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Abstract

Over the past decades, there has been considerable interest in applying statistical machine learning 

methods in survival analysis. Ensemble based approaches, especially random survival forests, have 

been developed in a variety of contexts due to their high precision and non-parametric nature. This 

article aims to provide a timely review on recent developments and applications of random 

survival forests for time-to-event data with high dimensional covariates. This selective review 

begins with an introduction to the random survival forest framework, followed by a survey of 

recent developments on splitting criteria, variable selection, and other advanced topics of random 

survival forests for time-to-event data in high dimensional settings. We also discuss potential 

research directions for future research.
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1. Introduction

Survival analysis is an active area of research in biostatistics, which focuses on a time-to-

event outcome that is typically censored [1–3]. Continuing advancement in data acquisition 

technology in recent years has made high dimensional or ultra-high dimensional data 

routinely available to researchers. This data deluge poses unprecedented challenges for 

analyzing survival data especially when the number of covariates (features, predictor 

variables) far exceeds the number of observations since standard survival analysis methods 

such as Cox’s proportional hazard regression [1,4] become inadequate in high dimensional 

settings. New methods are needed to deal with a large number of covariates for time-to-event 

data.

The most popular methods for high dimensional time-to-event data are those based on the 

Cox PH model. Current approaches include regularized Cox PH models [5–10], partial least 

squares [11,12], statistical boosting using Cox-gradient descent or Cox likelihood [13–15]. 
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However, the assumptions underlying these methods such as the proportional hazards 

assumption are often violated in high-dimensional time-to-event data. To alleviate these 

problems, nonparametric and flexible methods such as survival trees and tree ensembles 

have been developed [16–19]. An excellent introduction to survival trees and forests 

methods can be found in [20] and a comprehensive review of statistical literature on this 

topic up to 2011 was provided by [21].

More recently, random survival forest (RSF) [22], a non-parametric method for ensemble 

estimation constructed by bagging of classification trees for survival data, has been proposed 

as an alternative method for better survival prediction and variable selection. Compared with 

regression based approaches, random survival forest has several advantages. First, it is 

completely data driven and thus independent of model assumptions. Second, it seeks a 

model that best explains the data and thus represents a suitable tool for exploratory analysis 

where prior information of the survival data is limited. Third, in case of high dimensional 

data, limitations of univariate regression approaches such as overfitting, unreliable 

estimation of regression coefficients, inflated standard errors or convergence problems do 

not apply to random survival forest [23]. Fourth, similar to survival trees, random survival 

forest is robust to outliers in the covariate space [24].

In this selective review, we aim to provide a survey of recent developments of random 

survival forests over the last decade relevant to bio-medical science and offer some 

guidelines on applying random survival forests in the context of high dimensional data. In 

Section 2, we give an introduction of the original random survival forest. In Section 3, we 

present several recently proposed splitting criteria for random survival forest, which are 

crucial to the performance of a survival forest. In addition to prediction, we also review its 

applications to variable selection in Section 4. Section 5 presents some further topics of 

random survival forest including transformations of covariates, competing risks, and 

dependent censoring. In section 6, we discuss the limitations of random survival forest and 

potential research directions for further research.

2. Basic Random Survival Forest

Denote the true survival time by a continuous random variable Y and the censoring time by a 

continuous variable C. Let T = min(Y, C) be the observation time and δ = I(Y≤C) be the 

right censoring indicator, where δ = 1 represents the observation is an event and δ = 0 

represents the observation is censored. Let X = (x1, x2, ⋯, xp) denote a p-dimensional 

covariate vector and D be the dataset containing n independent and identically distributed 

observations sampled from (X, T, δ), namely D = {(xi, ti, δi), i = 1,2, ⋯ , n}.

Before proceeding further, we first give a very brief introduction of survival trees, which 

serve as the building blocks of a random survival forest.

2.1 Survival tree

Tree-based approaches date back at least to [25] for classification and regression problems. 

However, it was the classification and regression tree (CART) algorithm developed by [26] 

that made decision trees a popular statistical learning tool. The CART paradigm has also 
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been adopted by the first study containing all the elements of a standard survival tree for 

censored data [16] and by most survival trees [21].

