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Abstract

Environmental fate and transport processes are influenced by many factors. Simulation models 

that mimic these processes often have complex implementations, which can lead to over-

parameterization. Sensitivity analyses are subsequently used to identify critical parameters whose 

uncertainties can be further reduced or better described and prediction variability minimized. In 

this study, a variance decomposition based global sensitivity analysis technique (Sobol’ method) is 

conducted based on estimated concentrations in vertical soil compartments using the Pesticide 

Root Zone Model (PRZM). Daily simulations are performed that explore the input parameter 

space. Estimated concentrations are compared to data collected over the course of a growing 

season from an experimental site in Georgia. Our results suggest that model sensitivity is 

conditional and should be examined at appropriate spatial and temporal resolution to avoid 

omitting important parameters. This approach can yield a better understanding about the interplay 

between sensitivity/uncertainty and model dynamics in non-monotonic, non-linear systems.
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1. Introduction

1.1. Overview of sensitivity analysis

Sensitivity analysis investigates how uncertainty in model outputs can be apportioned to 

different input sources (Saltelli et al., 2004, 2008) which usually focuses on the following 

aspects: 1) identifying parameters which are the most influential (contributing most to output 

variability) for the calibration process; 2) highlighting parameters which require additional 

research for strengthening the knowledge base; and 3) determining parameters which are 
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insignificant and can be eliminated from the final model to avoid overparameterization 

(Hamby, 1994; Iman and Helton, 1988). Based on the type of analysis, it can be considered 

as qualitative or quantitative, whose major methods are listed in Fig. 1.

As a representative of the qualitative sensitivity analysis method, scatter plot inspects the 

influence of individual inputs on an output visually (Cook and Weisberg, 2009; Frey and 

Patil, 2002). Although scatter plot does not provide quantitative rankings of inputs, it could 

depict the possible (non)linear or (non)monotonic dependence between an input and output 

(Cook and Weisberg, 2009). Thus, scatter plot is usually selected as the first step in the 

sensitivity analysis which allows for the identification of potentially complex dependencies 

and guides for the selection of quantitative sensitively analysis methods. A drawback of this 

approach is that interpretation of a scatter plot is subjective (Frey and Patil, 2002).

Quantitative sensitivity analysis methods are categorized into local or global approaches 

given the number of co-perturbed parameters. Local methods refer to analyses which 

characterize model inputs’ local gradients at a given point at a time, while other parameters 

usually are set to their nominal or mean values. Although with a low computational cost, the 

OAT method could contain biased results for non-linear models, since it assumes linearity 

between inputs and outputs (Nossent and Bauwens, 2012a; Saltelli et al., 2005). Global 

sensitivity analysis method searches the whole parameter space in a random or systematic 

approach. In addition, it allows all inputs to be varied simultaneously but has a high 

computational cost. However, with increasing computing capacity, global sensitivity analysis 

has become more prevalent since this makes exploring multi-dimensional parameter spaces 

are more feasible (Massmann and Holzmann, 2012; Reusser et al., 2011; Saltelli et al., 

2005). Thus, local sensitivity analysis measures sensitivity information between a specific 

input value and the corresponding output space. While global analyses consider the whole 

input and output spaces which allows all inputs to be varied simultaneously (Saltelli et al., 

2010).

1.2. Types of global sensitivity analysis

Global sensitivity analysis is a model independent technique, which means that the 

sensitivity analysis method does not require a specific type of relationship between inputs 

and model outputs (Baroni and Tarantola, 2014). When full coverage of parameter spaces 

are properly sampled, it can handle non-linearity, non-monotonicity and non-additivity 

models (Nossent and Bauwens, 2012a). There are three types of global sensitivity analysis 

methods (Fig. 1): screening methods, regression-based methods, and variance-based 

methods (Confalonieri et al., 2010).

The most common screening method, Morris method, captures not only the overall 

importance of a parameter, but also its interactions with other parameters. The Morris 

method is effective in identifying important parameters for a monotonic model at a 

reasonable computational cost. For non-monotonic models, Campolongo et al. 

(2007)improved Morris algorithms by considering absolute effective effects, which reduces 

the probability of not identifying important parameters (Type II error). Regression methods 

build linear equations between model inputs and outputs by sampling with Monte Carlo or 

Latin Hypercube techniques. When inputs are independent of each other, their standard 
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regression coefficients (SRC), representing the effect of changing an input from its baseline 

value by a fixed fraction of the standard deviation, are used to rank inputs based on their 

impacts on model outputs (Confalonieri et al., 2010). However, parameters ranked by SRC 

are based on the linear regression model which is used to describe the target model, not 

directly on the target model (Saltelli et al., 1999). The performance of this method depends 

on coefficient of determination (R2) which captures the percentage of variance that can be 

explained by the proposed regression model (Confalonieri et al., 2010; Saltelli et al., 2005). 

The regression method is thus better suited to linear models (Saltelli et al., 1999, 2008).

Although computationally intensive, benefits associated to variance decomposition type of 

sensitivity analysis are significant, which are reliable for both linear and non-linear models, 

as well as monotonic and non-monotonic models. Global sensitivity analysis methods not 

only account for impacts from individual inputs, but also consider influences from 

interactions among inputs. Fourier Amplitude Sensitivity Test (FAST) developed by Cukier 

and his colleagues is considered to be the earliest variance-based method. FAST method 

adopts Fourier transformation function to sample input spaces in estimating their first-order 

sensitivity indices, which is also known as “main effect”, contribution of each input to the 

variance of the output (Cukier et al., 1975; Saltelli et al., 1999). Later, Saltelli et al. (1999) 

extended the original FAST method with the ability to compute total sensitivity indices for 

identified parameters (EFAST). However, the two main disadvantages for FAST and EFAST 

methods are that they fail to sample inputs directly from their distributions and results are 

not reliable when inputs are not continuously distributed (Confalonieri et al., 2010; Frey and 

Patil, 2002).

