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Abstract

Precision oncology applies genomic and other molecular analyses of tumor biopsies to improve 

the diagnosis and treatment of cancers. In addition to identifying therapeutic options, precision 

oncology tracks the response of a tumor to an intervention at the molecular level and detects drug 

resistance and the mechanisms by which it occurs. Integrative genomics can include sequencing 

specific panels of genes, exomes, or the entire triad of the patient’s germline and tumor exome 

plus tumor transcriptome. Although the capabilities of sequencing technologies continue to 

improve, widespread adoption of genomics-driven precision oncology in the clinic has been held 

back by logistical, regulatory, financial, and ethical considerations. Nevertheless, integrative 

clinical sequencing programs applied at the point of care have the potential to improve the clinical 

management of cancer patients.

The earliest documented examples of targeting the underlying mechanisms driving tumor 

growth to treat cancer might be George Beatson’s treatment of breast cancer patients by 

oophorectomy in 18961, and Charles Huggins use of castration to treat prostate cancer half a 

century later2. Although the mechanisms that underlie cancer have been investigated for 

more than a hundred years, clinical management remains rooted in morphological and 

histopathological methods to diagnose and estimate prognosis, while treatments rely on 

surgery to remove tumors followed by chemo- and/or radiation therapy to stop uncontrolled 

cell proliferation3,4.

Insights gained from the molecular characterization of aberrant genes, cell surface markers, 

hormonal/endocrine mediators, and signaling pathways associated with cancer have been 

incorporated into diagnostic and treatment strategies (Figure 1). The application of targeted 
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therapies matched to specific aberrations for some cancers5–15, synthetic lethal targeting of 

DNA repair machinery in BRCA-deficient ovarian cancers5, and recent progress with 

immune checkpoint inhibitors in cancers with hypermutation/neo-antigen signatures6 have 

collectively fueled optimism that identification of molecular targets in individual cancers to 

enable targeted therapeutics could represent a general paradigm for cancer care. This 

optimism has been tempered by inconsistent responses to targeted therapies and emergence 

of drug resistance in many patients.

Over the past decade, multiple large-scale genomic studies have identified genomic, 

transcriptomic, and proteomic aberrations that are specific to one cancer type or common 

among different cancers. These findings have suggested to many researchers that clinical 

management of individual cancer patients should be routinely informed by comprehensive 

molecular analyses of their tumors. Fortunately, policy and funding have kept pace with 

science, as exemplified by the Precision Medicine7,8, 9 and National Cancer Moonshot 

Initiatives10.

Precision medicine initiatives are poised to transform the paradigm of population-based 

clinical studies to define treatments for average patients into biomarker-driven clinical trials 

to identify the best treatments for individual patients 24,11. Initial clinical efforts have mainly 

focused on sequencing panels of well-validated therapeutic target genes, and have gradually 

expanded to include broader panels of cancer-associated genes. Less frequently, whole 

exome sequencing or comprehensive, integrative sequencing encompassing germline, 

genomic, and transcriptomic sequencing have been performed (Figure 2).

We review the application of precision oncology by sequencing gene panels, the use of 

whole exome capture or genome sequencing, as well as RNA sequencing, in clinical trials 

and routine clinical practice. We also review analytical setup and operational workflow of 

current integrative clinical sequencing programs. This is followed by a brief discussion of 

salient issues and directions for future developments.

Sequencing of gene panels for precision therapeutics

Specific aberrations in approximately 40 different cancer genes are represented in FDA 

(Food and Drug Administration)-approved targeted therapeutics and detected by FDA-

mandated diagnostic assays that use cytogenetics, PCR, microarrays, or Sanger sequencing 

to detect mutations. High-throughput sequencing can, in principle, detect all of these 

mutations with sufficient sensitivity, and, thus, sequencing of panels of therapeutically 

targetable genes has emerged as an entry point for precision oncology 12, 13. For example, in 

a clinical trial that featured sequencing of 10 cancer genes in lung adenocarcinoma tissues 

from 733 patients, one or more oncogenic mutations were identified in 466 patients (64%), 

and 24 patients (3%) had mutations in two or more genes14. 260 patients received targeted 

therapy and achieved median survival of 3.5 years, compared with 2.4 years for 318 patients 

that did not receive matched therapy15.

Seizing the opportunity for immediate impact on patient care, the National Cancer Institute 

(NCI) initiated several clinical trials to test the application of biomarker-driven therapeutic 
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approaches16. These trials include the Lung Master Protocol (Lung-MAP, S1400), which 

aims to target therapies for lung squamous cell carcinoma (SCC). SCC has no approved 

targeted therapies, and the frequency of actionable somatic aberrations in these cancers is so 

low (5%–20%) that traditional clinical trials are impractical17. In the Lung-MAP, NGS 

(next-generation sequencing) is used to identify actionable molecular abnormalities, and 

patients are randomized to targeted therapy or standard of care. Another example is the 

Adjuvant Lung Cancer Enrichment Marker Identification and Sequencing Trial 

(ALCHEMIST) in which early-stage lung cancer patients are screened for EGFR or ALK 
mutations by sequencing18, 19. In the Molecular Analysis for Therapy Choice (NCI-

MATCH) clinical trial, biopsies of adult solid tumors and lymphomas are sequenced to 

screen for mutations in a panel of defined actionable genes, and patients are matched with 

either approved or investigational (Phase II) drugs20–23. The NCI-MATCH trial received 

such an enthusiastic response upon launch that enrollment had to be paused from January to 

April/May 2016 to allow for expansion of lab capacity, as well as addition of more than a 

dozen new treatment arms24. Similar trials were initiated for advanced solid tumors (NCI-

MPACT; NCT01827384), pancreatic cancer (IMPaCT trial in Australia25), and thoracic 

malignancies (CUSTOM trial, NCT0130604540, 41), all involving sequencing of select target 

genes to be matched with precision therapies.

Sequencing extended panels of cancer genes

Following promising studies to identify hotspot mutations and single-nucleotide variants 

(SNVs) in specific genes, extended panels have been incorporated into recent analyses to 

detect SNVs, copy number variants (CNVs), structural rearrangements, and gene fusions. 

