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Abstract

“...fluorescence imaging has the advantages of low cost, portability, no radiation exposure, high 

resolution and real-time image acquisition, showing promise in intraoperative and endoscopic 

cancer diagnosis.”
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Fluorescence imaging, including endogenous fluorophores and exogenous fluorescent 

probes, has been used in clinical practice for many years. However, clinical applications in 

cancer remain limited and this seems to be a missed opportunity for improving patient care. 

Compared with current clinical imaging modalities, such as computed tomography, 

ultrasound, MRI, single-photon emission computed tomography and positron emission 

tomography, fluorescence imaging has the advantages of low cost, portability, no radiation 

exposure, high-resolution and real-time image acquisition, demonstrating promise in 

intraoperative and endoscopic cancer diagnosis [1–5].
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Molecularly targeted drugs such as monoclonal antibodies (mAbs) and tyrosine kinase 

inhibitors have become keystones of cancer therapy. Thus, there is a plethora of approved 

targeted agents that can be harnessed for other purposes. For instance, mAbs can be 

conjugated with imaging ‘beacons’ that enable targeted imaging. Radiolabeled mAbs 

accumulate preferentially within lesions expressing the appropriate antigen; however, a 

major limitation is that there is substantial background signal owing to the long circulation 

times of unbound radiolabeled mAb, thus lowering target-to-background ratios. 

Additionally, even within the targeted tumor tissue, the microdistribution of radiolabeled 

mAbs is often heterogeneous due to poor penetration of radiolabeled mAbs into the center of 

tumors. Nevertheless, the US FDA has approved several types of radiolabeled mAb, 

including:

■ 111In-murine anti-TAG-72 mAb (satumomab pendetide; OncoScint®);

■ 99mTc-murine anti-EGP-1 Fab’ antibody (nofetumomab merpentan; Verluma®);

■ 99mTc-murine anti-carcinoembryonic antigen Fab’ antibody (arcitumomab; 

carcinoembryonic antigen-Scan®);

■ 111In-murine anti-prostate-specific membrane antigen mAb (capromab 

pendetide; Prosta-Scint®);

■ 90Y-murine anti-CD20 IgG + rituximab (Ibritumomab tiuxetan; Zevalin®);

■ 131I-murine anti-CD20 IgG + unlabeled tositumomab (131I anti-B1 antibody; 

Bexxar®).

These radiolabeled mAbs are used for immuno-scintigraphy and/or radioimmunotherapy. 

These agents have, however, met with mixed financial success and some are no longer 

commercially available [6].

An alternative to radiolabeling is fluorescent labeling. In theory, fluorescently labeled mAbs 

should be subject to the same limitations as radiolabeled mAbs, that is, high background 

signal-hampering specific detection of target tumors. However, fluorescent probes differ in 

one important respect from radioactivity. Fluorescence is a potentially ‘switchable’ or 

‘activatable’ property; fluorescent probes can change from the quenched state (no light 

emission) to the unquenched state (fluorescent) after binding to the target antigen on the cell 

surface. This occurs because binding is followed by chemical or biological processing that 

dequenches the fluorophore. This has the singular advantage of providing extremely high 

target-to-background ratios mostly by suppressing background signals [7–9].

There are multiple strategies in the design of activatable fluorescently labeled mAb-based 

imaging probes. Fluorescence signals can be selfquenched, when multiple fluorophores of 

the same type are conjugated to a mAb molecule, resulting in homo-fluorescence resonance 

energy transfer. For example, seven Alexa Fluor® 680 molecules were conjugated to 

trastuzumab, an FDA-approved humanized mAb that recognizes HER2. This agent was 

initially quenched under physiological conditions, but became strongly fluorescent after 

binding and lysosomal degradation within HER2-expressing cells both in vitro and in vivo 
[10]. Another activating mechanism is the use of quencher—fluorophore pairs conjugated to 

the mAb, resulting in hetero-fluorescence resonance energy transfer quenching. Enzymatic 
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cleavage of the quencher—fluorophore pair results in separation of the quencher from the 

fluorophore, thus activating the fluorescent signal. For example, a TAMRA (fluorophore)—

QSY7(quencher) pair conjugated to trastuzumab was quenched under physiological 

conditions. Binding to HER2-positive cells resulted in highly activated fluorescence with 

low background signal both in vitro and in vivo [11]. Using yet another mechanism, 

fluorescence can be quenched by H-dimer formation, wherein fluorescent probes form 

autoquenching dimers when conjugated to proteins. For instance, indocyanine green (ICG; 

Cardiogreen®) is a cyanine dye that is fluorescent when unconjugated or bound to albumin. 

However, when ICG is conjugated to proteins other than albumin, fluorescence is generally 

quenched. When ICG dissociates from the conjugate protein it becomes fluorescent. The 

same properties are exhibited when ICG is conjugated to a mAb. Examples include ICG-

labeled daclizumab, trastuzumab or panitumumab. These conjugates demonstrated minimal 

fluorescence in solution, but rapidly became activated in target-expressing cells after binding 

and lysosomal processing in targeted cells [12,13].

Due to their very high target-to-background ratios, these activatable fluorescently labeled 

mAb imaging probes are capable of visualizing even tiny lesions on the surface of organs, 

such as the colon, that would otherwise be invisible to the naked eye. Of course, this requires 

the use of an endoscopic camera adapted for fluorescence of the proper wavelength for the 

fluorophore. These alterations to conventional endoscopes are relatively minor and major 

manufacturers have already designed clinically translatable devices. However, the companies 

are understandably waiting for the approval of fluorescent probe conjugates for clinical use. 

Probably the most viable of the candidates described are mAb—ICG conjugates, which are 

comprised of two already-approved elements, potentially making the regulatory approval 

process easier. ICG has a maximum absorption at 780 nm and emits in the near-IR (NIR) 

fluorescence at approximately 820 nm, which is desirable for optical imaging as it permits 

deeper penetration into tissue while reducing background signal from autofluorescence, 

which is reduced in the NIR. NIR fluorescent probes can be excited with a broad range of 

visible light, and, therefore, white light imaging is not compromised [14].

“...fluorescently labeled mAb imaging probes are capable of visualizing even tiny 

lesions on the surface of organs, such as the colon, that would otherwise be 

invisible to the naked eye “

Another promising way to develop a clinically translatable mAb—fluorescent conjugate is to 

develop agents that are not only diagnostic, but also therapeutic. Recently, a NIR 

phthalocyanine probe, IRDye 700DX (IR700), was conjugated to trastuzumab or anti-EGF 

receptor mAb, panitumumab. Target-specific fluorescence was achieved both in vitro and in 
vivo, and in addition, cell death was induced at higher excitation energies. Interestingly, only 

mAb—IR700-bound cancer cells were killed by relatively low levels of NIR light and cells 

not expressing the antigen were unharmed. Tumor shrinkage was achieved without 

significant side effects [15–19]. This has been termed photoimmunotherapy.

While a number of promising mAb-fluores- cent probe conjugates have been developed and 

have been successful in in vivo preclinical animal models, there are many hurdles before 

such agents can be translated to the clinic. In addition, the pharmacokinetics of fluorescent 

probes are likely to be altered by conjugation to mAbs. Therefore, careful chemical design 
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and pharmacological analysis of mAb conjugates is needed. Conjugates must have a good 

stability, low toxicity, be easy to administer and be produced and sold at a modest cost, 

thereby assuring sustainability. We are close to achieving these goals and seeing these agents 

in the clinic in the near future.
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