Within the CART framework, construction of a survival tree usually contains the following 

three components:

(a) Splitting. A tree is grown by splitting the data D recursively according to a 

splitting rule until a stopping criterion is met. Typical forms of splits include: 

splits of a single covariate, splits on linear combinations of predictors, and 

boolean combination splits [27]. In a basic binary splits using a single covariate, 

a potential split has the form Xj ≤s(j = 1, ⋯ , p) where s is a constant if Xj is 

continuous or ordinal, and the form Xj ∈{s1, ⋯ , sk} where s1, ⋯ , sk are possible 

values of Xj if Xj is categorical. Usually, a best split s* that maximizes some 

measure of improvement (splitting rule) is chosen. Common adopted splitting 

rules include logrank statistic, likelihood ratio statistic and martingale residuals 

[21,28].

(b) Pruning. A fully grown trees tend to overfit the training data and often fail to 

generalize well on unseen test data. Hence, a large tree needs to be pruned to 

make a trade-off between misclassification error and the number of nodes in the 

pruned tree (the size of a tree). CART based pruning approaches utilize a cost-

complexity measure for a tree A given by

Rα(A) = R(A) + α ∣ A ∣ (1)

where R(A) is the sum of the resubstitution loss over the terminal nodes of A, |A| 
is the number of terminal nodes in A and α is a tuning parameter usually 

selected based on preferences of the tree size or cross-validation. After the 

pruning step, a sequence of nested pruned subtrees {A0, A1, ⋯ , AM} is obtained, 

where A0 is a fully grown tree and AM is a root-only tree.

(c) Selection. Once the pruned subtrees sequence has been obtained, we usually 

need to choose one single subtree for further exploration. The most popular 

methods are: the test set, cross-validation, bootstrap, AIC/BIC, and graphical 

(“kink” in the curve or elbow) [21]. Instead of choosing the tree with minimum 

loss, CART chooses the most parsimonious tree that performs substantially no 

worse than the ‘best’ tree according to the “one standard error rule” [29].

It is worth noting that tree pruning and tree selection are no longer necessary in random 

survival forests as the overfitting problem is greatly mitigated by constructing accurate but 

uncorrelated survival trees via bagging and random subspace [21,22].

2.2. Random survival forest

Several survival forest methods have been proposed in the literature [30,31]. Here we focus 

on the random survival forest (RSF) method of [22], which is the most closely related to the 

original random forest method [32]. The main output of this method is an estimated 
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cumulative hazard function computed by averaging the Nelson-Aalen cumulative hazard 

function of each tree. The RSF algorithm consists of the following steps:

(a) Drawing L bootstrap samples from a training dataset of size n. Namely, draw L 
random samples of size n with replacement from the original dataset. 

Theoretically speaking, the bootstrap sample contains about two-thirds of the 

original data. The remaining out-of-bag (OOB) observations will not appear in 

the bootstrap sample.

(b) For each bootstrap sample, grow a full size survival tree based on a certain 

splitting criterion without pruning. At each internal node, randomly select mtry 
candidate covariates out of all p covariates. Candidate covariates, which 

minimize the risk within the nodes or maximize the separation between the 

nodes, are used for splitting. Stop growing until a certain stopping condition is 

met (e.g., when the number of observations within a terminal node is less than a 

preset value or when the node becomes pure). By default, mtry = p and the log-

rank statistic is the splitting rule.

(c) For each tree, a cumulative hazard function (CHF) is calculated. For a particular 

terminal node k at time point t, CHF is estimated by the Nelson-Aalen estimator.

Hh(t) = ∑
t
l, h ≤ t

dl, h
Y l, h

(2)

where dl,h and Yl,h are the number of deaths and individuals at risk at time point 

tl,h. Hence, all observations within the same node have the same CHF.

(d) To predict the cumulative hazard of a new observation x, average over all CHFs 

from all the L trees to obtain the ensemble CHF of the forest:

HE(t ∣ x) = 1
L ∑

i = 1

L
Hi(t ∣ x) (3)

where Hi(t|x) denotes the CHF of the tree grown from the i-th bootstrap sample.

2.3 An Example

We illustrate the rationale of survival tree and random survival forest through a simple 

example. The dataset used here includes survival data for 137 patients with 9 censored 

observations from Veteran’s Administration Lung Cancer Trial [33]. In the trial, patients 

were randomized to receive either a standard chemotherapy or a test chemotherapy, and the 

event of interest here is the survival time in days since the treatment. A number of covariates 

which potentially affect survival time are provided: trt (type of lung cancer treatment: 1 for 

standard and 2 for test drug); celltype (type of cell involved: squamous, small cell, adeno 
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and large); karno (Karnofsky score); diagtime (time between diagnosis and randomization); 

age (age in years); prior (any prior therapy, 0 for none and 10 for yes).