For example, the Memorial Sloan Kettering (MSK)-Integrated Mutation Profiling of 

Actionable Cancer Targets (MSK-IMPACT) project used targeted sequencing of exons and 

selected introns of 341 cancer genes26 and was expanded to 410 genes in a follow-up 

study27. Likewise, Foundation Medicine sequenced exomes of 287 cancer-related genes plus 

intronic sequences from 19 genes involved in rearrangements or other aberrations28; later, 

this was expanded to 315 exomes, plus intronic sequences from 28 genes. Perhaps one of the 

largest such efforts is the University of Michigan’s MI_Oncoseq program, where exomes for 

a panel of 1700 cancer-related genes are captured for parallel sequencing of tumor and 

germline DNA29. Sequencing gene panels helps identify a broad range of cancer-associated 

aberrations but retains the advantages of cost effectiveness, fast output, and the use of 

limiting amounts of starting material, all preferred attributes for the application of NGS in 

clinical practice. Hand-in-hand with increasing participation of patients and cancer centers, 

more patients are being matched with therapeutics that are targeted for specific molecular 

aberrations but not yet approved for cancer treatment by the FDA. The American Society of 

Clinical Oncology (ASCO) has capitalized on these findings by launching a Targeted Agent 

and Profiling Utilization Registry (TAPUR) study (https://www.tapur.org/), which is a non-

randomized clinical trial that will formally test the potential utility for off-label targeted 

therapies in cancer.
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Exome or genome sequencing for individuals

The data from gene panel sequencing are indeed limited by the selection of genes in the 

panel but may also be limiting in chromosomal ploidy aberrations, arm level gains/losses, 

and unknown/new “cancer genes”. Whole exome capture sequencing analyzes the complete 

coding portion of the genome and provides a comprehensive genomic profile of aberrations 

in protein coding genes, arguably at relatively reduced coverage at individual loci; it is also 

costlier, takes longer, and is more resource and analysis intensive than using a limited panel 

of sequences.

Whole exome or genome sequencing has been particularly informative for analyzing 

exceptional therapeutic response or resistance. For example, a metastatic bladder cancer 

patient who showed an exceptional response to the mTOR inhibitor everolimus in a clinical 

trial categorized as “failed”, NCT00805129, showed loss of function mutations in TSC1 and 

NF2. These genes are associated with mTOR pathway activity but were not previously 

associated with therapeutic response30. Similar mutations were identified in additional 

bladder cancer cases, who may also potentially respond to everolimus. Similarly, activating 

mutations in mTOR were identified in an exceptional responder to everolimus and 

pazopanib31; mutation in RAD50 associated with loss of ATM signaling32 was found in an 

exceptional responder to treatment with CHK1 inhibitor in combination with DNA-

damaging agent irinotecan; and an exceptional response to an IGF-1R-specific antibody was 

observed in a patient with ALK fusion-positive lung cancer33.

The underlying mechanisms for drug sensitivity or resistance are not always straightforward. 

For example, a pre-treatment tumor sample from a patient with stage IVA head and neck 

squamous cell carcinoma who showed a near complete histologic response to erlotinib 

revealed no EGFR alterations as expected; instead, the tumor harbored an activating 

mutation in MAPK1 (p.E322K) that enhanced EGFR phosphorylation, resulting in erlotinib 

sensitivity34. Further, sequencing of BRAF-mutant colorectal cancer biopsies pre- and post-

treatment with RAF inhibitors, identified KRAS amplification and overexpression in one 

patient, BRAF amplification and overexpression in another case, and a putatively activating 

mutation in the RAF family protein, ARAF p.Q489L, plus a resistance mutation in 

MAP2K1 p.F53L in a third patient35. In a study to investigate markers associated with 

resistance to PD-1 immune checkpoint blockade in metastatic melanoma, whole exome 

sequencing identified loss of function mutations in JAK1, JAK2, or B2M36.

Remarkably, a review of 10 years of unpublished data from phase II clinical trials by the 

NCI Cancer Therapy Evaluation Program has estimated that as many as 10% of patients 

were “exceptional responders” in phase II clinical trials of therapies that failed to receive 

FDA approval37. NCI launched the Exceptional Responder Program in 2014 to 

systematically re-analyze these trials with the aim of identifying new combinations of 

aberrations and therapeutics37–39. These analyses will require comprehensive whole exome/

genome analyses.

Despite evidence of utility, clinical sequencing programs have been deterred from 

application of whole exome or whole genome sequencing in routine clinical settings owing 
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to the extra time, cost, resources, data storage, and analysis requirements. Instead, most 

sequencing centers sequence targeted panels that can be gradually expanded to incorporate 

additional genes/sequences of interest.

Precision oncology in routine clinical practice

Sequencing-based clinical precision oncology programs have only recently been 

implemented and only a few have reported results so far. Among these representative 

programs, the University of California San Diego (UCSD) Moores Cancer Center reported 

findings from the Profile Related Evidence Determining Individualized Cancer Therapy trial 

(PREDICT-UCSD; NCT02478931), wherein 347 patients with advanced solid malignancies 

were analyzed using Foundation Medicine exon capture panels; of these, 87 patients (25%) 

were treated with a matched therapy and had a slightly longer median progression-free 

survival compared with unmatched patients40. Mentioned above, the MSK-IMPACT27 

project described an exome capture-based 410 gene panel assay for solid cancers (with 

matched germline samples), wherein more than 10,000 patients with advanced cancer have 

been analyzed so far, with up to 11% of patients enrolled in genomically matched clinical 

trials29. The MSKCC study prioritizes the use of targeted gene panels over whole exome 

sequencing to maximize throughput and depth of coverage, and, additionally, to reduce 

costs. The precision oncology program at the MD Anderson Cancer Center41 reported 

sequencing results from 1200 patients with advanced cancer, in which targeted sequencing 

of 201 genes or hotspot mutation analysis of 11 to 50 genes were performed. At least one 

alteration in a potentially actionable gene was noted in 945 patients (79%) using the larger 

panel, compared to only 527 patients (44%) with hotspot testing, supporting the use of large 

panels in routine clinical tests42. Weill Cornell Medical College–New York applied whole 

exome sequencing in routine clinical practice, analyzing tumor-normal pairs of 97 metastatic 

cancer cases, with informative aberrations observed in 91 patients, of whom 5 went on to 

receive targeted therapies43. These early reports are indicative of the immense interest in the 

community to deploy precision oncology in routine cancer care, even as questions of cost, 

choice of optimal analytical platforms, standardization of the assays and reporting metrics, 

and potential efficacy of these efforts continue to be deliberated.

Integrative clinical sequencing in precision oncology

Combining exome sequencing of germline and tumor tissue DNA with RNA sequencing can 

interrogate a wide array of somatic and germline aberrations in parallel (Figure 2) and has 

been effective in discovering actionable aberrations in osteosarcoma44, urothelial 

carcinoma45, non-small cell lung cancer (NSCLC)46, endometrioid endometrial carcinoma 

(EEC)47, melanoma48, 49, and a case of Sézary syndrome50.

