with equal posterior probability. Similarly, in a 3-class solution, the latent classes can be 

arbitrarily labeled in any one of the 6 possible permutations. Because the order of the labels 

is not fixed, in one MCMC iteration the labeling may be 1–2-3, in the next 2–3-1. This adds 

2A similar explanation is given by a contributor to this post at http://stats.stackexchange.com/questions/113870/mcmc-of-a-mixture-
and-the-label-switching-problem, last accessed July 17, 2015.
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difficulty in averaging across simulated results as is common in MCMC simulations. 

Interpretation of the results is equally problematic.

Table 4 shows that the R program poLCA gives comparable parameter estimates, except that 

latent classes 1 and 4 are swapped. The substantive interpretation of the results is not at all 

affected, seen in all three computer programs agreeing on the parameter estimates (barring 

slight differences due probably to decimal rounding). The switching of latent classes in this 

case is not exactly the label switching problem, although it is caused by the same underlying 

issue that the likelihood function is not uniquely defined. A full investigation of why poLCA 

switches latent classes deserves its own tutorial. The main message for now is that label 

switching refers to the problem occurring during MCMC simulation so that we get 

inaccuracies in Gibbs sampling when we average the raw chains.

Lines 107 – 116 in Appendix A provide a crude but pragmatic workaround for the label 

switching problem. Essentially, we compare how the N = 6,504 respondents are labeled 

between the first iteration post burn-in and each subsequent iteration. The idea is that 

respondents should be categorized into the same latent class throughout the simulation 

(Wyse & Friel, 2012). A comparable approach is reported in the R package BayesLCA 

(White & Murphy, 2014).

Discussion

This tutorial shows how Bayesian MCMC computation using Gibbs sampling is carried out 

using LCA as an illustrative example. We aim to provide a self-contained tutorial to help 

students understand the statistical modeling as well as the computer programming. Our 

primary goal is to address several difficulties in methodology papers in Bayesian statistics. 

Often the detailed derivations are omitted, assumed understood, or the notation is so 

complex that they are nearly impossible to follow. Our use of hypothetical data makes the 

calculations easier to work with. We also address the main challenge confronting non-

technicians—how to transition from the mathematics and statistical modeling to computer 

programming. First, we must work out the statistical function that defines the joint 

conditional posterior distribution. Then, an essential Bayesian principle—posterior is prior 

times likelihood—guides the derivations for the marginal posterior distributions. The key is 

to carefully work out the mathematics to arrive at the convenient forms of the marginal 

posterior distributions. The subsequent sampling is relatively straightforward, by calling the 

rbeta() and rdirichlet() functions in R to carry out the sampling with appropriate parameters. 

The mathematics is no more than basic Bayes’ Theorem and summations of quantities. The 

computer programming is not trivial, but no more than writing loops to sample from 

statistical functions. The close resemblance between the computer program and the 

mathematics should aid the learning of both. Students willing to work through the step-by-

step calculations may gain a deeper understanding of important concepts such as “thinning” 

and “burn-in”. We hope that readers will take away an important message. Complex notation 

can be tracked more easily with the help of a concrete example and computation tools. The 

approach outlined in this tutorial applies to other, more complex models.
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We deliberately offer no model diagrams. Visual representations of statistical models, such 

as Directed Acyclic Graphs (DAG), often make complex mathematics easier to explain. 

However, DAGs cannot replace the need to precisely define what goes into the statistical 

functions. Our visual explanations focus on understanding what the statistical distributions 

look like and what statistical uncertainties they encapsulate, such as the Dirichlet and Beta 

priors, in the same style of other authors (e.g., Gelman, Carlin, Stern, and Rubin (2003, 

Section 18.4), P. M. Lee (2012, Section 9.2)), and Gelman and Hill (2007, Chapter 18)).