2.3.1 Cox proportional hazard model—We begin this analysis by presenting the 

results from the Cox proportional hazard model [4] in the following Table 1:

The results suggest that among the six covariates examined in the study, cell type and 

Karnofsky score are significant predictors.

However, under different values of the Karnofsky, the log cumulative hazard functions are 

not parallel over time (Fig. 1), suggesting possible violations of the proportional hazards 

assumption. In this context, it is unrealistic to expect the reported coefficients to be 

satisfactory indicators of the actual covariate effects.

2.3.2 A CART survival tree—Next, we use a CART survival tree method (“rpart” R 

package) to analyze the same data. The corresponding tree plot is presented in Fig. 2 and in 

the plot, the first line in each node indicates the relative hazard rate within the group. From 

the entire sample of 137 patients, the first split is on Karnofsky score at 45 (with a hazard 

rate of 1), separating a group of 99 patients (with a hazard rate of 0.8) whose Karnofsky 

scores were greater than 45 from the rest whose scores were below that value (with a hazard 

rate of 2.5).

From Fig. 2, one may observe that a patient with a Karnofsky score greater than 65 and a 

cell type of either squamous or large has the lowest risk (with a hazard rate of 0.51) while a 

patient who is older than 54 with a Karnofsky score less than 45 and a diagtime less than 10 

has the highest risk (with a hazard rate of 3.5).

Note that in the final model, not all the covariates entering the computation will necessarily 

be selected. Only the covariates used as a best split in any of the tree nodes are chosen. This 

can be illustrated by an absence of covariate “prior” in the tree plot.

In CART survival trees, variable importance are generally computed based on the decrease 

of node impurity when the covariate in question is considered for the splitting. From variable 

importance scores produced by CART in Fig. 3, one can observe that the top two significant 

predictors indicated by CART are Karnofsky score and the time between diagnosis and 

randomization, which are different from the results obtained from the traditional Cox model.

2.3.3 Random survival forest—Finally, we apply random survival forest to the above 

Veteran dataset. We use the program recently developed by [34], which is a fast 

implementation of random survival forests, particularly suited for high dimensional data. In 

our experiment, 500 bootstrap samples were generated. The default splitting rule (log-rank) 

and the default number of covariate randomly selected ( p = 2) for each split were used. To 

illustrate a variety of methods available to calculate the variable importance scores in 

random survival forest, we use a different approach based on permutation methods here. In a 

permutation based approach, variable importance is based on the corresponding reduction of 

predictive accuracy when the covariate of interest is replaced with its random permutation 

value. The variable importance scores produced by random survival forest (Fig. 4) are 
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different both from the results of Cox model and CART survival tree. The top two important 

covariates are the same with Cox model while the third covariate “age” is in similar ranking 

as in CART.

As survival trees and random survival forests are generally used as risk prediction methods. 

In Fig. 5, we also report the predictive accuracy in term of C-index on the Veteran dataset by 

the above three approaches.

It can be observed from Fig. 5 that in term of C-Index metric, random survival forest takes 

the first place, followed by CART and Cox model. However, the performance of CART 

survival tree is the most unstable. And this may justify the need and appropriateness of 

random survival forest in real applications.

Hence, when the underlying assumption for parametric or semi-parametric models (e.g. Cox 

models) are not satisfied, survival trees and random survival forests seem to perform better 

in prediction and can be used as effective alternatives [35–37].

3. Splitting Criteria

The splitting rule is an essential component of a survival tree and crucial to the performance 

of a survival forest [38]. There are a quite a few splitting criteria available for survival trees 

(see [28] for a comparison across nine splitting rules) but not all of them have been 

incorporated into the random forest framework. In the original random survival forests 

(RSF) [39], four distinct splitting methods, namely, a log-rank splitting rule, a conservation 

of events splitting rule, a log-rank score rule, and a fast approximation to the log-rank 

splitting rule were implemented. Besides these splitting rules, a few other new splitting 

criteria have also been proposed in the past decade [40–43], which are discussed below.