The University of Michigan has implemented an integrative clinical sequencing program 

called MI_Oncoseq51 for all-comer advanced cancer patients with diverse tumor types in a 

hospital/academic setting. Briefly, as shown in Figure 3, participation in clinical sequencing 

is initiated by the attending physician. Following written informed consent from the patient, 

tumor biopsy and blood or buccal swab are used to extract DNA and RNA, which are 

sequenced and analyzed. These data are analyzed for potential clinical relevance and 
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actionability through extensive literature survey of the disease, tumor specific aberrations, 

and potential therapeutic matches (BOX 1). Finally, the integrative molecular analyses are 

summarized and any therapeutic insights discussed at a multidisciplinary tumor board 

meeting attended by the referring physician and various key personnel involved in the entire 

MI_Oncoseq process. A final summary clinical report with clinical recommendations is 

provided for the referring physician. From start to finish, this process takes three weeks in 

most cases.

Similar to the multidisciplinary cancer conferences (“tumor boards”) that are currently 

mandated by the American College of Surgeons to facilitate access to expertise in evolving 

technologies in accredited cancer programs52, 53, integrative precision oncology programs 

have implemented multidisciplinary molecular tumor boards to discuss molecular findings 

and make clinical recommendations66,77–81. MI_Oncoseq has implemented a 

multidisciplinary precision medicine tumor board (PMTB) comprising oncologists, cancer 

geneticists, genetic counsellors, pathologists, biologists, bioinformaticians, bioethicists, 

clinical study coordinators, and ad hoc expertise51, 54. Underscoring the vital importance of 

tumor boards in driving clinical sequencing efforts, and the need for standardized practices, 

ASCO is considering the development of a web-based, interactive molecular tumor board for 

educational purposes55.

At MI_Oncoseq PMTB meetings, individual cases are presented with clinical history, family 

history, tumor pathology and histopathology of specimens used for sequencing, summary 

details of sequencing libraries, quality control metrics of sequencing data, and estimation of 

tumor content based on the proportion of copy neutral heterozygous SNVs in the data [see 

BOX 1 for details of these components of MI_Oncoseq PMTB meetings]. This is followed 

by a detailed assessment of germline and cancer aberrations, potential clinical implications 

thereof, and proposed follow-up action items, all topics expanded upon in the next sections. 

Clinical coordinators then continue to track the clinical course of patients in consultation 

with the clinicians.

Germline DNA sequencing of cancer patients

Sequencing of the cancer patient’s germline DNA in parallel with tumor DNA has typically 

been undertaken to filter out germline polymorphisms from the somatic mutation data. 

However, identification of germline mutations in cancer predisposing genes has critical 

implications for the patient and their families, prompting active screening, surveillance, 

prophylactic actions, and preventative lifestyle adjustments, as well as can be informative 

with regard to treatment plans (Table 1). For example, germline aberrations in DNA repair 

pathway genes BRCA1/2, as well as ATM, CHEK2, and PALB2, have been associated with 

responsiveness to PARP inhibitor therapies in ovarian, breast, and prostate cancers56–60. 

Similarly, germline mutations in mismatch repair pathways have been associated with 

responsiveness to immune blockade therapy61.

Furthermore, several recent cancer sequencing studies have observed a high frequency of 

germline mutations in cancer pre-disposition genes among sporadic cases with no family 

history of cancer, as suggested by a recent analysis of SNP (single-nucleotide 
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polymorphism) array-based GWAS (genome-wide association studies)62. Also, among 4,034 

TCGA (The Cancer Genome Atlas) cancer cases representing 12 cancer types, rare germline 

truncations were noted in 114 cancer-susceptibility-associated genes, spanning 4% of acute 

myeloid leukemia (AML), 11% of stomach cancer, and up to 19% of ovarian cancer cases63. 

Not surprisingly, the germline mutation burden is high among pediatric cancer cases, where 

about 10% of the cases had notable germline findings in two studies54, 64. Incidentally, 

pathogenic germline mutations have been noted in a significant proportion of sporadic 

pediatric cancer cases64. Focusing on germline variants, the LCCC1108/UNCseq_ 

(NCT01457196) study involving 439 pediatric and adult cancer patients unselected for 

hereditary cancer predisposition identified 4.3% of the patients with pathogenic germline 

variants65. In addition to these pan-cancer studies, up to 11.8% of advanced prostate cancer 

cases were found to harbor pathogenic germline alterations66,67, with a significantly higher 

rate of germline mutations observed in metastatic cases compared to patients with localized 

tumors101. The frequent germline mutations observed in sporadic cancer patients argues for 

germline sequencing to be included as an integral part of routine clinical sequencing 

workflows, not restricted to patients with family history of cancer.

A list of clinically actionable germline variants commonly identified can be found in Table 

1, and Supplementary Table 1A details current clinical trials centered on germline 

aberrations. In MI_Oncoseq workflow, germline variants referenced as pathogenic in 

ClinVar are reviewed by a clinical geneticist for implications for disclosure to the patient/

family. Additionally, integration of the germline and somatic sequencing data helps define 

mutations showing loss of heterozygosity (LOH) in the tumor that may be missed if only the 

tumor was sequenced.

Copy number aberrations (CNAs):

Exome capture data from paired tumor and normal DNA is used to determine exome-wide 

somatic copy number aberrations by comparing the depth of coverage at all of the individual 

exons analyzed followed by segmentation analysis along the lines used for array cGH data, 

creating high resolution copy number profiles, while circumventing technical variations68. 

The genome-wide copy number profile at exon level resolution is plotted in a visually 

intuitive, color-coded linear chromogram to evaluate a variety of copy number aberrations, 

including focal or wider amplifications/deletions/copy losses or gains. Interestingly, in 

addition to identifying susceptibilities to classical therapies, aneuploidy and the burden of 

copy number loss have been associated with responsiveness to immunotherapy69, 70. These 

findings add another layer of potentially actionable information available from CNV 

analyses, and one that might be missed in highly-selective targeted gene panels. Analysis of 

data from cancer samples with low tumor content and extreme ploidy changes, however, 

continues to present analytical challenges still awaiting satisfactory resolution.

Somatic SNVs/indels:

Analysis of somatic mutations in cancers, many of which define canonical driver aberrations 

and therapeutic targets, likely represents the most emphasized output of clinical sequencing 

(Supplementary Table 1B). Pairwise analysis of tumor DNA samples compared with 

germline sequencing data helps distinguish germline polymorphisms from somatic mutation 
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calls. At MI_Oncoseq, we also determine the variant allele fraction (the ratio of variant/

reference reads), zygosity mutations, total number of somatic mutations, and mutation 

burden (number of mutations/Mb) (considered in the context of the published range of 

cohort specific mutation numbers in TCGA data71–73 and similar data from our compendium 

of more than 1,700 advanced cancer cases29).

To identify functionally relevant variants, hotspot, activating, or loss of function mutations 

based on recurrence in the COSMIC (Catalogue of Somatic Mutations in Cancer) database, 

as well as stop/gain SNVs or frameshifting insertions/deletions, are highlighted. Mutations 

close to hot-spots or involving functionally critical domains are also noted. Published 

literature on key mutations is reviewed manually with special attention given to therapeutic, 

prognostic, diagnostic, or mechanistic associations.