Our illustrative example in LCA should provide the foundation for a learner to move on to 

more complex models, such as the inclusion of baseline covariates and distal outcomes into 

LCA, which are supported by existing statistical packages or other sophisticated latent 

models (Elliott et al., 2005; Neelon, O’Malley, & Normand, 2011; Neelon et al., 2015) not 

supported by existing statistical packages. A fully Bayesian approach by MCMC simulation 

offers information not available in other computation approaches, e.g., the fit indices and 

probability of classifications above and other useful quantities such as the parameter 

standard errors by data augmentation (S. T. Lanza, Collins, Schafer, & Flaherty, 2005).

Limitations

There are nevertheless limitations that cannot be fully addressed within the scope of a 

tutorial. Below we direct the reader to the literature. For example, no R program yet includes 

a sophisticated and efficient way to address the labeling switching problem (Stephens, 2000; 

Jasra et al., 2005; Richardson & Green, 1998; Celeux et al., 2000; Papastamoulis, 2016). 

Simplifications in the priors are used whereas a production-ready tool should allow more 

sophisticated priors and hyper-priors (White & Murphy, 2014). Many statistical concepts are 

not covered. For instance, we have not covered nor tested the main assumption of local 
independence (Collins & Lanza, 2010, section 2.5.2). Item responses only depend on latent 

class membership and within the local latent class they are independent. This assumption 

allows us to multiply the independent probabilities in Equations (1) – (2). Also not covered 

are MCMC convergence diagnostics (Li & Baser, 2012, for a brief review) and Bayesian 

criteria for model comparison, such as the DIC (Spiegelhalter, Best, Carlin, & van der Linde, 

2002) and the WAIC (Watanabe, 2010). Readers may find the comprehensive review by 

Gelman, Hwang, and Vehtari (2014) helpful.

These limitations notwithstanding, we hope this tutorial provides an accessible entry to one 

specific context of the vast Bayesian statistics literature. Others are welcome to improve 

upon the current R program to bring it up to production use comparable to what is available 

in commercial statistical software packages which is exactly the purpose of sharing the R 

code.

Suggestions for Further Reading

The suggested further readings are intended to help beginners to learn more, thus there is a 

preference on visual explanations and materials at an introductory level. The list is not 

exhaustive, and technical materials are not offered. They are more suitable after the reader 

has acquired greater independence and proficiency in Bayesian computing.

Li et al. Page 22

Multivariate Behav Res. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Introductory Bayesian statistics

– Berry (1995) is an introductory textbook on basic Bayesian concepts.

– P. M. Lee (2012) provides beginners with the theoretical basics in 

Bayesian statistics.

– Kaplan (2014) offers practical examples in regression and multilevel 

modeling using large databases in social sciences.

– McElreath (2016) uses visual explanations extensively, with clear and 

succinct explanations accompanying these examples. Chapter 6 

provides a clear and comprehensive exposition on model comparison 

metrics.

– Gelman and Hill (2007) provides theoretical foundations and 

applications, with a focus in social and behavioral sciences.

– Gelman et al. (2003) offers a comprehensive coverage of Bayesian 

statistics.

• Gibbs sampling

It is said that the idea of solving complex problems by simulation was first 

proposed by the physicist Stanislaw Ulam in 1946, when he tried to calculate the 

chances of successful plays in the card game solitaire (Andrieu, De Freitas, 

Doucet, & Jordan, 2003). He realized that it would be much easier to lay out 

several games at random and then simply count the number of successful plays. 

Here lies the essence of MCMC simulation. A complex problem can be solved 

easily if we recast it as a much simpler problem of statistical simulation. Gibbs 

sampling is among the simplest MCMC techniques. As shown in Equation (9), 

the complex joint posterior distribution can be derived by sampling one 

parameter at a time while holding all the other parameters as fixed and known. A 

good approximation is obtained after a sufficiently large number of iterations. To 

explore what Gibbs sampling actually looks like, you can try the examples 

below. You can run the R code in Darren Wilkinson’s blog to see Gibbs sampling 

in action.

