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Abstract

This paper examines the accelerated failure time competing risks model with missing cause of 

failure using the monotone class rank-based estimating equations approach. We handle the non-

smoothness of the rank-based estimating equations using a kernel smoothed estimation method, 

and estimate the unknown selection probability and the conditional expectation by non-parametric 

techniques. Under this setup, we propose three methods for estimating the unknown regression 

parameters based on 1) inverse probability weighting, 2) estimating equations imputation and 3) 

augmented inverse probability weighting. We also obtain the associated asymptotic theories of the 

proposed estimators and investigate the estimators' small sample behaviour in a simulation study. 

A direct plug-in method is suggested for estimating the asymptotic variances of the proposed 

estimators. A real data application based on a HIV vaccine efficacy trial study is considered.
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1 Introduction

In many areas of research, investigators are interested in studying the effects of different 

factors on the hazards or failures from a specific cause but failures may often result from 

multiple causes. This leads to the problem of competing risks. This problem arises most 

frequently in clinical trials where patients may fail from causes other than the disease under 

investigation. Studies on competing risks that focus on the covariate effects on the cause-

specific hazard function for the failure type of interest include Cheng, Fine and Wei (1998), 

Shen and Cheng (1999) and Scheike and Zhang (2003). Some authors have also considered 
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direct modeling of the sub-distribution of a competing risk (Fine and Gray, 1999; Sun et al., 

2006).

The majority of studies on competing risks to-date assume that the cause of failure is always 

known and observed. Oftentimes, the cause of failure may be unknown. For example, in the 

“Mashi trial” study concerning HIV-related death of infants born to HIV-infected mothers in 

Botswana considered by Sun, Wang and Gilbert (2012), the causes of death of live-born 

infants are known only for 50 and missing for 61 of the 111 observations in the study 

sample. In another study concerning survival times of HIV patients, Bakoyannis, Siannis and 

Touloumi (2010) also reported missing causes of death for some sample observations. In our 

example in Section 6 based on the HVTN 502 ‘Step’ Phase IIb HIV vaccine efficacy trial 

study, HIV sequences are missing for 23 out of 88 infected participants (Buchbinder et al., 

2008). Methods that account for the missing failure causes to-date all assume that the causes 

of failure are missing at random (MAR), meaning that the probability of missingness is only 

related to the fully observed variables and not to the partially unobserved cause of failure. 

Studies that focus on the covariate effects on the cause-specific hazard function assuming 

multiplicative effects when failure causes may be missing include Goetghebeur and Ryan 

(1995), Lu and Tsiatis (2001) and Gao and Tsiastis (2005). The former two of these studies 

use data imputation methods to compute fitted values for the missing failure causes, while 

the latter study addresses the missing data issue by an augmented inverse probability 

weighting approach within the framework of a linear transformation model. Lu and Liang 

(2008) considered an additive hazards model and developed inverse probability weighting 

and doubly robust methods for estimating the regression coefficients. Other studies on 

competing risks with missing failure causes that focus on aspects other than the cause-

specific hazard function include Bakoyannis, Siannis and Touloumi (2010), who 

concentrated on the modelling of the cumulative incidence function, and Sun, Wang and 

Gilbert (2012), who considered quantile regression modeling of the survival time.

Recently, Zheng, Lin and Yu (2016) analysed the competing risks data with missing causes 

of failure under the accelerated failure time (AFT) model. The AFT model permits a direct 

measurement of the effects of the covariates on the survival time instead of the hazard 

function. This facilitates interpretation of results and is considered to be a major advantage 

of the AFT model over hazards models. One common approach for fitting AFT models is 

rank-based estimation developed from the weighted log-rank test (Prentice, 1978). This is 

also the approach taken by Zheng, Lin and Yu (2016) in their study. When the data are right-

censored, the rank-based approach leads to estimators that are consistent and asymptotically 

normal (Tsiatis, 1990; Ying, 1993). In a recent paper, Lee and Lewbel (2013) provided 

general identification conditions and developed a sieve maximum likelihood estimation 

procedure for the AFT model with competing risks data. One shortcoming of the rank-based 

approach is that rank estimating functions are discontinuous. This feature poses formidable 

challenges to the computation of the regression coefficient estimates and subsequent 

inference. Jin et al. (2003) proposed a method that goes some way towards resolving this 

difficulty. They suggested a monotone approximation to the rank estimating function and a 

relatively straightforward linear programming-based procedure for estimating the regression 

coefficients. However, as the inference procedure of Jin et al.'s (2003) method involves re-
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sampling, their method can be demanding on computation time, especially with large 

datasets and for models with many covariates.