The level of expression of mutant genes often provides additional supportive evidence for 

the likely effect of the mutations. For example, splicing mutations show intron retention (e.g. 

CBL, NF1, ATM, TP53 etc.) or exon skipping (e.g. MET), and in-frame expression of large 

indels (e.g. NOTCH1, FOXA1, EGFRvIII or its variants) can occur. Additionally, a locus 

sometimes shows chromosomal gain or amplification but no corresponding increase in 

expression levels of resident genes.

Mutational signatures:

Analysis of the patterns of somatic aberrations in cancers has emerged as a source of 

clinically-actionable insights. Distinct patterns of genome-wide mutations in tri-nucleotide 

units observed in genome/exome sequencing data from diverse cancers have helped define 

signatures of somatic mutations characteristic of different tumor types, defective DNA 

recombination/repair pathways, and those that provide insights into the mechanism of 

carcinogenesis through external exposures such as UV radiation, tobacco, or alkylating 

chemotherapeutics like temozolomide71–76 (http://cancer.sanger.ac.uk/cosmic/signatures). 

Some hyper-mutated cancers, such as UV-induced malignant melanoma, have shown 

dramatic responsiveness to immunotherapies, associated with expression of neo-antigens by 

the cancer cells as a result of their increased mutational load77–82. Additionally, cases with a 

microsatellite instability (MSI) signature, typically but not always accompanied with loss of 

function mutations in mismatch repair (MMR) genes83, have been associated with 

responsiveness to immune checkpoint inhibitor therapy61, 84. Along similar lines, the 

signature of homologous repair deficiency (HRD)72 typically associated with mutations in 

BRCA1, BRCA2, and other fanconi anemia pathway genes85, is also observed in some 

sporadic cancers said to display “BRCAness”86, 87. Similar to BRCA mutation carriers, 

cancers displaying BRCAness have been associated with responsiveness to platinum-based 

therapies as well as PARP inhibitors88–93.

In addition to informing therapeutic avenues, mutational signatures of individual cases also 

help corroborate or qualify challenging diagnoses (e.g. a cancer of unknown primary 

showing distinct smoking signature characteristic of lung cancer71) or glean insights into 

specific mechanisms of tumor progression (APOBEC signature94, 95, signature of 

temozolomide treatment, etc.). Notably, whole exome or larger exome capture panels are 

better suited for mutation signature analyses; for more selective targeted panels, it may be 
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useful to incorporate targeted probes to query for therapeutically informative signatures such 

as MSI and BRCAness.

Precision immunotherapy:

In recent years, a number of different immunotherapy approaches have shown promise in the 

clinic. Immune checkpoint blockade targeting CD28/CTLA4 or PD-1/PD-L1 has emerged as 

a promising therapeutic approach across diverse cancers71, 102–105. However, as only small 

subsets of patients benefit from the treatment, genomic or transcriptomic markers to predict 

response in genomes or transcriptomes are highly sought after (Figure 2B).

Neo-antigen peptide vaccines based on individual cancer mutanomes (all mutant protein 

coding sequences identified by high-throughput sequencing) have shown efficacy in 

protecting and treating the tumor in xenograft models78, 96 and are being tested in several 

ongoing clinical trials (for example, NCT02287428, NCT02950766, NCT01970358).

Adoptive cell therapy uses ex vivo expanded tumor-infiltrating lymphocytes (TILs), based 

on identification of an immunogenic neo-antigen showing high affinity binding to the 

patient’s MHC antigen97, 98. Unfortunately, the excitement of promising responses to 

immunotherapy across several cancer types is tempered by a relatively small percentage of 

patients achieving dramatic, durable responses and multiple modes of primary or acquired 

resistance99.

Several markers of sensitivity, response, and resistance to the various immunotherapies have 

been identified, including the level of tumor neoantigens17,140,141, 142, tumor genomic 

aberrations, gene expressions, profiles of TILs, and T-cell receptor (TCR) diversity100. Gene 

expression analysis tools like CIBERSORT101 and TIMER102 help define the profile of TILs 

from tumor RNA-seq data.

Transcriptome sequencing in the clinic

Many clinical sequencing workflows currently do not involve RNA sequencing of the tumor 

samples, possibly due to additional requirements of technical and analytical bandwidth as 

well as cost and time constraints. However, we and others have observed that a parallel 

analysis of genomic and RNA-seq data helps to identify expressed gene-fusions (including 

inactivating rearrangements involving tumor suppressors) and splicing aberrations and 

enables the detection of pathogenic viruses. Expression signatures of tumor biomarkers can 

help confirm/corroborate tumor diagnoses, and in cases of tumors of unknown primary 

origin, help predict the likely tissue/lineage of origin. Gene expression profiles also help 

assess the functional status of critical pathways. For example, expression levels of androgen 

receptor (AR) pathway genes, like ACPP, KLK2/3, SLC45A3, and TMPRSS2, help assess 

the status of AR pathway regulation in prostate cancer samples, irrespective of the status of 

AR gene or level of AR transcript. Similarly, specific mutations in cancer-associated 

pathway genes, like those of the NOTCH, WNT-beta-catenin, SHH, and HIPPO pathways, 

can be assessed for functional consequences in terms of expression levels of their 

downstream target genes. As mentioned in the previous section, RNA sequencing data has 

also found application in defining the expressed mutanome of cancer samples to nominate 
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candidate neo-antigens for immunotherapy78, 81, 103. In an interesting analysis, Newman et 

al. 101 have defined gene expression patterns corresponding to various cell types comprising 

cancer tissues, including tumor infiltrating immune cells, providing a powerful tool to assess 

the immune reactive status of different tumors. A fortuitous application of RNA-seq is also 

in highly sensitive and specific detection of cancer virus/pathogens in tumor tissues, such as 

human papilloma virus (HPV16/18), human herpesvirus-4 (EBV), human T-lymphotropic 

virus (HTLV), and merkel cell polyoma virus, which is important for the application of 

immunotherapy and cancer virus vaccines. These diverse observations afforded by RNA-seq 

provide critical diagnostic and therapeutic insights that are not available with DNA 

sequencing alone104, 105.