– MacKay (2003, p.370) offers visual explanations of Gibbs sampling.

– Gelman et al. (2003, Figure 11.3) shows how Gibbs sampling alternates 

between the conditional distributions.

– Wilkinson (2011) is a blog on how Gibbs sampling can be done using 

several computer programming languages.

• Introduction in Bayesian computation

– Albert (2007) offers beginners a good starting point on Bayesian 

computation.

• The label switching problem

– Richardson and Green (1998) give a good illustration of the problem.
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– Jasra et al. (2005) provide an overview of various developments in 

fixing the problem. Celeux et al. (2000) provide another sophisticated 

method.

– Papastamoulis (2016) summarizes the label.switching package in R.

– Stephens (2000) offers a definitive guide (technical).

• Other Online Resources

– Pennsylvania State University Methodology Center website at http://

www.methodology.psu.edu/ra/lca

– John Uebersax’s website at www.john-uebersax.com.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

R code for Gibbs Sampling

1 gibbs <- function(y, G, dirich.prior = NULL, niter = 7500,

     n.burn = 2500, n.thin = 10, relabel = TRUE, verbatim = TRUE) {

2 if ( ! all(y == 0 | y == 1) )

3    stop(“y must be coded 0 or 1”)      # stop if y is not coded 0, 1

4 if ( niter <= n.burn )                # niter has to be > n.burn, error if 

not

5    stop(paste(“niter =“, niter, “, must be greater than n.burn =“, n.burn))

6 ###

7 # loading packages needed to run Gibbs sampling and basic settings

8 ###

9 require(gtools)    # rdirichlet()

10 K <- ncol(y)    # number of items
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11 N <- nrow(y)    # number of respondents

12 G <- G    # number of latent groups

13 done.burn <- FALSE # burn.in is not yet done

14 ###

15 # MCMC basic setup, number of iterations and storages for chains

16 ###

17 Pi <- matrix(NA, nrow = niter, ncol = G) # storage for class membership

18 Pjk <- array(NA, dim = c(niter, G, K))    # storage for item resp prob

19 dimnames(Pjk) <- list(NULL, paste(“G”, 1:G, sep = ““), colnames(y))

20 Cij <- array(NA, dim = c(niter, N, G))    # storage for discrete classes

21 Cij.pr <- array(NA, dim = c(niter, N, G)) # storage for latent class prob

22 labelStor <- matrix(NA, nrow = niter, ncol = G) # storage for relabeling

23 #

24 ## Storages for simulated parameters pjk, C, at iteration t+1

25 #

26 pjk.t1 <- matrix(NA, nrow = G, ncol = K) # latest p_jk^(t+1) stored here

27 dimnames(pjk.t1) <- list(paste(“G”, 1:G, sep=““), colnames(y))

28 # N*G (people by group) matrix of each person’s class membership prob

29 Clp.t1 <- matrix(NA, nrow = N, ncol = G)

30 dimnames(Clp.t1) <- list(paste(“N”, 1:N, sep=““), paste(“G”, 1:G, sep=““))

31 ###

32 # Priors

33 ###

34 if ( is.null(dirich.prior) )

35    dirich.prior <- rep(1, G) # flat Dirichlet by default

36 # Beta prior, alpha=1 and beta=1 for a flat prior

37 alpha <- 1

38 beta <- 1

39 ###

40 # Starting values of pi and pjk, drawn randomly from Dirichlet, Beta 

priors

41 ###

42 start.pi <- rdirichlet(n=1, alpha = dirich.prior)

43 start.item.p <- matrix(NA, nrow = G, ncol = K)

44 for (g in 1:G)

45    {

46    start.item.p[g, ] <-

47        rbeta(K, shape1 = alpha, shape2 = beta)

48    }

49 ###

50 pi.t <- start.pi # membership distr [pi1=0.78, pi2=0.11, pi3=0.11]