Another approach is to apply smoothing methods to the non-smooth estimating functions. 

The objective of this approach is to construct a smooth surrogate estimating function that is 

asymptotically equivalent to the original non-smooth function. The continuous 

differentiability of the surrogate equation ensures that solutions can be obtained by standard 

numerical algorithms. Particularly notable in this respect are the contributions of Brown and 

Wang (2005) and Heller (2007). Brown and Wang (2005) proposed an induced smoothing 

method whereby the smoothed estimating functions are obtained by taking expectations with 

respect to an artificial Gaussian continuous noise variable added to the regression 

coefficients. Heller (2007) employed a direct approximation of the non-smooth function by a 

local distribution function. As noted by Johnson and S-trawderman (2009), when applying 

Heller's method, if one uses the standard Gaussian cumulative distribution function as the 

local distribution function, this method will yield the same smoothed estimating functions as 

Brown and Wang's method that replaces the covariate-dependent bandwidth by a fixed 

bandwidth. Brown and Wang's (2005) induced smoothing method has been generalised to 

estimating functions with general weight (Chiou, Kang and Yan, 2014), and extended to 

AFT models with censored data (Brown and Wang, 2007; Zhao, Brown and Wang, 2014), 

clusterd data (Johnson and Strawderman, 2009), censored and clustered data (Wang and Fu, 

2011), and quantile regression (Pang, Lu and Wang, 2012). However, to the best of our 

knowledge, neither Brown and Wang's nor Heller's methods have been applied to AFT 

models with missing failure causes, and the purpose of this paper is to take steps in this 

direction.

In this paper, we consider the AFT competing risk model with MAR causes of failure using 

the monotone rank estimating equations approach. We overcome the difficulty with regard to 

the discontinuity of the rank estimating equations using a local distribution function 

smoothing approach in the spirits of Heller (2007). Under this setup, we consider three 

procedures for estimating the unknown regression coefficients. The first is based on a non-

parametric inverted probability weighting (IPW) approach, similar to that developed by Qi, 

Wang and Prentice (2005) for the proportional hazards model. This approach uses non-

parametric smoothers in estimating the selection probabilities, thus overcoming the difficulty 

with the mis-specification of propensity score frequently encountered with parametric 

methods. The second method is based on the estimating equation imputation (EEI) approach 

proposed under a general setup by Zhou, Wan and Wang (2008). The EEI approach is 

closely related to the missing information principle; in the context of interest here, studies 

that apply the missing information principle for the handling of censored data trace back to 

the work of Buckley and James (1979). The third is an augmented IPW (AIPW) approach in 

the spirits of Robins, Rotnitzky and Zhao (1994) who considered a general setup. An 

important appeal of this approach is that it leads to estimators that are doubly robust. The 

AIPW approach was considered by Wang and Chen (2001) for the proportional hazards 

model.

It should be emphasized at the outset that although Zheng, Lin and Yu (2016) also 

considered the modeling of competing risk data with missing failure causes by a rank-based 
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estimating equations procedure, there are significant differences between ours and Zheng, 

Lin and Yu's (2016) approaches. First, in order to overcome the difficulty with respect to 

solving the discontinuous rank estimating equations, Zheng, Lin and Yu (2016) transformed 

the problem into an optimisation problem, and the subsequent inference procedure involves 

re-sampling, which can be demanding on computation time. However, for the proposed 

method, as the estimating equations are differentiable with respect to the unknown 

parameters, estimates of the parameters can be computed by the Newton-Raphson algorithm, 

and the associated asymptotic variances can be estimated by a plug-in method. This affords a 

substantial computational advantage over the method of Zheng, Lin and Yu (2015). Second, 

we consider the IPW, EEI and AIPW methods for handling missing data but Zheng, Lin and 

Yu (2016) only discussed the IPW and doubly robust methods based on a Martingale with 

zero mean. In particular, the EEI method we introduce does not require the estimation of the 

missing probability. We consider the latter a significant advantage. As will be shown ahead, 

all three missing data handling methods being considered have identical asymptotic 

theoretical properties and very comparable finite sample properties.