Gene fusions:

A wide variety of gene fusions serve as diagnostic and prognostic biomarkers, as well as 

therapeutic targets, for several types of cancer106, 107. RNA-seq data is particularly useful in 

not only identifying gene fusions, but also providing an assessment of expression levels of 

the fusion transcripts. In MI_Oncoseq, we have identified ETV6-ABL154, NAB2-STAT6108, 

and various FGFR gene fusions109 using RNA-seq. Detection of chimeric RNAs involving 

tumor suppressor genes, showing loss of open reading frame/functional domains, although a 

relatively underexplored area of investigation, is another clinically-informative application 

of RNA sequencing data analyses107. Apart from gene fusions, RNA-seq can provide 

evidence of alternative splicing aberrations (AR-V7 in prostate cancer110, 111), novel 

isoforms with therapeutic implications (ALK alternative transcription initiation, ATI112), or 

exon skipping events, including exon 14 skipping in MET reported in subsets of lung 

cancer113, 114.

Gene expression analyses:

The RNA-seq data from tumor samples are assessed for expression of tumor type specific 

biomarkers/cell surface biomarkers, as well as additional biomarkers that are often part of 

the routine clinical work-up of patient samples (tested by immunohistochemistry, qRT-PCR, 

etc.). For instance, a readout of ESR1/PGR and ERBB2 expression data can confirm or 

qualify immunohistochemistry status of ER/PR/HER2 in breast cancer samples; similarly, 

RNA-seq expression of AR, KLK3, SLC45A3, ACPP, AMACR, TMPRSS2, and ERG 
provides an informative readout of the status of AR signaling and/or ERG fusion status in 

prostate cancers.

The biomarker analysis is particularly useful in cases of diagnostically-challenging 

specimens, as well as advanced cancer cases with unknown primary tissue of origin115–119. 

Besides expression of tissue specific biomarkers, we nominate the tissue type of tumors of 

unknown origin using a machine learning algorithm29, using a bootstrap aggregation of six 

different prediction models trained on RNA-seq data from 33 primary tumor types in TCGA 

and normal tissue expression data obtained from GTEX, TCGA, and the Human Proteome 

Atlas, based on a modification of a method by Vincent et. al120.

Finally, some therapeutic target genes show exceedingly high outlier expression in certain 

samples, with or without an observed genomic aberration, and may represent therapeutic 

Kumar-Sinha and Chinnaiyan Page 10

Nat Biotechnol. Author manuscript; available in PMC 2019 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



avenues not derived from obvious genomic aberrations. For example, outlier expressions of 

MET in a case of esophageal carcinoma, ROS1 in a non-small cell lung cancer, and RET in 

a neuroendocrine carcinoma of the larynx were found to represent potential therapeutic 

targets in our study29.

Clinical report enables actionable recommendations

All of the potentially actionable or informative molecular aberrations in a patient’s tumor or 

germline discussed in the PMTB are summarized and submitted to the attending physician 

with specific recommendations relating to the individual cases. While the essential report 

format is similar across different tumor sequencing programs, specific details vary based on 

types of analyses. Collectively, all of the different aspects of the germline, somatic, and/or 

expression data are represented among the different cases analyzed (examples in Table 3), 

highlighting the critical importance of integrative analyses, as singular focus on exome 

sequencing would likely miss many of the actionable observations revealed through 

integration. A formal comparison of the different modalities may be moot to consider for 

future programs.

Outlook for clinical sequencing in cancer

Currently, clinical sequencing programs largely focus on exome capture sequencing instead 

of sequencing the whole genome. However, it is increasingly apparent that recurrent 

aberrations in non-exonic regions of the genome, including promoters, enhancers, other 

regulatory elements, protein/RNA binding sites, intergenic loci of lncRNAs, and miRNA, 

need to be reconciled for a fuller assessment of cancer genomic aberrations. The recent 

discovery of hotspot mutations in the TERT promoter that lead to aberrant reactivation of 

telomerase was based on sequencing of a genomic locus defined by GWAS studies of 

familial melanoma130 as well as whole genome sequencing of melanoma samples131. This 

was followed by its detection in urothelial carcinoma132, brain cancer133, 134, and thyroid 

cancer135 using amplicon sequencing or targeted TERT promoter sequencing136. 

Fortuitously, the TERT promoter mutation hotspots happen to be located just upstream of the 

first exon and are, thus, captured by whole exome sequencing137–139. This example 

highlights the realm of somatic aberrations located outside the regions typically included in 

exon capture panels that are not being actively targeted by exome capture. Indeed, using 

whole genome sequencing data from TCGA and elsewhere, recurrent mutations in upstream 

regulatory elements have been described in DPH3, PLEKHS1, WDR74, and SDHD140, 141.

Further highlighting the importance of gene regulation in cancer, sequencing efforts have 

revealed numerous aberrations in chromatin-related genes142–148 across diverse tumor types. 

As an example, almost all cases of pediatric malignant rhabdoid tumors are characterized by 

the singular loss of SWI/SNF chromatic remodeling complex gene 

SMARCB1142, 144, 149–151. Similarly, almost 60% of bladder tumors show mutations in 

epigenetic modifiers152, 153, and a majority of pediatric diffuse intrinsic pontine gliomas 

harbor mutations in histone H3A/H3B154–157. Therapeutic approaches targeting epigenomic 

aberrations have primarily included DNA demethylation (DNMTase) inhibitors such as 

azacytidine, which is FDA-approved for use in myelodysplastic syndromes, and histone 
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deacetylation (HDAC) inhibitors such as vorinostat (SAHA) and panobinostat, which are 

FDA-approved for cutaneous T-cell lymphoma and multiple myeloma, respectively. In this 

context, it is expected that high-throughput epigenomic profiling integrated with clinical 

sequencing will illuminate a mechanistic understanding of the molecular ramifications of 

aberrant DNA modification pathways in cancer to help inform wider application of precision 

therapeutic approaches targeting other epigenomic aberrations158, 159. Integration of 

methylome sequencing to profile epigenomic aberrations and proteomics will help further 

expand the field of actionable cancer aberrations.

Another exciting area of development with potential for immediate clinical impact is 

sequencing of minimally invasive “liquid biopsies”, including blood, cerebrospinal fluid, or 

urine from cancer patients. Analysis of circulating tumor cells (CTCs), exosomes, or cell 

free DNA/RNA (ctDNA/RNA) transcends the issues of sampling bias, tumor heterogeneity, 

and metastases not amenable to biopsy, and can help assess disease progression, response to 

therapy, emergence of resistance, or new therapeutic targets160–162. Marking a tangible 

advance in this arena, the FDA has recently approved detection of EGFR mutations in the 

ctDNA from blood of lung cancer patients as a companion diagnostic assay for erlotinib 

treatment163. The next frontier may be sensitive and robust detection of panels of “hotspot” 

aberrations in liquid biopsies164, 165.

Apart from genomic analyses, integration of gene-expression signatures with genes and 

small molecules166, metabolomic assessments167, and proteomic interactome maps168 

represent areas of future development. However, functional characterization and translation 

of these data to inform clinical decisions could be more challenging than matching somatic 

aberrations with therapies.