51 pjk.t <- start.item.p # item response probability pjk on iteration t

52 # used later to address the label switch problem

53 perm <- gtools::permutations(n=G, r=G) # 24 total permutations when G=4
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54 trace.num <- numeric(nrow(perm))    # trace of match between t0 and t+1 

55 ################

56 # Main MCMC simulation

57 ################

58 iter <- 1            # begins with iteration number 1

59 while (iter <= niter)        # loop until niter is reached

60 {

61 # Each person’s class membership prob, using Eq (7)

62 #    [c|y,pi,p] = [pi * pr(y|p)] / [total probability]

63 # step 1: pr(y|p), first calcualte p and 1-p

64 pr.p <- t(pjk.t)    # transpose to K by G matrix for apply()

65 pr.q <- 1 - pr.p

66 # step 2: binomial item response probability per Eq (2)

67 A <- apply(y, MAR = 1, FUN = function(yv) { pr.p^yv * pr.q^(1-yv) })

68 A <- array(A, dim = c(K, G, N))

69 A <- aperm(A, c(3, 2, 1))    # reshape into N*G*K

70 eq2 <- apply(A, MARGIN = c(1, 2), prod)  # multiply across K, keeping N*G

71 # step 3: each binomial item resp prob weighted by class distr prob pi[j]

72 eq2 <- sweep(eq2, MARGIN = 2, STATS = pi.t, FUN = “*”)

73 # Calculate total probability for each person, per Eq (5)

74 p.total <- apply(eq2, MARGIN = 1, sum)

75 # finally, ‘divided-by-total’ yields latent class membership prob

76 Clp.t1 <- eq2/p.total

77 #

78 # Clp.t1 gives us the probability of each person’s latent class 

membership,

79 # e.g., person 1 has (0.30, 0.20, 0.15, 0.35) of being in class 1, 2, 3, 

and 4.

80 # So latest class membership can be c=[1,0,0,0] with 30% chance,

81 # c=[0,1,0,0] with 20% chance, c=[0,0,1,0] with 15% chance, and 

c=[0,0,0,1]

82 # with 35% chance. Next we use these probs to draw a single specific 

sample

83 # of c from any of the 4 possibilities above. Each person has one and only

84 # one class out of G latent classes.

85 Cl.t1 <- apply(Clp.t1, 1,

86 function(prob) { rmultinom(n = 1, size = 1, prob = prob) })

87 Cl.t1 <- t(Cl.t1)

88 ##

89 # Next, update pi (per Eq (10)) and pjk (per Eq (11)) using the newly

90 # calculated N*G matrix of discrete latent class membership

91 ##

92 # Sample $\pi_j^{(t+1)}$, percentages of latent classes in the population

93 # Eq (10) shows posterior = data by colSums(C.t) + prior sample sizes
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94 pi.t1 <- rdirichlet(n = 1, alpha = colSums(Cl.t1) + dirich.prior)

95 # sample item response probability, one latent class at a time, sum over N

96 for (g in 1:G) # each column not guaranteed to add up to 1

97    {

98    # Eq (11) shows posterior beta(y*c + alpha, (1-y)*c + beta)

99    pjk.t1[g, ] <- rbeta(K, shape1 = alpha + colSums(Cl.t1[, g] * y),

100        shape2 = beta + colSums(Cl.t1[, g] * (1-y)) )

101    }

102 # simulated values in current iteration are added into chain storages

103 Pi[iter, ] <- pi.t1

104 Pjk[iter, , ] <- pjk.t1

105 Cij[iter, , ] <- Cl.t1

106 Cij.pr[iter, , ] <- Clp.t1

107 # ‘label switching’ problem to match latent classes at end of burn-in

108 if (relabel && done.burn)

109    {

110    match.tab <- t(Cl.t1) %*% Cl.0 # match between t+1 and t0 latent 

classes

111    for (l in 1:nrow(perm)) # across G! permutations, where matches are?