The remainder of the paper is organised as follows. Section 2 describes the model setup and 

the smoothed rank estimating equations approach. The three proposed methods for handling 

missing failure causes and their theoretical properties are discussed and examined in Section 

3. Section 4 explores the selection of kernel functions and bandwidth parameters, along with 

a discussion on dimension reduction. Section 5 focuses on the finite sample properties of 

estimators, while Section 6 considers applications of the proposed methods based on a real 

data set. Some concluding remarks are placed in Section 7. Proofs of theorems are contained 

in an appendix.

2 Notations, Model Descriptions and A Smoothed Rank Estimating 

Equations Approach

Let the population contain n independent subjects, and for simplicity and without loss of 

generality, we assume that there are only two mutually exclusive causes of failure, denoted 

by Ji = 1, 2. For the ith (i = 1,2,…, n) subject, let Ti1 and Ti2 be the latent failure times 

associated with Ji = 1 and Ji = 2 respectively, Ti = min(Ti1, Ti2) be the uncensored failure 

time, Ci the right-censoring time, δi = I(Ti ≤ Ci) the censoring indicator such that δi = 1 if Ti 

is observed and δi = 0 otherwise, and Zi be the p × 1 vector of covariates. The observable 

failure time is thus T̃
i = min(Ti, Ci). Furthermore, we assume that Ci, Ti1 and Ti2 are 

mutually independent given Zi.

Suppose that we are only interested in assessing the covariate effect on the failure time of 

second type. The AFT model postulates the following linear relationship between the natural 

log of the failure time and the covariates (Kalbfleisch and Prentice, 2002):

log (T2) = ZT β + ε, (1)
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where β is an unknown p × 1 regression coefficient vector, and the error term ε has a mean 

of zero with an unspecified continuous distribution independent of Z. When there is no 

missing cause of failure, the right-censored competing risks data set comprises i.i.d. 

observations of (T̃
i, δi, δiJi, Zi), i = 1, …, n. Let the counting process be 

Ni(t) = I{ log T∼i − Zi
T β ≤ t, δiJi = 2}, Y i(t) = I{ log T∼i − Zi

T β ≥ t}, and λ(t) be the unknown 

hazard function of ε in (1). It can be shown using counting process theory (Fleming and 

Harrington, 1991) that

Mi(t) = Ni(t) − ∫−∞
t

Yi(u)λ(u)du, i = 1, 2, …, n,

are mean zero martingale processes. By applying similar arguments as Tsiatis (1990), we 

obtain the following estimating equations for the joint estimation of β and λ(t):

∑
i = 1

n
dMi(t) = ∑

i = 1

n
[dNi(t) − Y i(t)λ(t)dt] = 0, (2)

∑
i = 1

n ∫
−∞

τ
ZidMi(t) = ∑

i = 1

n ∫
−∞

τ
Zi[dNi(t) − Y i(t)λ(t)dt] = 0, (3)

where τ is a constant representing the end time of the study. Equation (3) yields

λ(t)dt =
∑i = 1

n dNi(t)
∑i = 1

n Y i(t)
. (4)

Substituting (4) into (3) leads to the following estimating equation for β in model (1):

∑
i = 1

n
δiI(Ji = 2) Zi −

∑ j = 1
n Z jI( log T∼ j − Z j

T β ≥ log T∼i − Zi
T β)

∑ j = 1
n I( log T∼ j − Z j

T β ≥ log T∼i − Zi
T β)

= 0 . (5)

Note that the l.h.s. of (5) is not monotone in β, and this may produce multiple solutions of β. 

To reconcile this difficulty, we consider the following monotone rank estimating equation 

analogous to that proposed by Fygenson and Ritov (1994) for censored data:
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U∼n(β) ≡ n−3/2 ∑
i = 1

n
∑
j = 1

n
δiI(Ji = 2)(Zi − Z j)I{ log (T∼ j) − Z j

T β ≥ log (T∼i) − Zi
T β} = 0 . (6)

Although the l.h.s. of (6) is monotone in β, it is still discontinuous with respect to β due to 

the presence of an indicator (jump) function in it. A range of well-developed algorithms 

including the brutal search method, Nelder-Mead method and linear programming method 

developed by Jin et al. (2003) can be used for computing β̂. However, as the asymptotic 

covariance matrix of the estimators involves the hazards function of an unspecified error 

distribution, direct estimation of the covariance matrix requires an estimate of this hazards 

function. Recognising that this estimate can be highly unstable, Jin et al. (2003) proposed a 

resampling method to estimate the covariance matrix that eliminates the estimation of the 

hazards function but the computation efforts involved for the resampling method can be 

immense, especially with large data-sets. This motivates us to develop a differentiable 

estimating equation to approximate (6). Specifically, define ri
β = log (T∼i) − Zi