Evaluation of workflows for integrative precision oncology

Cancer is a long-term disease which means that sequencing a tumor once (current practice) 

provides only a snapshot of a dynamic process. As sequencing becomes routine, sequencing 

of tumor biopsies at diagnosis, resection, progression, and after therapy will help generate a 

more complete picture of cancer development. Common examples of treatment-emergent 

alterations that could be detected by sequencing include the acquisition of mutations in the 

ligand binding domain of ESR1 following aromatase inhibitor therapies in breast cancer, AR 
amplification and mutations in prostate cancers following endocrine deprivation therapy, and 

mutations in receptor tyrosine kinases following treatment with TKIs. It is also important to 

determine if multiple targeting avenues are potentially available at an early stage in cancer. 

Eventually, clinical sequencing could supplant individual gene centric assays. First, we need 

evidence that sequencing provides a more sensitive and reliable detection modality than 

FDA-approved diagnostics. It is feasible that sequencing could serve as a primary diagnostic 

modality, along with histopathology and radiographic imaging.

Currently, the reported turnaround time for clinical sequencing analyses ranges from two to 

six weeks. Turnaround time is two weeks at Foundation Medicine, a month or less at 

MSKCC for the MSK-IMPACT study27 and Clinical Genomics Program, Taussig Cancer 

Institute, and Cleveland Clinic169, and between ten days to six weeks for the University of 
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Michigan MI_Oncoseq54 study. This time frame may need to be further shortened to one to 

two weeks for routine clinical application.

Determining the efficacy of integrative pipelines is confounded by the fact that typical 

patients availing of clinical sequencing, such as at MI_Oncoseq, present with late stage, 

advanced disease who have received, and often failed, multiple therapies, have maximal 

mutational burden including therapy resistance mutations, and more or less arrived at a 

therapeutic cul de sac. In this setting, despite identification of compelling therapeutic leads, 

the patient’s physical condition often makes them ineligible for trials or incapable of 

tolerating treatment. Unfortunately, in a number of cases, within a month of providing 

samples for analysis, patients moved to hospice care, were lost to follow up, or died.

Several unforeseen circumstantial contingencies can also mitigate potential benefits from the 

findings. Patients enrolled for a clinical trial following a specific therapeutic indication after 

sequencing analysis may get placed on the control arm of the study, denying them 

opportunity to benefit from the specific information about their cancer; a number of such 

cases occurred in the gene fusion study at the University of Michigan, UMCC 2012.022. 

Having varying eligibilities for clinical trials across different institutions is also problematic; 

for example, activating mutations in PIK3CA are common in breast cancer, but patients 

displaying hot-spot activating mutation in PIK3CA being treated at the University of 

Michigan cannot enroll in the ongoing PI3Ki SIGNATURE trial, as it excludes breast and 

prostate cancer. The need to negotiate with pharma and insurance companies to consider 

sequencing results as rationale for providing drugs for off-label use on compassionate 

grounds is also a constant hurdle.

Unlike the rigorous assessment that novel drugs or therapeutics are subjected to, precision 

oncology is fairly new and empirical evidence of its effectiveness remains equivocal. A 

systematic, multicenter randomized, controlled phase 2 trial (SHIVA; NCT01771458) 

directly comparing the efficacy of off-label molecularly-targeted therapies based on tumor 

molecular profiling with conventional therapy, observed no significant improvement in 

progression-free survival in the targeted therapy group in a cohort of heavily pre-treated 

cancer patients12, 170. Elsewhere, the NCI initiated comparative effectiveness research 

(CER) to systematically assess the efficacy of cancer genomics and precision medicine. 

Based on early findings of seven research studies and a follow-up workshop, they reported 

“insufficient evidence of clinical utility of precision medicine in translating genomic 

discoveries into clinical practice”171. Representing a skeptical position on the efficacy of 

precision oncology, the hematologist–oncologist Vinay Prasad at Oregon Health and Science 

University recently weighed the rather few reports of exceptional responses to targeted 

therapies against a preponderance of failed attempts. Given the paucity of randomized 

clinical trials formally testing the metrics of success, the very premise and promise of 

precision oncology was questioned172, 173. On a more positive note, in a recent prospective 

clinical trial to evaluate the clinical benefit of high-throughput genomic analyses 

(MOSCATO 01), actionable molecular alterations were identified in up to 48% of the cases 

analyzed (411 of 843 patients), of which 199 patients could be treated with a matched 

targeted therapy174. 7% of the successfully screened patients were assessed as having 
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benefited from this approach in terms of progression-free survival on matched therapy as 

compared to prior therapy.

In our opinion, the metrics of the utility of precision oncology should be considered in the 

context of adding value to the standard of care, not apart from it. Much of what is the 

standard of care is already part of ‘precision oncology’, including all the diagnostic/

prognostic markers and targeted therapies matched with specific aberrations currently in use. 

The latest high-throughput methodologies only help to scale up and expedite the assays over 

a broader range of cancers, providing access to molecular information that encompasses our 

collective knowledgebase. In this sense, the current forays in precision oncology would help 

generate an integrative knowledgebase of clinical, molecular, and therapeutic aspects of 

cancers that could usher in the next phase in the quest for a cancer cure.

Clinical sequencing data co-operatives

As numerous institutional efforts in precision oncology have grown, many initiatives to 

harness the information from collective datasets are underway. To formally test the 

suitability and efficacy of off-label use of targeted therapeutics, ASCO has launched a 

clinical trial (TAPUR) that will use genomic profiling data to match and test the utility of 

molecularly targeted cancer drugs outside the indications approved by the FDA and generate 

a registry of effective off-label usage20. In a different approach, AACR has launched the 

Project Genomics Evidence Neoplasia Information Exchange (GENIE), wherein seven 

independent clinical sequencing programs will pool their collective clinical, sequencing, 

treatment, and follow-up data to populate a public data repository reference. A joint research 

program undertaken by the National Human Genome Research Institute (NHGRI) and the 

NCI, called Clinical Sequencing Exploratory Research (CSER), is coordinating several 

research programs to help define optimal use and implementation of clinical sequencing 

tests175, 176. Under this conglomerate initiative, diverse issues such as considerations for 

validation of NGS variants177, reporting germline findings178–180, diagnostic yield of tumor 

sequencing data181, classification of variants182, incorporation of sequencing data in 

electronic health records183, genetic counselling184, and social and behavioral research185 

are explored. Another co-operative effort is exemplified by the Oncology Research 

Information Exchange Network (ORIEN), comprising 11 US-based cancer centers sharing 

clinical, molecular, and therapy related data to help match patients with appropriate clinical 

trials based on their molecular profile. Industry is also participating; Medical Evidence 

Development Consortium (Med-C), a non-profit organization floated by Genentech, Roche, 

and Eli Lilly, plans to develop uniform, standardized work flows for matching cancer 

mutations with targeted therapies, intuitive to clinicians and insurance companies. Similar 

initiatives are mooted in the international setting through the Clinical Cancer Genome Task 

Team of the Global Alliance for Genomics and Health186, as well as European data 

centers187

Precision FDA was launched on December 15, 2015 to provide a private workspace in a 

public setting to make precision oncology studies available to users without access to big 

sequencing facilities (https://precision.fda.gov/). Users will have access to Genome in a 

Bottle, reference DNA for validating human genome sequences developed by the National 
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Institute of Standards and Technology. Users will also be able to compare their results to 

previously validated reference results and share their results with other users, track changes, 

and obtain feedback. See BOX 2 and Table 2 for more details on these and other resources.