3.1 AUC splitting

Inspired by the concordance index [44], a new splitting criterion based on the area under the 

ROC curve (AUC) was proposed by [40]. In this AUC based splitting criterion, a possible 

split is made at value c for predictor xj when a maximum value of

AUC(x j, c) = ∣ Ω + 0.5β + 0.5γ
∑k, l ∣ k < l I(tk < tl)σk

− 0.5 ∣ (4)

is reached, where Ω denotes the amount of all pairs where tk < tl, β the amount of all pairs 

where tk < tl and both values of xkj, xlj are smaller than or equal to the splitting value c, and 

γ the amount of all pairs where tk < tl and both values of xkj, xlj are greater than the splitting 

value c.

[40] presented a simulation study for the AUC-based criterion and suggested that in general 

AUC splitting outperforms the log-rank splitting only by a small margin. However, for 

datasets with lots of noise covariates or having a high censoring rate, AUC splitting 

performed much better than log-rank.
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3.2 C-index splitting

[41] proposed a split criterion based Harrell’s concordance index(C-index) [45] which is 

defined by the following statistic

C − index =
∑i, j I(ti > t j) ⋅ I(η j > ηi) ⋅ δ j

∑i, j I(ti > t j) ⋅ δ j
(5)

where the indices i and j refer to independent pairs of observations in the data, ηi and ηj are 

the respective predictions. Here δj discards pairs of observations that are not comparable 

because the smaller survival time is censored.

Assume that the observations in a tree node are split into two disjoint subnodes G0 and G1 

by the threshold of a certain candidate covariate. In order to use the above C-index statistic 

for splitting, predictions η must be replaced by some appropriate values. They defined γi: = 
I(i ∈ Gi) ∈ {0,1} and estimated C-index statistic for splitting by

C −index =
∑i, j I(ti > t j) ⋅ I(i ∈ G0, j ∈ G1) ⋅ δ j

∑i ≠ j I(ti > t j) ⋅ δ j

+
0.5 ⋅ ∑i ≠ j I(ti > t j) ⋅ I(i ∈ G0, j ∈ G0) ⋅ δ j

∑i ≠ j I(ti > t j) ⋅ δ j

+
0.5 ⋅ ∑i ≠ j I(ti > t j) ⋅ I(i ∈ G1, j ∈ G1) ⋅ δ j

∑i ≠ j I(ti > t j) ⋅ δ j

(6)

A large value of C-index indicates a better split and if a pair of observations fall into the 

same subnode, a value of 0.5 is assigned. They also showed that using different 

standardization and weighting schemes, both Harrell’s C-index and the log-rank statistic are 

special cases of the Gehan statistic [46].

Based on empirical studies using high dimensional simulated and real datasets, [41] 

identified three situations where C-index splitting might outperform log-rank statistic: when 

a high signal-to-noise ratio is present in the data; when the number of informative 

continuous covariates is large compared to the number of categorical covariates; when there 

is a high censoring rate in the data. Due to computational constraints caused by deeply 

grown survival trees, they recommended C-index splitting for small scale data and the log-

rank splitting for large-scale studies.

They also pointed out that log-rank splitting is preferred over C-index in noisy scenarios. 

However, since C-index is regarded as a generalization of AUC [41,47,48], this finding is 

inconsistent with results obtained from [40] in which the author stated that AUC splitting 

performs much better than log-rank in case of lots of noise covariates.
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3.3 L1 splitting

By exploiting the test statistic proposed by [49] which has greater power than the log-rank 

test under a variety of situations, [42] came up with the splitting criterion based on the 

following so-called L1 statistic

L1 = (nLnR)∫
t

∣ SL(t) − SR(t) ∣ dt (7)

where SL(t), SR(t), nL and nR denotes the Kaplan-Meier estimates and the number of 

observations in the left and right node, respectively.

To speed up computations in case of deeply grow trees, the also provided a simplification 

version of the L1 statistic

L1
∗ = (nLnR)∫

t
∣ SL(t) − SR(t) ∣ dt (8)

The performance of the above method was investigated through a simulation study of 30 

scenarios and six real data sets. According to their results, compared to log-rank based 

random survival forest and Cox model, both versions provided good results but the L1 

criterion was slightly better. The authors pointed out their approaches can be potential 

competitors when the proportionality assumption is not satisfied.