112        trace.num[l] <- sum(diag(match.tab[, perm[l, ]]))

113

114    relabel.ord <- perm[which.max(trace.num), ] # relabel by best match

115    labelStor[iter, ] <- relabel.ord

116    }

117 # Current simulated values will be used to draw the next iteration

118 pi.t <- pi.t1

119 pjk.t <- pjk.t1

120 # print a message if b.burn iterations done

121 if (iter == n.burn) {

122    done.burn <- TRUE

123    cat(“\nburn-in completed\n”)

124    Cl.0 <- Cl.t1 # latent classes immediately after burn-in

125    }

126 # verbatim can be set by the user to print iteration count every 500th 

iter

127 if (verbatim)

128    if (iter == 1) cat(“iteration(s) completed: “, iter, “ “)

129    if ( (iter %% 500) < 10^(−7) ) { cat(iter, “ “) }

130 iter <- iter + 1 # last thing before repeating is to incrememt iter by 1

131 }    # end while (iter <= niter)

132 cat(“\n”)

133 # Discard burn-in iterations, thin by n.thin

134 ti <- seq(from = n.burn+1, to = niter, by = n.thin)

135 Pi.chain <- Pi[ti, ]            # pi chain after burn-in and thinning
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136 Pjk.chain <- Pjk[ti, ,]        # pjk after burn-in and thinning

137 labelStor <- labelStor[ti, ]

138 Pi.mean <- apply(Pi.chain, 2, mean) # average pi

139 Pjk.mean <- apply(Pjk.chain, c(2, 3), mean)  # average p[jk]

140 # put the results together in a list and return() the results

141 ans <- list(Pi.mean = Pi.mean, Pjk.mean = Pjk.mean, Pi.chain = Pi.chain,

          Pjk.chain = Pjk.chain, Cpr.chain = Cij.pr, relabelOrd = labelStor)

142 return(ans)

143 }
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Figure 1. 
Examples of Beta distributions representing varying degrees of evidence strength over all 

possible values of the proportion. Subplot (a) shows a variable in which 3 of the 10 persons 

in the first latent group endorse the symptom; thus the peak is at around 30%. There is 

uncertainty because an observation of 3 out of 10 can still arise from an underlying 

probability of 50% (although much less likely). Subplot (b) is flatter, indicating a weaker 

evidence from 4 persons. Subplot (c) shows a flat Beta prior representing complete 

uncertainty about the proportion. Subplots (d) to (f) show how the priors above converge to 

posteriors of a similar shape if combined with a new, larger sample of 120 patients with 45 

endorsing a symptom.
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Figure 2. 
A Dirichlet distribution for a multinomial variable with three categories. Subplot (a) shows 

the Dirichlet density in 3-dimensions, where the overall shape of the distribution is defined 

by the prior sample size u = [10, 6, 4], over the first and second percentages, labeled as p1 

and p2, respectively. In (b), the contour of the 3-dimensional surface is plotted to visualize 

the mode of the distribution near (0.5, 0.3, 0.2).
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Figure 3. 
Illustration of the label switching problem. Plotted here are MCMC simulation traces for πj 

using a randomly selected subset of 200 observations from the full Add Health data. We 

fitted a simpler model with 3 latent classes instead of 4 to show a more visible pattern. 

Subplots (a) – (c) are the traces for the original MCMC chain. Subplots (d) – (f) are the 

relabeled chains. Signs of label switching are present in (a) where the chain first hovers 

around π1 ≈ 0.60 and then it drifts to the proximity of 0.15 near the 2,000th iteration. This is 

corroborated by (c) where π3 drifts up to ≈ 0.60 exactly when π1 drifts down to ≈ 0.15, an 

indication that π1 and π3 switched labels during simulation. Similarly, signs of label 

switching are also visible in the π2 chain, although not as pronounced. The relabeled 

MCMC chains in (d) – (f) show visibly improved simulation traces.
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Table 1

Item response probability, the conditional probability that a person who is in one of the three latent classes will 

endorse the 4 screening items.