T β, i = 1, 2, …, 

n, along the lines of Heller (2007), we consider an approximation to the indicator function 

I(r j
β ≥ ri

β) by a local distribution function S((r j
β − ri

β)/σn), where S(u) is non-decreasing and 

satisfies the conditions limu→∞ S(u) = 1 and limu→−∞ S(u) = 0, where σn is a sequence of 

strictly positive and decreasing numbers satisfying limn→∞ σn = 0. Clearly, when r j
β > ri

β, 

S((r j
β − ri

β)/σn) 1 as n → ∞; on the other hand, when r j
β < ri

β, S((r j
β − ri

β)/σn) 0 as n → 

∞. A smoothed version of (6) is thus given by

n−3/2 ∑
i = 1

n
∑
j = 1

n
δiI(Ji = 2)(Zi − Z j)S

r j
β − ri

β

σn
= 0 . (7)

3 Methods for Handling Missing Causes of Failure

When the causes of failure are only partially available, the estimating equation (7) cannot be 

applied because Ji's are not observed for all i's. Now, let Ri be the complete-case indicator 

that is equal to 1 when either δi = 0, or δi = 1 and Ji is observed, and equal to 0 otherwise. 

Thus, when the causes of failure are not completely observed, the right-censored competing 

risks data set comprises i.i.d. observations of {(Tĩ, δi, Zi, Ai, Ri, RiδiJi), i = 1, …, n}, where 

Ai's are some auxiliary covariates that may be useful for predicting the missing failure type.

We assume that the cause of failure is MAR (Rubin, 1976). That is, given δi = 1 and 

Wi = (T∼i, Zi
T, Ai)

T
, the probability that the failure cause of the ith subject is missing depends 

only on the observed Wi, but not on the unobserved Ji. Specifically, we assume that the 

failure cause missing probability is given by
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r(Wi) = P(Ri = 1|Ji, δi = 1, Wi) = P(Ri = 1|δi = 1, Wi) . (8)

Although the MAR assumption is more restrictive than nonignorable missingness, MAR is 

justified in many practical situations, and there is a large collection of literature that uses the 

MAR assumption as the baseline for analysis. Recent examples include Aerts et al. (2002), 

Wang and Rao (2002), Chen, Ibrahim and Shao (2004), Qi, Wang and Prentice (2005), Lu 

and Copas (2005), Zhou, Wan and Wang (2008), among others. In the remainder of this 

section, we develop three methods for dealing with missing data in the context of competing 

risks data.

3.1 Inverse probability weighting

Write Qi = (Wi
T, δi)

T
. From Horvitz and Thompson (1952), note that

Mi
(1)(t) ≡

Ri
π(Qi)

Ni(t) − ∫−∞
t

Yi(u)λ(u)du, i = 1, 2, …, n,

are mean zero processes, where π(Qi) = P(Ri = 1|δi, Wi) = δir(Wi) + (1 − δi). By derivations 

similar to those in Section 2, this leads to the following inverse probability weighted (IPW) 

estimating equation for β:

n−3/2 ∑
i = 1

n
∑
j = 1

n Ri
π(Qi)

δiI(Ji = 2)(Zi − Z j)S
r j

β − ri
β

σn
= 0 . (9)

In practice, r(Wi) is often unknown. We may estimate r(Wi) parametrically as in Gao and 

Tsiatis (2005), Lu and Liang (2008) and Sun, Wang and Gilbert (2012), or non-

parametrically as in Qi, Wang and Prentice (2005), Zhou, Wan and Wang (2008), and Song 

et al. (2010). Here, we adopt the non-parametric approach which has the advantage over its 

parametric counterpart of being less prone to biases arising from model mis-specification. 