Sobol’ method estimates inputs’ first and higher order sensitivity indices by evaluating a 

multidimensional integral through a Monte Carlo simulation (Patelli et al., 2010). Sobol’ 

method has become the most powerful sensitivity analysis techniques since it directly 

samples parameter spaces, which is the main difference between FAST and Sobol’ method 

(Saltelli et al., 1999); and is capable of handling the case of dependent variables (Glen and 

Isaacs, 2012; Kucherenko et al., 2012; Li et al., 2013). Though Sobol’ method is 

straightforward to apply, it is computationally expensive. As a result, many researchers have 

developed optimized algorithms (Jansen, 1999; Saltelli, 2002; Saltelli et al., 2010; Sobol, 

2001). A comparison of commonly applied sensitivity methods are listed in Table 1and an 

in-depth review are available from Matott et al. (2009) and Pianosi et al. (2016).

1.3. Study objective

The objective of this study is to apply Sobol’ sensitivity analysis on Pesticide Root Zone 

Model (PRZM), a compartment model that predicts the fate and transport of pesticides in 

unsaturated soil systems at plant root zone depths, to explore parameters’ impacts to the 

estimated pesticide soil concentrations. PRZM has been used by the USEPA as part of their 

risk assessment process for pesticide registration. We propose to evaluate those impacts 

spatially and temporally as suggested by recent studies (Guse et al., 2014; Herman et al., 

2013a, 2013b; Massmann et al., 2014; Sieber and Uhlenbrook, 2005). The remaining parts 

are as follows: the second part of the paper introduces background of PRZM model and 

algorithms used to compute Sobol’ index; the third part presents results based on a field 
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pesticide leaching study conducted in South Georgia (Jones and Russell, 2001). With this 

approach, we conditionally identify sensitive parameters over time and vertical depth. We 

use first order Sobol’ sensitivity indices to locate the high priority model inputs based on 

their relative ranking that directly influence estimated pesticide soil concentrations at 

different time periods and depths. In addition, we use low ranking total order indices, the 

sum of interaction terms with other varied parameters plus first order sensitivity index, to 

focus on excluding non-sensitive parameters based on their low first-order and parameter 

interaction contributions.

2. Method

2.1. PRZM model

PRZM is a heavily used, one-dimensional, dynamic compartment model capable of 

predicting the fate and transport of pesticides in unsaturated soil systems at plant root zone 

depths. PRZM is a finite difference model that uses a method of characteristics algorithm to 

solve partial difference equations that account for relevant climatic, chemical, and 

agronomic phenomena including soil temperature, volatilization, irrigation and cropping 

practices, solubility/sorption, and microbial transformation processes. Two major 

components in a PRZM model are hydrology and chemical transport. The hydrologic 

component estimates runoff, erosion, evapotranspiration, and water movement. The transport 

component distributes organic and inorganic chemicals in the soil.

PRZM has been applied in many environmental applications including pesticide leaching on 

agricultural lands (Banton and Villeneuve, 1989; Chang et al., 2008; Du et al., 2008; Jackson 

and Estes, 2007), construction of municipal landfills (Aivalioti and Karatzas, 2006), and 

assessing industrial emissions (Shin et al., 2011). When coupled with a geographic 

information system (GIS), PRZM can assess transport from multiple spatial locations 

(Akbar and Lin, 2010). For example, Akbar et al. (2011) developed a health risk map by 

spatially modeling bentazon leaching in Woodruff County, AK. Jackson et al. (2007) created 

PLUS, a PRZM and GIS-based tool which ranked the vulnerability caused by agricultural 

practices on over 8000 soil types and weather combinations. Similarly, Luo and Zhang (Luo 

and Zhang, 2009, 2010, 2011) employed a geo-referenced modeling system and simulated 

the spatiotemporal variations of pesticide transport at watershed scales. Another linkage 

used the Exposure Analysis Modeling System (EXAMS) to simulate impacts based on 

PRZM outputs. Within this framework, Chiovarou and Siewicki (2008) compared risk to 

resident biota in estuarine headwaters at two locations with varying pesticide application 

scenarios and storm intensities. Davis et al. (2007) estimated ecological risk to non-target 

aquatic organisms from applying six common mosquitocides used to control West Nile 

virus. Sabbagh et al. (2010) coupled the PRZM-EXAMS approach with a vegetated filter 

strip (VFS) model to evaluate performance on pesticide reductions. There have also been 

many verification studies testing whether predictions from PRZM are reliable in comparison 

to other models and/or field observations. PRZM has been compared to the Root Zone Water 

Quality Model (RZWQM) (Fox et al., 2006), the Leaching Estimation and Chemistry Model 

(LEACHP), the MACRO model (McQueen et al., 2007), and has also been validated against 

field data (Mamy et al., 2008).
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As with other highly-dimensioned environmental models, PRZM’s inputs and outputs could 

contain is likely over-parameterized despite the fact that its inputs and outputs have 

significant uncertainty. The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) 

Environmental Model Validation Task Force (FEMVTF) performed a model evaluation of 

PRZM by comparing model results against field measurements collected at 18 locations 

(Carbone, 2002; Carbone et al., 2002; Russell and Jones, 2002; Singh and Jones, 2002). As 

part of the validation process, FEMVTF conducted sensitivity analysis using Plackett and 

Burman’s approach to identify the most influential parameters (Carbone, 2002; Plackett and 

Burman, 1946; Warren-Hicks et al., 2002; Wolt et al., 2002). Although Plackett and Burman 

method is computational efficient, it only evaluates parameters at two fixed levels and finds 

2-way interactions (Beres and Hawkins, 2001; Gan et al., 2014).