3.4 Maximally selected rank splitting

More recently, [43] proposed a maximally selected rank statistics within the framework of 

conditional inference forests [30]. With maximally selected rank statistics, the optimal split 

variable is determined using a statistical test for binary splits and split variable selection bias 

is naturally reduced. To compare possible splits, they adopted the following score test 

statistic

Tnμ =
Snμ − EH0

(Snμ ∣ a, x)

VarH0
(Snμ ∣ a, x) (9)

where α is a log-rank score, x is a candidate covariate, Snμ is the linear rank statistic for a 

split by a cutpoint μ, and EH0(Snμ|a, X), VarH0 (Snμ|a, X) are corresponding conditional 

expectation and variance as defined in [50].

The maximally selected rank statistic used in their study is defined as

Mn(a, x, ε1, ε2) = max
μ ∈ [ε1, ε2]

( ∣ Tnμ ∣ ) (10)
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where ε1, ε2 correspond to quantiles of the distribution of x.

Instead of comparing such statistic values between split points on the same covariate and 

among all possible covariates in traditional random forest, they obtained p-values for the 

maximally selected rank statistic for each covariate and compare the covariates on the p-

value scale. Since the exact distribution for the test statistic is unknown and no exact p-

values can be derived, they proposed several techniques to approximate the p-values capable 

of dealing with large scaled datasets.

According to the results of simulation studies and three real datasets on breast cancer, they 

demonstrated that maximally selected rank splitting is effective in reducing split variable 

selection bias and is able to deal with non-linearity in the covariates. For example, their 

method performs better than random survival forest (log-rank splitting) if informative 

dichotomous covariates are combined with uninformative covariates with more categories 

and better than conditional survival forest if non-linear covariate effects are included. Lastly, 

this method is computationally efficient for large sample datasets such as genome-wide 

association studies.

4. Variable Selection

To handle high-dimensional or ultra-high dimensional survival data arising in modern 

biological and medical studies, variable selection plays a critical role and has become one of 

the hottest topics in survival analysis [8,51]. In additional to its general usage for survival 

prediction, random survival forest based methods have also been developed for variable 

selection in the past decade.

4.1 Variable hunting

[52] proposed a forward stepwise regularization based variable selection method called RSF-

VH (variable hunting) in high-dimensional survival settings. They observed that in survival 

forests, covariates tending to split close to the root node have a strong effect on prediction 

accuracy and are deemed more important. Based on these facts, a dimensionless order 

statistic for trees called minimal depth of maximal subtrees is applied to calculate variable 

importance. By definition, minimal depth is also free of the choice of prediction error. In 

order to better regularize the forest, they discussed a weighted variable selection technique 

in a follow-up study [53].

The variable selection procedure in RSF-VH works as follows:

(a) Randomly divide the data into training data and test data.

(b) Train a random survival forest using a set of randomly chosen covariates, and 

select covariates using minimal depth thresholding.

(c) The above selected covariates are used as an initial model. Covariates are then 

added to the initial model in order of minimal depth until the joint variable 

importance for the resulting nested models stabilizes.
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(d) Repeated the above steps several times. The most frequently appeared covariates 

in models with a size above average are finally selected and reported.

Results on different benchmark microarray data sets shows that RSF-VH yielded small gene 

lists consistently with low prediction error, compared to boosting, supervised principal 

components and other approaches.

The above approach was also extended to pathway analysis by [54] to account for important 

pathway of gene correlation and genomic interactions. Their result indicated that RSF 

pathway hunting algorithm is efficient in identifying signaling pathways from a high-

dimensional genomic data with a relatively small sample size.

4.2 Iterative feature elimination

Different from most univariate approaches, [55] proposed a novel variable selection 

algorithm based on random survival forests to identify a set of prognostic genes in an 

iterative procedure. Their algorithm consists of the following five steps:

(a) Train by a random survival forest model and rank all available covariates 

according to variable importance scores obtained by permutation.

(b) Iteratively train a random survival forest model using the top most important 

covariates from the ranking list (default is 80%). And calculate the out-of-bag 

error rate in term of C-index.

(c) Repeat the above step until the feature space contains only 2 covariates.

(d) Find the set of covariates with the minimum number such that the out-of-bag 

error rate is within 1 standard error.