Conclusion

The incorporation of clinical sequencing analyses in oncology represents the culmination of 

a long-standing quest to systematically link tumor specific molecular aberrations with 

mechanistically-targeted therapies to inform individual patient treatment. It is envisaged that 

widespread access to the high-resolution molecular data on individual cancer cases, along 

with attendant clinical data, therapy details, and follow-up information, should help close the 

gaps in our understanding of cancer progression and pave the way for improved cancer 

treatments, as well as anticipate and overcome resistance to drugs. A sobering disclaimer is 

due at this stage; we are not there yet.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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BOX 1

Precision Medicine Tumor Board

The actionable germline and somatic findings along with clinical implications and 

therapeutic options for individual cases are discussed in the context of the following 

background information. Please refer to the main text of this article for detailed 

discussion of the clinical data analyses.

Clinical History:

Brief clinical histories of the patients, from the time of cancer diagnosis, key clinical 

signposts, prior therapies, responses, status of imaging, histological and/or molecular 

markers, history of response to therapies, disease progression etc. leading up to the 

details of biopsy of the clinical sequencing, are noted.

Family History:

Incidences of cancer in the family of patients are documented by a clinical geneticist to 

assess each case as likely familial or sporadic. Detailed in the main text, in a subset of 

cases, pathogenic germline variants are noted irrespective of a family history of cancer.

Pathology:

Hematoxylin and eosin stained sections of the tumor biopsy specimens to be used for 

sequencing are assessed by a pathologist for histopathology of the tumor specimen as 

well as estimation of tumor content. Tissue blocks adjudged to represent the highest 

tumor content are used for making sequencing libraries.

Samples for Sequencing Libraries:

DNA and RNA are simultaneously isolated from the same tumor tissue sections to ensure 

concordance of the samples used for genomic and transcriptomic analyses. DNA for 

germline sequencing is typically derived from blood samples in the case of solid cancers 

and from buccal swabs for hematological malignancies. Although frozen tumor samples 

are preferred starting material for sequencing DNA or RNA, recent technical and 

analytical improvements have facilitated routine use of formalin fixed-paraffin embedded 

(FFPE) samples for clinical sequencing28, 54, 66, 188–190. Quality of RNA sequencing is 

particularly sensitive to the integrity of the starting RNA material. To improve the 

information content of RNA-seq using suboptimal quality RNA samples, we have 

developed a transcriptome capture methodology using standard exome capture probes191.

QC of Sequencing Data:

Based on the guidelines proposed by the Standardization of Clinical Testing (Nex-StoCT) 

workgroup192, quality metrics of the sequence data are assessed before launching into 

mutation/gene expression analyses. Exome capture data from tumor samples with 

approximately 400X average coverage, matched with normal (blood or buccal) samples 

with approximately 300X average coverage, are considered optimal for analyses. The 

tumor content is estimated using a set of high quality SNV candidates on 2-copy genomic 

regions54. Sequencing quality is determined by a number of standardized criteria29, and 
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sequencing libraries failing any of the quality metrics are flagged and factored during 

biological analysis and interpretation of the data.
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BOX 2.

Community resources and data repositories serving precision oncology

High-throughput, data-intensive applications of precision oncology have produced a 

plethora of databases, repositories, and online portals, catering to various distinct niches 

that are extensively utilized in clinical sequencing data analyses (Table 2). These include 

repositories of primary sequencing data, such as SRA (Short Reads Archive) and dbGAP, 

the database hosted by NCBI that stores and provides high-throughput genomic/

transcriptomic/methylome and other data relating to genotype and phenotype in humans. 

Public databases of germline variations, such as 1000 Genomes Project and ExAC, 

provide very useful compendia of genetic polymorphism in the human population. Of 

these, the 1000 Genomes Project, concluded in 2015193, 194, provides a comprehensive 

reference of common human genomic variations compiled from 2,504 individuals 

representing 26 distinct populations worldwide. An even more expansive public resource 

called the Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org/) has 

aggregated exome sequencing data from multiple large-scale sequencing projects 

(including the 1000 Genome Study), spanning a total of 60,706 unrelated individuals 

from various disease-specific and population genetic studies. Reference databases with 

curated, annotated information on pathogenic germline aberrations associated with cancer 

include OMIM195, Leiden Open Variation Database (LoVD)196, 197, and NCBI 

ClinVar198. Primary cancer sequencing data repositories include The Cancer Genome 

Atlas (TCGA), International Cancer Genomics Consortium (ICGC), and University of 

California Santa Cruz (UCSC) Cancer Genomics Browser. These provide valuable 

references for assessing recurrence of rare somatic variants, estimation of tumor type 

specific mutation burden, mutation signature analyses, and comparisons of gene 

expression, among other applications. Data visualization portals include cBioportal for 

TCGA data and UCSC Xena Browser for data across multiple consortia. There is a 

compendium of somatic aberrations in cancer (COSMIC), as well as databases providing 

multidimensional assessment of somatic mutations, including the Turnkey Variant 

Analysis Project (TVAP) of National Human Genome Research Institute (NHGRI) that 

provides multiple popular open source bioinformatics tools for detection, interpretation, 

and visualization of high-throughput sequencing data, and database of curated mutations 

(DoCM). Finally, to explore models of “community” sharing of collective data 

repositories, the Genomic Data Commons (GDC) program of NCI and Project Genomics 

Evidence Neoplasia Information Exchange (GENIE) launched by AACR aim to foster 

unified data repositories that enable data sharing, analyses, and clinical interpretations 

across cancer genomic studies.
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Figure 1. The progression of analytical tools in oncology.
The historical timeline highlights key developments in the assessment of cancer cells/tumor 

tissue, starting from the microscopic description of leukemia cells by Rudolf Virchow, up to 

the futuristic Cancer Breakthroughs 2020 project. It may be noted that the modern tool-kit 

for cancer analyses includes a range of old and new tools, and the high-throughput 

sequencing approaches add a highly informative component, complementary to other 

methods that include imaging, histopathology, and biochemical analyses.
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Figure 2. Integrative sequencing analysis to define the spectrum of cancer aberrations.
A. Bioinformatic workflow and classes of cancer aberrations identified. The primary 

sequencing data is subjected to different quality control metrics and aligned to the reference 

genome to define the indicated genomic and transcriptomic aberrations. B. Prediction of 
neo-antigens for immunotherapy. The flow chart indicates primary steps involved in in 
silico prediction of immunogenic cancer specific neo-antigens in tumor samples, for 

potential use in developing personalized peptide vaccines.
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Figure 3. Workflow of integrative clinical sequencing for precision oncology.
The patient, in consultation with the cancer physician, enters the clinical sequencing 

program upon signing the informed consent. Along with documentation of detailed clinical 

history, a genetic counselor obtains family history of the patient to assess likely hereditary 

predisposition to cancer. Patient’s tumor biopsy is flash frozen in OCT blocks, and, along 

with blood or buccal swab, the samples are sent to the CLIA-certified sequencing laboratory. 