2.2. Sobol’ method

Let Equation (1) represent a model whose independent parameters are k elements in vector 

X, and its output is a scalar.

Y = f X = f x1, ..,xk (1)

The essential concept behind Sobol’ method is that function f(X) can be decomposed into a 

series of factors and their interactions with increasing dimensionality (Kucherenko et al., 

2009) (Eq. (2)):

f x1, .., xk = f 0 + ∑
i = 1

k
f i xi + ∑

i < j

k
f i . j xi, x j + ⋯ + f 1, ⋯k xi, …, xk (2)

where f0 can be treated as the expectation of Eq. (2), and subscripts i, j, k represents model 

parameters. In addition, if parameters of f(X) are independent and the individual terms are 

square-integrable and have zero mean over their domain, this decomposition is unique. As a 

result, the overall variance is expressed in Eq. (3) and it can be decomposed into Eq. (4) 

(Chan et al., 1997; Patelli et al., 2010):

Var Y = ∫ f 2 X dX − f 0
2 (3)

Var Y = ∑
i = 1

k
Vari Y + ∑

i < 1

k
Vari, j Y + ⋯ + Var1, …k Y (4)

where
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Var1, …k Y = ∫ ⋯∫ f 1, …k
2 xi, …, xk dx1⋯dxk (5)

The Sobol’ sensitivity index (Sobol, 2001) is the ratio between partial variance and total 

variance. The first order index (Eq. (6)) measures the proportion of the total model output 

variance explained by variations in parameter i; higher order index (Eq. (7)) captures this 

ratio between parameter interaction terms and total model output variance; while total order 

index (Eq. (8)) accounts for the proportion of total variance explained by parameter xi, as 

well as by interactions of xi and all other parameters. When the sum of all first-order indices 

(Si) is close to 1, a model’s inputs are more likely to be orthogonal, meaning less impact due 

to interactions among parameters (values calculated by Eq. (7) are quit low).

First order index Si =
Vari Y
Var Y (6)

Higher order index Si, ⋯, k =
Vari, …, k Y

Var Y (7)

Total order index STi = 1 −
Var i Y
Var Y (8)

where Vari(Y) represent variance from parameter i; Vari,...,k(Y) is the variance from 

interaction terms; Var∼i(Y) represents total order variance which is total variance explained 

by all other parameters (except xi) on its own and also by all parameter combinations not 

including xi (Homma and Saltelli, 1996).

Researchers including Sobol’ have developed several Monte Carlo-based estimators to 

compute Eqs. (7) ; (8)). In this study, we adopt Saltelli et al.’s (2010) approach to quantify 

the first-order variance and compute the total order variance as developed by Jansen (1999) 

(Eq. (10)). These variance computations and their derivations are well-developed in the 

literature (Jansen, 1999; Saltelli, 2002; Saltelli et al., 2010; Sobol, 2001; Sobol et al., 2007).

Vari Y = 1
N − 1 ∑

j = 1

N
f B j f AB

i
j
− f A j (9)
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Var i Y = Var Y − 1
2N − 1 ∑

j = 1

N
f A j − f AB

i
j

2
(10)

where A and B are named sample and resample matrices, which are two independent 

matrices, based on inputs’ distributions with a dimension of N by k (N iterations, k 

variables), and j is a loop index from iteration 1 to N. Matrix AB
i ‘s columns are identical to 

Matrix A (sample matrix) except that the i-th column comes from Matrix B (resample 

matrix). Thus, if a model has k parameters, there should be k different AB matrices 

AB
i , …, AB

k  . Composition of Matrices A, B and AB
i  are provide in Fig. 2.

2.3. Identifying sensitive parameters

The objective of our study is to identify the most sensitive PRZM parameters using global 

sensitivity techniques presented in Section 2.2. Essential steps included in this assessment 

are described as a flowchart in Fig. 3. The first step is to generate matrices A and B which 

are sometimes referred to as sample and re-sample matrices (Saltelli et al., 2010). To 

simplify, it is assumed that the total number of PRZM parameters to be evaluated is k 

(corresponding to k columns in Fig. 2), and these variables will be sampled N times from 

either already known or assumed statistical distributions; thus, the dimension for matrix A 

(or B) is N by k. To construct matrices AB
i , adopting a k-iteration loop is suggested in which 

matrix A’s i-th column is replaced by the corresponding column from the B matrices. 

Finally, matrices A, B and AB
i  are vertically stacked into one “combined” matrix, P, which 

has N × (k+2) rows and k columns. The second step is to execute a Monte Carlo simulation 

with a total of N × (k+2) iterations and collect model outputs, which are time series of 

pesticide concentrations averaged over certain depth. Here, outputs are the predicted average 

pesticide soil concentrations across six depths (0–15 cm, 15–30 cm, 30–45 cm, 45–60 cm, 

60–75 cm, 75–90 cm) for data collected over 140 consecutive days between Aug. 13, 1992 

(Julian day 226) and Dec. 31, 1992 (Julian day 366). Thus, the dimension for the return 

matrix is 840 by N × (k+2), which contains f(A), f(B), and f(AB
i ). The third and fourth steps 

apply Eqs. (6), (8), (9) ; (10) to quantify the first- and total order of sensitivity indices where 

higher first-order indices are used to highlight parameters with conditionally identifiable 

influences and remove those with persistently low total order indices over the entire 

simulation period as relatively unimportant PRZM inputs. As part of the post-processing, a 

small proportion of daily variable sensitivity index estimates for insensitive parameters that 

were slightly below zero due to numerical errors were set to zero. Further sampling did not 

diminish these negative values, which was verified by increasing the dimension of a sample 

matrix (A) to 15,000 rows, which took three days and 15 GB memory to evaluate the 

195,000 simulations. Our convergence studies showed that additional further sampling and 

setting negative values to zero did not alter the sensitivity index probability distributions and 

the relative ranking of parameters. Therefore, post-processing of the estimates included 

setting all negative indices to zero. The procedures described above were implemented in R 
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(R Core Team, 2013), where inputs were generated, passed to a compiled PRZM executable 

file, and model output was post-processed.