Unlike univariate selection, the above approach is able to incorporate multivariate 

correlations and does not require the user to set a cutoff for p-values. Experimental results 

on real high dimensional microarray datasets showed that their approach has the advantage 

of being able to identify a small set of genes while preserving the predictive accuracy for 

survival.

4.3 Topological index based on permutation

Different from using performance-based approaches, [56] proposed a strategy based on a 

testing procedure using a topological index which allows to select a basket of important 

variables in their iBST (improper Bagging Survival Tree) algorithm. Their variable selection 

procedure is iterated over the following steps:

(a) Use the training data set to build a bagging survival forest. Compute the 

importance scores for all covariates using importance score obtained from the 

values of the splitting criterion at each split points or from tree depth (location) 

of the splitting and denote these scores by IISj(j=1, ⋯, p).

(b) Similar to [57], train again a bagging survival forest and calculate the 

importance score for all covariates IIS j
0( j = 1, ⋯, p) based on the permutated data. 

And repeat this procedure Q times.
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(c) Compute the p-values for all competing variable xj(j=1, ⋯, p)

p j = 1
Q ∑

q = 1

Q
I{IIS jq

0 > IIS j} (11)

(d) Given a global level α, variables satisfied the conditions that pi < a/p are 

selected according to a Bonferroni procedure for multiple comparisons.

Stimulation and real data analysis showed that the above procedure is able to select the 

explanatory variables even in the presence of a high number of noise variables. However, 

since their procedure is permutation based, it could be computationally intensive.

5. Extensions of Random Survival Forests

Within the framework of random survival forests, a number of extensions or variants have 

also been developed. In this section, these developments will be presented in a thematic way. 

Transformation of covariates will be first discussed, followed by competing risks, dependent 

censoring and censoring unbiased transformations.

5.1 Transformation of covariates

Raw input covariates are not necessarily good predicator variables or features. Extracting 

good features via combinations, expansions and other kinds of transformation is one of the 

key steps to ensure the success of subsequent statistics or machine learning endeavors.

[35] proposed a random rotation survival forest (RRotSF) for analyzing high-dimensional 

survival data. The proposed methodology can be viewed as an extension of rotation forest 

from low dimensional data to high dimensional data. In their approach, the original variables 

is randomly split into K subsets (K is a parameter of the algorithm) and Principal Component 

Analysis (PCA) is applied to each data subset. Instead of keeping only a few major principal 

components for dimensional reduction, all principal components (rotation matrix) here are 

retained to preserve the variability information. Survival trees built on these rotated datasets 

make up a very competitive survival ensemble learning method.

In classification problems, prediction capability of a base learner usually improves when it is 

built from an extended variable space by adding new variables from randomly combination 

of two or more original variables. In their research, [36] investigated the plausibility of space 

extension technique, originally proposed for classification purpose, to survival analysis. By 

combing random subspace, bagging and extended space techniques, they developed a 

random survival forest with space extensions algorithm.

[58] gave a thorough analysis of the performance of random survival forests using feature 

extraction (e.g. the above mentioned transformation of covariates) and variable selection 

methods. And they concluded that feature extraction methods are a valuable alternative to 

variable selection methods if prediction is the main interest and if the training data is large 

enough such that the number of observations is sufficient to describe the underlying 
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manifold. They suggested the use of embedded variable selection methods in case of small 

sample size data.

5.2 Competing risks

In bio-medical applications, a competing risk is an event that either hinders the observation 

of the event of interest or modifies the chance that this event occurs. For example, if the 

study aim is to estimate the time to death caused by dialysis, a patient may die of a kidney 

transplant. There have been quite a few extensions of survival trees to competing risks in the 

past decade [59–61]. However, extensions of random survival forests for competing risks 

have just been developed very recently.

[62] explored a novel extension of random survival forests to competing risks settings. Two 

news splitting rules for growing competing risk trees, namely log-rank splitting and the 

modified Gray’s splitting, were introduced to test the equality of the cause-specific hazard 

and the equality of the cumulative incidence function (CIF), respectively. They also defined 

several new ensemble estimators for competing risks such as ensemble CIF and event-

specific estimates of mortality. To deal with high-dimensional problems and large data 

settings, they proposed that single competing risk tree is to be grown in each bootstrap 

sample and splitting rules are either event-specific, or combine event-specific splitting rules 

across all the competing events. Event-specific variable importance measures and minimal 

depth which is a non-event-specific by nature, can be used individually or simultaneously to 

identify variables specific to certain events or common to all events.