Profiles of Latent Classes Items of Screening Tool

1. misplace things 2. forget phone number 3. multitasking 4. train of thought

1 – ‘few or no symptoms’ 0.20 0.20 0.10 0.10

2 – ‘memory lapses’ 0.70 0.70 0.20 0.20

3 – ‘attention issues’ 0.10 0.10 0.70 0.70
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Table 2

Add Health study raw data.

Lied Publicly loud Damaged property Stolen from store Stolen < $50 Group fight (n)

1 0 0 0 0 0 0 1817

2 1 0 0 0 0 0 792

3 0 1 0 0 0 0 539

4 1 1 0 0 0 0 630

5 0 0 1 0 0 0 29

6 1 0 1 0 0 0 51

7 0 1 1 0 0 0 66

8 1 1 1 0 0 0 178

9 0 0 0 1 0 0 58

10 1 0 0 1 0 0 71

11 0 1 0 1 0 0 33

12 1 1 0 1 0 0 93

13 0 0 1 1 0 0 5

14 1 0 1 1 0 0 30

15 0 1 1 1 0 0 8

16 1 1 1 1 0 0 40

17 0 0 0 0 1 0 20

18 1 0 0 0 1 0 14

19 0 1 0 0 1 0 14

20 1 1 0 0 1 0 34

21 0 0 1 0 1 0 1

22 1 0 1 0 1 0 8

23 0 1 1 0 1 0 10

24 1 1 1 0 1 0 17

25 0 0 0 1 1 0 58

26 1 0 0 1 1 0 104

27 0 1 0 1 1 0 52

28 1 1 0 1 1 0 183

29 0 0 1 1 1 0 10

30 1 0 1 1 1 0 44

31 0 1 1 1 1 0 33

32 1 1 1 1 1 0 177

33 0 0 0 0 0 1 90

34 1 0 0 0 0 1 114

35 0 1 0 0 0 1 120

36 1 1 0 0 0 1 218

37 0 0 1 0 0 1 6

38 1 0 1 0 0 1 17

39 0 1 1 0 0 1 16
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Lied Publicly loud Damaged property Stolen from store Stolen < $50 Group fight (n)

40 1 1 1 0 0 1 105

41 0 0 0 1 0 1 8

42 1 0 0 1 0 1 15

43 0 1 0 1 0 1 14

44 1 1 0 1 0 1 40

45 0 0 1 1 0 1 3

46 1 0 1 1 0 1 7

47 0 1 1 1 0 1 6

48 1 1 1 1 0 1 43

49 0 0 0 0 1 1 4

50 1 0 0 0 1 1 5

51 0 1 0 0 1 1 12

52 1 1 0 0 1 1 17

53 0 0 1 0 1 1 2

54 1 0 1 0 1 1 1

55 0 1 1 0 1 1 2

56 1 1 1 0 1 1 39

57 0 0 0 1 1 1 7

58 1 0 0 1 1 1 30

59 0 1 0 1 1 1 20

60 1 1 0 1 1 1 77

61 0 0 1 1 1 1 4

62 1 0 1 1 1 1 15

63 0 1 1 1 1 1 20

64 1 1 1 1 1 1 207
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Table 3

A comparison between the equations for Gibbs sampling and how they are implemented in R. The last column 

covers the primary R functions that carry out the sampling, which essentially involve feeding these functions 

the appropriate input parameters. For example, sampling from the Dirichlet posterior involve summing the 

number of people within each latent class and then combining the sums with the prior sample sizes.