Based on a previous field pesticide leaching study in South Georgia (Jones and Russell, 

2001; Wolt et al., 2002), 11 candidate PRZM parameters inputs were selected and sampled 

independently. Their influences on predicted pesticide soil concentrations across different 

depths were evaluated. The dimension of the sample (resample) matrix is 15,000 by 11, 

making the total evaluated PRZM functions 195,000 (15,000 × (11 + 2)). The justification 

for including these candidate parameters is based on a previous sensitivity analysis 

conducted by FEMVTF (Wolt et al., 2002). In addition, a rain intensity scalar parameter 

based on authors’ judgment is included to account for rainfall errors in measurement and 

extrapolation from the gauge location and also to allow for the assessment of the influence 

of the rainfall time series, a known sensitive parameter for vertical transport. A summary of 

ranges of inputs are presented in Table 2.

2.4. Normalized Nash-Sutcliffe efficiency

Normalized Nash-Sutcliffe efficiency (NNSE, Eq. (11)) is applied to evaluate the predictive 

power of PRZM simulations against field mean observations (Nash and Sutcliffe, 1970; 

Nossent and Bauwens, 2012b). The NNSE value ranges from 0 to 1, which represents very 

poor to perfect model performance. A NNSE of 0.5 indicates the performance of the 

dynamic model predictions is no better than a linear model fit through the mean of the 

observations. In addition, unlike the traditional Nash-Sutcliffe efficiency, the normalized 

coefficient can retain more accuracy in the estimated variance related terms (Nossent and 

Bauwens, 2012b).

NNSE = 1

1 +
∑
t

yΦ, t − yi, t
2

∑
t

yΦ, t − yΦ
2

(11)

where yo,t is the observation on day t, yo is the average across all the observations, and yi,t is 

the simulated value on day t from the ith Monte Carlo realization. We use NNSE to provide 

context for the performance of the simulations, it is not a required step in the process of 

applying the Sobol’ sensitivity analysis.

2.5. Conditional Pearson partial correlation coefficients

Conditional daily Pearson partial correlation coefficients (Lee Rodgers and Nicewander, 

1988) between the sample matrix of 11 PRZM parameters and the model output, pesticide 

soil concentrations, were also run as a rough linear estimate of sensitivity. The partial 

correlation is a global (not local) method, but does not handle the non-linearity of the 

pesticide concentration output (or potential non-linearity of inputs) as Sobol’ can. However, 

despite the linearity limitations, the sign of the correlation coefficient (indicating positive or 
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negative correlation between the input and the output) is information that is not provided by 

a Sobol’ analysis.

3. Results

3.1. Simulation of the pesticide soil concentration

Fig. 4 illustrates the mean (black solid), the 5th (green solid) and 95th (red solid) percentiles 

of the simulated pesticide soil concentrations (ppb) against the mean (black dashed), 

minimum (green dashed) and maximum (red dashed) field observations at depths of 0–15 

cm and 15–30 cm. Simulated data presented in Fig. 4 are used for the following sensitivity 

analysis, and field observations are from a previous site-specific leaching study conducted 

by FEMVTF as part of the PRZM model calibration projects (Jones and Russell, 2001). 

Pesticide applications (purple bars) and rain events (orange bars) are also presented, with 

height representing magnitude (cm/day) of the event. As expected, the first soil compartment 

(0–15 cm depth) shows increases in pesticide concentrations that are positively associated 

with pesticide applications. Reductions in pesticide concentrations due to transfer of 

pesticides to deeper soil depths are associated with precipitation events. The magnitude of 

vertical pesticide concentration movement is positively linked to precipitation level. For 

instance, a significant precipitation event on Julian dates 277 and 278 (7.22 cm and 3.39 cm 

of rainfall) caused the greatest pesticide concentration movement during the simulation 

period. A source of pesticide concentration reduction is pesticide degradation, which was 

captured between Julian dates 294 and 306, an extended period with no new applications or 

rainfall events. Comparing simulated results and observed values shows similar trends over 

the observation period. In general, however, simulations overestimated pesticide soil 

concentrations.

For the second soil compartment (15–30 cm depth), magnitudes of simulated concentrations 

also decrease as a result of decay processes and loss to deeper compartments. 

Concentrations were relatively insensitive to timing of pesticide applications since time and 

rainfall are required for vertical transfer to greater depths. Pesticide concentrations in the 

second layer were positively correlated to rain events, while first soil compartment 

concentrations were negatively correlated. The simulated concentrations in the second 

compartment are consistently lower than simulated concentrations in the first compartment 

yet consistently above observed concentrations. Figure S1 of the supporting document 

includes the mean (black solid), the 5th (green solid) and 95th (red solid) percentiles of the 

simulated pesticide soil concentrations (ppb), as well as the timing of precipitation and 

pesticide application events for soil depths between 35 cm and 90 cm at increments of 15 

cm. No field observation data are included in Figure S1 since few chemicals were detected 

in the soil below 35 cm. Patterns of pesticide concentrations among the four soil 

compartments are similar, since uniform soil conditions are assumed for those layers, 

including same soil parameters (e.g., bulk density, curve number, etc.) and depth attenuation 

effects.