Histology sections of the tumor biopsy blocks are evaluated by a clinical pathologist for 

diagnosis and tumor content. DNA and RNA from tissue blocks with the highest tumor 

content and DNA from blood/buccal samples are used to generate sequencing libraries. 

Exome capture libraries from germline and tumor samples and the transcriptome library 

from tumor RNA are analyzed for germline and somatic aberrations. Potentially actionable 

molecular observations are identified and discussed at the multidisciplinary precision 
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medicine tumor board (see also BOX 1), and a summary report of clinical recommendations 

is provided to the attending physician.
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Table 2.
Online resources for precision oncology studies.

A list of online portals and databases catering to different data analysis requirements for precision oncology.

Data portals for mutations and/or germline 
variations

Website

1000 Genomes Project, global reference for human 
genetic variation

http://www.1000genomes.org/

Cancer genomics data portal_ICGC https://dcc.icgc.org/

Cancer genomics data portal_TCGA https://tcga-data.nci.nih.gov/docs/publications/tcga/

cBioPortal, visualization, analysis and download of 
cancer genomics data

http://www.cbioportal.org

ClinVar, Database of genomic variants related to 
human health

http://www.ncbi.nlm.nih.gov/clinvar

COSMIC, Catalog of somatic mutations in cancer http://cancer.sanger.ac.uk/cosmic/

dbGAP, Database of Genotypes and Phenotypes http://www.ncbi.nlm.nih.gov/gap

dbNSFP, Database of Functional Predictions for 
SNVs

https://sites.google.com/site/jpopgen/dbNSFP

dbSNP, Database of Single Nucleotide 
Polymorphisms (SNPs)

http://www.ncbi.nlm.nih.gov/snp

dbVar, Database of genomic structural variations http://www.ncbi.nlm.nih.gov/dbvar

DoCM, Database of Curated Mutations http://docm.genome.wustl.edu/about

Ensemble Variant Effect Predictor http://useast.ensembl.org/info/docs/tools/vep/index.html

ExAC, Exome Aggregation Consortium http://exac.broadinstitute.org/

Exome Variant Server http://evs.gs.washington.edu/EVS

Genome Modeling Tools, Washington Univ. St. 
Louis

http://gmt.genome.wustl.edu

Human Gene Mutation Database http://www.hgmd.org

IARC (WHO) TP53 mutation Database http://p53.iarc.fr

Intogen mutational cancer drivers database https://www.intogen.org/search

IGV, Integrative Genomics Viewer http://software.broadinstitute.org/software/igv/

LOVD, Leiden Open Variation Database http://www.lovd.nl

MuSiC, Mutational significance in cancer genomes http://tvap.genome.wustl.edu/tools/music/

Pediatric Cancer Genome Project http://explore.pediatriccancergenomeproject.org/

SRA, Short Reads Archive http://www.ncbi.nlm.nih.gov/sra

The Turnkey Variant Analysis Project http://tvap.genome.wustl.edu/

UCSC Cancer Genome Browser https://genome-cancer.ucsc.edu/

Xena, Integration/visualization of in-house data with 
public data

http://xena.ucsc.edu/

 

Data portals for integration of -omics data with clinical interpretation/resources

AACR_Project Genomics Evidence Neoplasia 
Information Exchange (GENIE)

http://www.aacr.org/Research/Research/Pages/aacr-project-genie.aspx#.WMs4uWfau70

Cancer Commons knowledgebase https://www.cancercommons.org/patients-caregivers/

Cancer Resource http://data-analysis.charite.de/care/

CancerLinQ http://cancerlinq.org/

CIViC, Clinical interpretations of variants in cancer https://civic.genome.wustl.edu
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Data portals for mutations and/or germline 
variations

Website

Clinical Trials http://clinicaltrials.gov

CollabRx http://www.collabrx.com/

Electronic Medical Records and Genomics 
(eMERGE)

https://emerge.mc.vanderbilt.edu/

Gene cards http://www.genecards.org/

GeneInsight http://geneinsight.com/

Genetic Testing Registry https://www.ncbi.nlm.nih.gov/gtr/

Genomic Data Commons https://gdc.cancer.gov/

GTEX, genotype-tissue expresssion data http://www.gtexportal.org/home/

Malacards http://www.malacards.org/

My Cancer Genome, Vanderbilt-Ingram Cancer 
Center

http://www.mycancergenome.org/

N-of-One, clinical interpretation service http://n-of-one.com/

Personalized Cancer Therapy https://pct.mdanderson.org/#/

Pubmed Clinical https://www.ncbi.nlm.nih.gov/pubmed/clinical

NIH Collaboratory https://www.nihcollaboratory.org

 

Data portals providing gene-drug knowledgebase

Cancer Driver Log https://candl.osu.edu/

DGIdb, The drug gene interaction database http://dgidb.genome.wustl.edu/

Drugs@FDA: FDA Approved Drug Products http://www.accessdata.fda.gov/scripts/cder/daf/index.cfm

Drug Bank http://www.drugbank.ca/about

Gene Drug Knowledge Database https://www.synapse.org/#!Synapse:syn2370773/wiki/

IUPHAR/BPS, guide to pharmacology http://www.guidetopharmacology.org/download.jsp

NCI Drug Dictionary https://www.cancer.gov/publications/dictionaries/cancer-drug

Personalized cancer Therapy, MD Anderson Cancer 
Center

https://pct.mdanderson.org

Pharmacogenomics Research Network sequence 
platform

http://www.pgrn.org/

PharmaGKB https://www.pharmgkb.org/

SuperTarget http://bioinf-apache.charite.de/supertarget_v2/

TARGET, Tumor alterations relevant for genomics-
driven therapy

http://www.broadinstitute.org/cancer/cga/target

TTD, Therapeutic Targets Database http://xin.cz3.nus.edu.sg/group/ttd/ttd.asp
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