Equation for Gibbs sampling Line(s) R function

π j
(t + 1) Dirichlet ∑i = 1

N ci1
(t) + u1, …,∑i = 1

N ciC
(t) + ug  (10) 94

pi.tl <- rdirichlet(n = 1, 
alpha = colSums(Cl.tl) 
+ dirich.prior)

p jk
(t + 1) Beta ∑i = 1

N yici j
(t) + α jm,∑i = 1

N 1 − yi ci j
(t) + β jm  (11)

97 – 101

pkj.tl[g, ] <- rbeta(K, 
shapel = alpha + 
colSums(Cl.tl [, g] * 
y), shape2 = beta + 
colSums(Cl.tl [, g] * (1 
- y) )

ci
(t + 1) Multinomial 1,

π1
(t + 1)p(yi | p1

(t + 1))

∑h = 1
J πh

(t + 1)p(yi | ph
(t + 1))

, …,
πJ

(t + 1)p(yi | pJ
(t + 1))

∑h = 1
J πh

(t + 1)p(yi | ph
(t + 1))

 (12)

85 – 87

Cl.tl <- apply(Clp.tl, 1, 
function(prob) 
{ rmultinom(n = 1, 
size = 1, prob = 
prob) })
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Table 4

Parameter estimates for the full Add Health sample (N = 6, 504) by different computation strategies.

Computation Strategy Latent Classes

Class 1 Class 2 Class 3 Class 4

gibbs() sampling
π j 0.481* (0.016)† 0.088 (0.010) 0.139 (0.014) 0.293 (0.019)

p jk

Lied to parents 0.272 (0.013) 0.919 (0.020) 0.728 (0.021) 0.728 (0.019)

Publicly loud/rowdy/unruly 0.170 (0.015) 0.968 (0.019) 0.561 (0.032) 0.775 (0.021)

Damaged property 0.006 (0.003) 0.818 (0.046) 0.258 (0.028) 0.256 (0.016)

Shoplifting 0.021 (0.005) 0.875 (0.021) 0.949 (0.035) 0.050 (0.024)

Stolen something worth < $50 0.008 (0.003) 0.862 (0.024) 0.706 (0.043) 0.047 (0.014)

Taken part in group fight 0.041 (0.006) 0.627 (0.037) 0.201 (0.025) 0.325 (0.017)

SAS PROC LCA
π j 0.479 (0.016) 0.086 (0.011) 0.140 (0.016) 0.295 (0.019)

Lied to parents 0.270 (0.012) 0.922 (0.020) 0.731 (0.021) 0.726 (0.019)

Publicly loud/rowdy/unruly 0.168 (0.014) 0.974 (0.023) 0.561 (0.033) 0.774 (0.022)

Damaged property 0.005 (0.020) 0.822 (0.048) 0.260 (0.030) 0.253 (0.015)

Shoplifting 0.020 (0.005) 0.879 (0.021) 0.964 (0.038) 0.043 (0.028)

Stolen something worth < $50 0.008 (0.002) 0.862 (0.025) 0.695 (0.044) 0.052 (0.014)

Taken part in group fight 0.040 (0.006) 0.631 (0.038) 0.202 (0.027) 0.324 (0.016)

poLCA() in R
π j 0.297 (0.019) 0.084 (0.010) 0.140 (0.015) 0.479 (0.016)

Lied to parents 0.726 (0.018) 0.924 (0.020) 0.734 (0.020) 0.270 (0.012)

Publicly loud/rowdy/unruly 0.773 (0.021) 0.978 (0.023) 0.565 (0.030) 0.167 (0.014)

Damaged property 0.254 (0.015) 0.829 (0.045) 0.263 (0.028) 0.005 (0.004)

Shoplifting 0.043 (0.028) 0.880 (0.021) 0.972 (0.042) 0.020 (0.005)

Stolen something worth < $50 0.055 (0.015) 0.864 (0.025) 0.697 (0.045) 0.008 (0.002)

Taken part in group fight 0.324 (0.016) 0.635 (0.036) 0.205 (0.025) 0.040 (0.006)

*
: Original parameter estimates without reordering the labels.

†
: posterior standard deviation.
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