Results of NNSEs show that for the first soil compartment (0–15 cm depth), the median 

performance of the model predictions is similar to the mean of field observations (45% of 

the 195,000 NNSEs are greater than 0.5). However, for the second soil compartment, less 
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than 1% of the 195,000 NNSEs are greater than 0.5. These results echo those of FEMVTF 

(Carbone, 2002; Fox et al., 2006; Mamy et al., 2008; McQueen et al., 2007; Sabbagh et al., 

2010), who found that adding a depth dimension to the decay parameters in PRZM and/or 

adding a supplemental model was necessary to coerce reasonable fits to pesticide 

concentrations at deeper depths. Although the proportions of NNSEs could be increased by a 

model calibration process, use of additional model for deeper depths, and/or by increasing 

the dimension of input parameters, we are interested in examining the sensitivity of the 

PRZM model across the full distributions of the default PRZM input parameters. The 

general trend of better model fits to observed data in the top soil compartment can visually 

be confirmed with Fig. 4, where field observations (black dashed) associated with the first 

soil compartment are closer to the simulations (solid lines) than those in deeper 

compartments.

3.2. Sensitivity indices

The first- (Si) and total order (STi) sensitivity indices are presented as box plots for the 11 

candidate parameters and an additional box representing the summation of first-order indices 

(Fig. 5, another possible visualization is through a Circos plot (Kelleher et al., 2013; Pianosi 

et al., 2016)). Box plots are chosen to present the entire distribution of sensitivity indices for 

all relevant days. The first-order sensitivity index measures the influence of candidate 

parameters on predicted pesticide soil concentrations across all six soil compartments during 

the simulation period (Julian dates 226 to 365 for year 1992). Based on this index, 

parameters with a moderate influence only includes pesticide decay rate in water and soil 

(Decay Control), after comparing their median index value to the threshold (set to 0.2) (Shin 

et al., 2013; Van Werkhoven et al., 2009). If a parameter’s median index value is less than 

the threshold, it is considered as a non-important parameter (Vanrolleghem et al., 2015), 

including partitioning coefficient-organic component (Kd-OC), and application rate (TAPP), 

the rain intensity scalar (Rain), bulk density (BD), and pesticide decay rate on foliage 

(PLDKRT). The summation of first-order sensitivity indices for all parameters can be 

employed to evaluate main effects of the parameters on outputs, while a total sensitivity 

index considers impacts from parameter interactions (Saltelli, 2002; Saltelli et al., 2010). 

The sum of the first-order sensitivity indices suggests that 70% of the output variability can 

be explained by these first-order parameter contributions, while the remaining 30% is due to 

parameter interactions.

Boxplots are generated based on sensitivity indices over the 140 day simulation period (Aug. 

13, 1992 to Dec. 31, 1992). In terms of the boxplot, the band inside the box is always the 

second quartiles (the median); the bottom (top) of the box are always the first (third) 

quartiles; the lower (upper) whiskers represent values from the bottom (top) to the ones that 

are within 1.5 * IQR.

Therefore, the difference between the first order and the total sensitivity indices quantifies 

the joint effects of parameters on predicted pesticide concentrations. A parameter with a low 

total sensitivity index typically implies that it is unimportant since the total sensitivity index 

captures direct impacts of the variable on model outputs and also accounts for its interaction 

with other candidate parameters. From the perspective of the total sensitivity index, 
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parameters including pan factor (PFAC), maximum rooting depth (AMXDR), cropping 

runoff curve number (CN_c), and management factors (USLECs) do not have a discernible 

impact on determining pesticide concentrations.

3.3. Conditional temporal analyses

Spatial and temporal sensitivity analyses are restricted to the six inputs whose total 

sensitivity indices are significantly different from zero. They can be roughly ranked as 

follows: Decay Control, Kd-OC, TAPP, Rain, BD, and PLDKRT. Changes of parameters’ 

first- and total order of sensitivity indices over time (Julian days 226–366) for the top six 

influential parameters identified previously are illustrated by Fig. 6. To capture the impact of 

parameters across depth, figures are generated for both the shallowest (0–15 cm, left panel) 

and the deepest (75–90 cm, right panel) soil compartments. Sensitivity indices for a given 

parameter can change significantly over the course of the simulation so we highlight changes 

in response to application and precipitation events (Fig. 6).

The parameter for the pesticide decay rate in water and soil (Decay Control) are related to 

precipitation and pesticide application events. This is because the first order sensitivity index 

measures the proportion of total variance on model output (dissolved pesticide soil 

concentrations) that can be explained by a certain parameter. Thus, any events (e.g., 

precipitation, pesticide application) related to pesticide concentrations can have an influence 

on the calculated indices for pesticide decay process parameters. In the first soil 

compartment, precipitation events (orange bars) often trigger a sensitivity index decline 

during the event and is then followed by a significant rise in sensitivity in the days after the 

event. This is because precipitations have a more direct impact on changing the predicted 

pesticide concentrations than the decay effects. This phenomenon also can be observed from 

the lower half of Table 3 where the 5th percent of the first order sensitivity index for Decay 

Control estimated during the precipitation periods (0–15 cm, 3.72e-2; 75–90 cm, 2.39e-3) 

are smaller than those from dry periods (0–15 cm, 7.84e-2; 75–90 cm, 1.90e-2). Similarly, 

first order sensitivity index for Decay Control estimated during the pesticide application 

periods are smaller than the one calculated during pesticide free period (Table 3 and Fig. 