Instead of designing new splitting rules for competing risks, [63] proposed to replace the 

event status, which may be unknown due to right-censoring, by a jackknife pseudo-value on 

the basis of the marginal Aalen-Johansen estimator for the cumulative incidence function 

[64]. Then, machine learning tools such as random forests can be directly applied to the 

uncensored data. In their approach, node variance is chosen as split criterion for growing 

regression trees since the pseudoresponses take on values on a continuous scale. Due to the 

restriction of the pseudo random forests to a single cause of failure and few selected time 

points, their approach was computationally faster than that of the random survival forests in 

the high-dimensional setting.

5.3 Dependent censoring

The existing survival forest methods assume that given the covariates, the true time-to-event 

and the censoring times are independent. However, this assumption is not always satisfied as 

in the case of dependent censoring. In dependent censoring, both diseases may share 

common risk factors, but individuals dying not from the major cause are considered 

censored.

[65] was the first to explore survival forests in the dependent censoring context. They 

proposed different ways to build survival forests, by using a novel survival function 

estimator called copula-graphic estimator when aggregating the individual trees and/or by 

modifying the splitting rule. The main driver of the performance of this method is using an 

adequate value of Kendall’s τ to compute the copula-graphic estimator. They also propose a 

new method for building survival forests, called p-forest, that may be used not only when 
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dependent censoring is suspected, but also as a new survival forest method in general. The 

results from a simulation study indicate that these modifications improve greatly the 

estimation of the survival function in situations of dependent censoring.

5.4 Censoring unbiased transformations

Different from relying on censoring-specific trees and forests, another alternative approach 

to model right censored data is to replace censored survival times with surrogate values 

using an appropriate censoring unbiased transformation, and then enter the imputed data into 

standard regression algorithms. More recently, [66] proposed a novel approach to build 

survival forest. By first extending the theory of censoring unbiased transformations, they 

constructed observed data estimators of full data loss functions in cases where responses can 

be right-censored. Two specific kinds of survival forests based on Buckley-James and 

doubly robust estimating equations are implemented. Compared to existing ensemble 

procedures such as random survival forests, conditional inference forests, and recursively 

imputed survival trees, their method demonstrated a better or competitive performance.

6. Discussion and Conclusion

Due to its high flexibility, built-in variable selection, and its nonlinear and nonparametric 

nature, the survival forests method has become an active research topic and a promising 

approach for high-dimensional survival data in many bio-medical applications. This paper 

provides only a partial survey of methodological developments of random survival forests in 

the past decade. There are many topics needing further investigations in this active area of 

research. For example, even though it is a nonparametric in nature, it does not mean that 

random survival forests can always be applied blindly to any type of survival data without 

caution. Recently, it was observed that random survival forest is inferior in identifying 

covariates with less ratio of population on a cardiovascular disease dataset due to its 

insensitivity to noise [67]. There is a need for a thorough investigation of the impact of 

noises variables with varying sample size for survival forests. Extending random survival 

forests to complex data structures such as interval-censored data, truncated data, joint 

modeling of longitudinal and time-to-event, is also warranted.
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Fig. 1. 
Plot of the estimated log cumulative hazard functions for different Karnofsky scores.
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Fig. 2. 
A CART survival tree.
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Fig. 3. 
Variable importance scores by CART.
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Fig. 4. 
Variable importance scores by random survival forest.
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Fig. 5. 
Performance comparison between Cox, CART and RSF.
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Table 1.

Cox proportional hazard model

Covariate Coef Exp (coef) Se (coef) z p

trt 2.95E-01 1.34E+00 2.08E-01 1.42 0.1558

celltypesmallcell 8.62E-01 2.37E+00 2.75E-01 3.13 0.0017

celltypeadeno 1.20E+00 3.31E+00 3.01E-01 3.97 7.00E-05

celltypelarge 4.01E-01 1.49E+00 2.83E-01 1.42 0.1557

karno −3.28E-02 9.68E-01 5.51E-03 −5.96 2.60E-09

diagtime 8.13E-05 1.00E+00 9.14E-03 0.01 0.9929

age −8.71E-03 9.91E-01 9.30E-03 −0.94 0.3492

prior 7.16E-03 1.01E+00 2.32E-02 0.31 0.7579
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