7b). This is because, although pesticide applications provide mass for decay processes to 

operate on, the applied pesticide has a more direct impact on the model predicted pesticide 

soil concentration.

For the rain intensity scalar (Rain), increase in sensitivity indices is, not surprisingly, 

associated with precipitation events (higher percentiles of first order sensitivity indices in 

Table 3), however, the magnitude of increase is more significant within the pesticide 

application period (Julian days 226–299), which could due to the existence of higher 

pesticide concentrations. Interesting, during the same period, the relative importance of the 

rain intensity scalar has been diluted by the pesticide application events, which is because 

the proportion of model variability explained by other pesticide application related 

parameters has been increase. Also, the first and total sensitivity index lines diverge in the 

post-pesticide application period (Julian days 300–365), with total sensitivity increasing. 

This implies that residual chemical concentrations are driven by interaction effects with 

other parameters. At a deeper level, the rain sensitivity index is less sensitive to precipitation 
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events since rainfall interacts with the top soil compartment more directly and attenuation 

over the vertical profile can reduce direct correlation. The divergence with depth between the 

first and total sensitivity indices also implies that deeper-level soil concentrations are 

determined by multiple interacting factors.

The temporal change in the first-order index for the pesticide decay rate on foliage 

(PLDKRT) in the first soil compartment is also positively associated with precipitation 

events after pesticide applications (higher percentiles under the column “No” in the first half 

of Table 3). Differences between the first and total sensitivity indices increase towards the 

end of the modeling period, indicating that residual concentrations are jointly determined by 

several parameters. As expected, both sensitivity indices in the deepest modeled soil 

compartment are essentially zero, suggesting that PLDKRT has little impact on deeper soil 

concentrations.

Sensitivity indices for the partitioning coefficient-organic component (Kd-OC) are impacted 

by pesticide application and precipitation events. Pesticide applications reduce Kd-OC’s 

sensitivity index since more pesticide mass is introduced into the soil system at the surface, 

having a larger impact on immediate first compartment concentrations than system 

partitioning processes. Precipitation events do not show a consistent upward or downward 

effect on Kd-OC sensitivity indices. Precipitation could increase Kd-OC’s sensitivity 

indices, which is because first rainfall caused vertical water flow lowers pesticide soil 

concentrations by transferring them to deeper depth. When this happened, Kd-OC 

determined internal partitioning process becomes more important. However, in the deepest 

simulated soil compartment, sensitivity indices of Kd-OC are not dependent on time or on 

events. Except the sensitivity curve shows a sharp peak at the beginning when the pesticide 

comes first into contact with the soil, because it is used for estimating the equilibrium 

concentrations of pesticide in the soil.

Sensitivity indices for bulk density (BD) are positively associated with pesticide applications 

and negatively related to precipitation in the upper compartments (higher percentiles under 

the column “Yes” in Table 3), however, these correlations change with depth. In the last soil 

compartment, indices are positively correlated only to precipitation and independent of 

pesticide applications. Although, reasons behind these phenomena are not very clear, it is 

true that high BD is an indicator of low soil porosity and soil compaction which impacts 

water infiltration (USDA, 2015).

The sensitivity curves for application rate (TAPP) show temporal dependence on events in 

shallow soil compartments. Indices increase when pesticides have been applied (higher 

percentiles under the column “Yes” in first half of Table 3) and decrease during high 

precipitation periods. In the deepest soil layer (75–90 cm) indices show no temporal 

dependence.

3.4. Conditional depth analyses

To further illustrate the differences in the first (red) and total (green) order of sensitivity 

indices at different depths conditional on pesticide applications, two sets of boxplots are 

conditionally generated based on whether the days are during the primary pesticide 
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application period. Sensitivity indices on the left panels of Fig. 7a and b are based on periods 

with pesticide applications (25 application events between Julian Day 226 and 299), while 

the right panels represent days without pesticide applications (Julian Day 300–365). Within 

each figure, boxplots of sensitivity indices associated to six different depths are listed on the 

x-axis in ascending order. For the rain intensity scalar, the first order sensitivity index is for 

the most part depth independent, although indices are somewhat higher during the pesticide 

application period. The total sensitivity index of the rain intensity scalar is positively 

correlated to the soil depth with the exception of the first soil compartment during the no 

application period. This positive correlation suggests that rain intensity scalar and other 

parameters jointly determine pesticide soil concentrations in deeper compartments. The high 

total sensitivity index within the first 15 cm during the pesticide free period also indicates 

that the concentration in this area is jointly determined by several parameters. The pesticide 

decay rate on foliage (PLDKRT) parameter is not a sensitivity input during the pesticide 

application period, which is because other parameters during the applied pesticide period 

could have more direct impacts on determining pesticide soil concentration. While, 

PLDKRT can be identified as a sensitive input only in the first soil compartment during the 

pesticide free period, which is because PRZM assumes that rainfall caused pesticide loss 

only transferring applied pesticide from foliage to the first 4 cm of soil (Suárez, 2005). 

These findings demonstrate variability in the sensitivity of the parameters as a function of 

depth and pesticide application timing. During the pesticide application period, the first and 

total sensitivity indices of the partitioning coefficient-organic (Kd-OC) increase with depth. 

This implies that the partitioning coefficient has more influence on determining the pesticide 

soil concentrations at deeper depths, where pesticides are more likely not evenly distributed. 

However, when no pesticides are applied, the sensitivity indices of Kd-OC are depth-

independent, likely because sufficient time has elapsed since the previous pesticide 

application to allow the soil concentration profile to be more uniformly distributed.

In Fig. 7b, when pesticide are not applied, soil bulk density (BD) is not an important model 

parameter based on its total sensitivity index. During the pesticide application period, 

sensitivity indices for the soil bulk density are positively correlated for the first two soil 

compartments but negatively correlated to the deeper components. This situation is likely 

due to pesticide concentrations decreasing dramatically in deeper zones, which reduces the 

influence of bulk density. Another good example to support the depth dependence of 

parameter sensitivity is the application rate parameter (TAPP). This parameter is highly 

influential in the first soil zone; however, this impact diminishes quickly as soil depth 

increases. Attenuation in soil prevents the applied pesticide from quickly being transported 

to deeper components, meanwhile other parameters and processes are needed to yield these 

concentrations at depth and therefore have higher sensitivity. As expected, during time 

periods when pesticides are not applied, pesticide soil concentrations are insensitive to the 

application rate. The importance of the pesticide decay rate in water and soil (Decay 

Control) parameter increases in the first two soil compartments, then, has little influence in 

the rest of the soil zones, demonstrating a pattern similar to soil bulk density. When 

pesticides are not applied, its first order index has a similar trend to the left panel of Fig. 7b, 

but with higher values. Therefore, during time periods of no pesticide inputs, decay rates 

play a relatively more important role at deeper depths. This can be viewed in the total 
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sensitivity index plots since there is an increase in sensitivity from the first to the rest of the 

depth zones, which indicates pesticide decay rate has more power in determining pesticide 

soil concentrations in deeper areas due to interactions with other parameters.

3.5. Conditional Pearson correlation

Pearson correlation coefficients (daily), conditional on pesticide applications and 

precipitations, between the sample matrix of 11 PRZM parameters and the model output, 

pesticide soil concentrations. Results of correlation coefficients across modeling period as 

well as over iterations were aggregated into boxplots in Fig. 8. To highlight Figure’s 

conditional feature, five types of modeling periods were included: days with pesticide 

application (red), days without pesticide applications (light green), days with precipitation 

(green), days without precipitation (blue), and days including all conditions (purple). Based 

on the position of median correlation coefficients (the horizontal bar inside box), the 

parameters with moderate correlations to the outputs (pesticide application timing, 

partitioning coefficients, decay control, bulk density, and rainfall intensity) are similar to 

those identified by the Sobol’ analysis. However, the magnitudes of correlation coefficients 

vary based on external events, which highlights the importance of such conditional 

correlation analysis in absence of a global sensitivity analysis. For instance, pesticide decay 

rate in water and soil (Decay) has less correlations to the predicted pesticide soil 

concentrations during either pesticide application period (red) or precipitations (green), 

which is because the existences of those external events could have a direct impact on the 

pesticide soil concentration. Comparing to Sobol’ method, the sign of the correlation 

coefficient (indicating positive or negative correlation between the input and the output) is 

information. In this case significant negative correlations between output concentrations and 

both decay control and bulk density show that higher values for these parameters cause a 

decline in output concentrations within the estimated time series. Such conditional 

correlation analysis can also be applied to soil compartments at different depths. However, 

Pearson correlation coefficients were estimated based on the linear assumption between 

inputs and outputs. When a model’s response curve is not linear, it is possible that an input’s 

Pearson’s coefficient is close to zero but its first order sensitivity index is close to 1 (i.e., 

inputs and outputs has a U shape relationship). Under this situation, it is necessary to reply 

on more sophisticated sensitivity analysis method although it is more efficient to calculate 

correlation coefficients.

4. Discussion and conclusion

In this study, we apply a global sensitivity analysis technique, the Sobol’ method, on a 

widely adopted U.S. EPA exposure model, Pesticide Root Zone Model (PRZM), to 

conditionally identify sensitive parameters over time and vertical depth. We use high ranking 

first order sensitivity indices to locate the high priority model inputs based on their relative 

ranking that directly influence estimated pesticide soil concentrations at different time 

periods and depths. In addition, we use low ranking total order indices, the sum of 

interaction terms with other varied parameters plus first order sensitivity index, to focus on 

excluding non-sensitive parameters based on their low first-order and parameter interaction 

contributions. One of the most significant findings is that, for highly parameterized complex 
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models (e.g., environmental fate and transport models), determining the most sensitive 

parameters depends on temporal, spatial, and event-driven conditions, since not all input 

parameters will have the same relative power in determining model output over the different 

model dimensions. Sensitivities can and do change when they are evaluated temporally, with 

depth, as well as taking other related conditions into account. Comparing to estimating time-

varying averaged (averaging across a time window) or whole modeling period averaged 

sensitivity indices, this study computed daily sensitivity indices (the maximum time 

resolution based on inputs), which could better identify parameters whose impacts only last 

a short time period or under certain conditions (Herman et al., 2013b; Massmann et al., 

2014).

In contrast, parameters identified using conditional global sensitivity methods can better 

capture influential parameters at key spatial locations and time points in the model, resulting 

in more accurate system behavior if parameterized and dimensioned correctly when used to 

estimate environmental conditions. Moreover, this information can guide the process of 

model calibration. For instance, to better predict pesticide residual concentration at shallow 

depths (0–15 cm), one should focus on pesticide application rates (TAPP), pesticide decay 

rate on foliage (PLDKRT) and rain intensity (Rain) have more impact on predicted pesticide 

concentrations. While in deeper soil compartments (>15 cm), more attention should be paid 

to the partitioning coefficient-organic component (Kd_OC), the decay rate in the soil and 

water (Decay Control), and the accuracy of the rainfall time series. When PRZM is applied 

to low precipitation areas, rates of pesticide applications and chemical decay rates in water 

and soil are drivers in determining model outputs, while these parameters become rain 

intensity and chemical decay rates on foliage at high precipitation areas.

These analyses present a more nuanced and robust assessment of the relative importance of 

model parameters over the course of the simulations. In dynamic spatial and temporal 

simulations, failing to capture variability provided by conditionally important input 

parameters during key time periods and/or locations can lead to suboptimal modeling in 

terms of overall goodness of fit to observations. This can happen early in the calibration 

process, when sensitivity analyses are used to reduce the number of uncertain parameters 

despite the fact that final parameter ranges have not yet been identified. In addition, when 

unconditional sensitivity analyses are used to jettison variables that are important under 

certain conditions, the overall dynamic features of the models may change. Therefore, 

examination of conditional sensitivity analyses is less likely to lead to incorrect or 

misleading behavior of the models that are used for environmental applications and 

decision-making. One straightforward approach to leveraging conditional sensitivity 

analyses would be to use a higher percentile.

In addition, use of the Sobol’ method can provide insight into significant parameter 

interactions. Most sensitivity analyses conducted are based on the assumption that input 

variables are independent (including the analysis conducted here). However, significant total 

order sensitivity index values (sum of the interaction terms plus first order sensitivity index) 

from the Sobol’ analyses conducted with independence assumptions can be used as one 

indication regarding whether parameter covariance is important. Capturing interactions 

between parameters can have significant effects on system dynamics that influence the 
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estimation of model outputs and subsequent goodness of fit. These interactions can be 

captured in a Monte Carlo simulation (e.g., adding parameters for an input variance-

covariance matrix) during a calibration/uncertainty analysis process. Although covariance in 

the Monte Carlo sampling can cause subsequent problems for both local and global 

sensitivity computation approaches (including Sobol), these difficulties are not 

insurmountable and the Sobol’ method is able to identify the significance of each possible 

interaction and can guide covariance decisions. If such variance-covariance matrix is not 

available, one can also partition inputs into distinct sets. The Sobol’ method is still valid as 

long as the groups are independent (inputs within each group can be correlated) (Glen and 

Isaacs, 2012). In this application, the 30% higher order interaction index sum indicates that 

estimation and calibration of such a matrix may capture some of the interaction variance 

with corresponding improvements in model fit. Candidate parameters in PRZM that may 

merit covariance parameters include pesticide decay rates for foliage and in water and soil 

(PLDKRT and Decay Control), management factors (USLEC1 and USLEC2), and soil 

properties (Bd and KdOC). Incorporation of additional covariance terms may address 

calibration difficulties in deeper depths where PRZM has traditionally labored for many 

applications.
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Fig. 1. 
Category of commonly used sensitivity analysis methods.
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Fig. 2. 

Composition of matrices A, B and AB
i .
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Fig. 3. 
Essential steps involved to estimate global sensitivity index. We identified important 

parameters as those whose total sensitivity analyses were different than zero, then explored 

the conditional results for this subset of variables based on time and depth.
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Fig. 4. 
Pesticide soil concentrations.
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Fig. 5. 
Boxplot of first (red) and total order (green) sensitivity indices.
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Fig. 6. 
Time series plots of the first (black) and total order (red) sensitivity indices for the top six 

influential parameters at two soil compartments (0–15 cm and 75–90 cm).
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Fig. 7. 
(a)Boxplots of first (red) and total order (green) sensitivity indices with and without 

pesticide applications. (7b) Boxplots of first (red) and total order (green) sensitivity indices 

with and without pesticide applications.
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Fig. 8. 
Boxplots of conditional Pearson correlation coefficients.
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Table 1.

Comparison of commonly used sensitivity analysis methods.

Criteria for
comparison

Scatter
plots OAT Morris

Regression
based
method

FAST Sobol’

Local or global N/A Local Global Global Global Global

Discrete inputs Yes Yes Yes Yes Yes Yes

Model
independence Yes No Yes Yes Yes Yes

Non-linear Yes No Yes No Yes Yes

Non-monotonic Yes No No No Yes Yes

Consider
parameter
interactions

No No Yes No No Yes
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Table 2.

Inputs and distributions.

Symbol Meaning Unit
Range (min,
max)*

Source

PLDKRT
Pesticide
decay rate on
foliage

day−1 (0, 6.60 × 10−1)
Warren-Hicks et al.
(2002)

AMXDR Max rooting
depth cm (6.00 × 101,

1.20 × 102)
Keller and Bliesner
(2001)

CN_c
Runoff curve
number
(cropping)

 (6.20 × 101,
7.20 × 101)

Estimate based on
Table 5–10 of Suárez
(2005)

Kd_OC

Partitioning
coefficient-
organic
component

(1.00 × 10−2,
2.00)

Authors judgment

BD Bulk density g/cm3 (1.00, 2.00)
Estimate based
on Warren-Hicks et al.
(2002)

PFAC Pan factor (6.00 × 10−1,
8.00 × 10−1)

Estimate based on
Table 5–17 of Suárez
(2005)

TAPP Application
rate kg ai/ha (2.50 × 10−1,

7.50 × 10−1)
Authors judgment

USLEC1

Universal soil
loss cover
management factor
(fallow)

(5.90 × 10−1,
6.30 × 10−1)

Warren-Hicks et al.
(2002)

USLEC2

Universal soil
loss cover
management
factor
(cropping)

(2.20 × 10−1,
4.40 × 10−1)

Warren-Hicks et al.
(2002)

Decay Control
Pesticide
decay rate in
water and soil

day−1 (1.00 × 10−2,
1.00 × 10−1)

Authors judgment

Rain Rain intensity
scalar

(5.00 × 10−1,
1.50)

Authors judgment

∗
Uniform distributions are assumed between the inputs’ minimums and maximums.
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