We use a kernel method and assume that d is the size of the continuous elements in Wi and 

k(u) is a rth-order (r > d) kernel function with compact support that satisfies the following 

conditions: ∫ k(u)du = 1, ∫ umk(u)du = 0 for m = 1, 2, …, r − 1, ∫ urk(u)du ≠ 0 and ∫ 

k2(u)du < ∞. As well, for any u = (u1, u2, …, ud) ∈ Rd, define Kh(u) = 1
hd ∏i = 1

d k(ui/h), 

where h is a bandwidth sequence that satisties nh2r → 0 and nh2d → ∞ as n → ∞. The 

Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964) of r(w) is then given by

r (w) = Gn
−1(w)1

n ∑
i = 1

n
RiδiKh(w1 − W1i)I(W2i = w2), (10)
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where Gn(w) = 1
n ∑i = 1

n δiKh(w1 − W1i)I(W2i = w2), w = (w1, w2), and W1i and W2i are 

matrices that contain the continuous and discrete elements of Wi respectively. Substituting 

the estimator r̂(Wi) into (9) leads to the following IPW estimating equation for β:

U1(β) ≡ n−3/2 ∑
i = 1

n
∑
j = 1

n Ri
π(Qi)

δiI(Ji = 2)(Zi − Z j)S
r j

β − ri
β

σn
= 0, (11)

where π̂(Qi) = δir̂(Wi) + (1 − δi).

Denote the solution of (11) as β̂IPW. The development of an asymptotic theory for β̂IPW (as 

well as that of the other estimators in the subsequent sections) requires the following 

conditions:

(C1) The covariate vector, Z1, is bounded, and there exists a constant M such that, ‖ 
E(Z1 − Z2)(Z1 − Z2)T ‖ < M < ∞, and the parameter β lies in a compact set ℬ.

(C2) The sequence σn satisfies the conditions: nσn → ∞ and nσn
4 0 as n → ∞.

(C3) The local distribution function S(u) is continuous with respect to u, and its first 

derivative s(u) satisfies the condition ∫ u2s(u)du < ∞ and is symmetric about zero.

(C4) The bandwidth h satisfies the conditions: nh2r → 0 and nh2d → ∞ as n → ∞.

(C5) The matrix A = ∇Ũ0(β0) exists and is nonsingular, where 

U∼0(β) = limn ∞
1
nU∼n(β),

(C6) Denote f01(·) and f02(·) as the density functions of log (T11) − Z1
T β0 and 

log (T12) − Z1
T β0 respectively. Then f01(·), f 01′ ( ⋅ ), f02(·) and f 02′ ( ⋅ ) are bounded 

functions on ℛ with

∫−∞
∞ f 01′ (t)

f 01(t)

2
f 01(t)dt < ∞

and

∫−∞
∞ f 02′ (t)

f 02(t)

2
f 02(t)dt < ∞ .

(C7) The distribution of log (C1) − Z1
T β0 is absolutely continuous and has a bounded 

density function h(·) on ℛ.

Qiu et al. Page 8

Stat Sin. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(C8) The function g(w) = P(W1 = w, δ1 = 1) is bounded away from zero. Also, g(w) 

has r continuous and bounded partial derivatives with respect to the continuous 

components of W1 almost surely.

(C9) The conditional probabilities r(w) = P(R1 = 1|δ1 = 1, W1 = w) and ρ(w) = P(J1 = 

2|δ1 = 1, W1 = w) are bounded away from zero, and have r continuous and bounded 

partial derivatives with respect to the continuous components of W1 almost surely.

Let Si = (Qi
T, Ri, Ji)

T
, i = 1, 2, …, n, h(Si, S j) = δiI(Ji = 2)(Zi − Z j)I{r j

β0 ≥ ri
β0}, and H(Si, Sj) = 

h(Si, Sj) + h(Sj, Si). Then we have the following theorem on the asymptotic properties of 

β̂IPW:

Theorem 1 Let conditions (C1)-(C9) hold. Then βIPW
p β0 and

n(βIPW − β0) d
N{0, A−1(β0)∑ (β0)(A−1(β0))T},

where “ 
p

” and “ 
d

” denote, respectively, convergence in probability and convergence in 

distribution,

∑ (β0) = Γ1(β0) + Γ2(β0), Γ1(β0) = E(H1(S1)) ⊗ 2, H1(S1) = E(H(S1, S2) |S1), Γ2(β0) = E (1 − r(Wi))r
−1

(Wi)ρ(Wi)(1 − ρ(Wi))δiφ
⊗ 2(Wi) , andφ(w) = E (Z1 − Z2)I{r2

β0 ≥ r1
β0} |W1 = w, δ1 = 1 .

Proof: See the Appendix.

Now, for i, j = 1, 2, …, n, define

ei j
(1)β =

Ri
π(Qi)

δiI(Ji = 2)I{r j
β ≥ ri

β}, and di j
(1)β =

Ri
r (Wi)

− 1 δiρ(Wi)I{r j
β ≥ ri

β},

where ρ̂(Wi) is defined in (13). Then from the proof of Theorem 1 in the Appendix and the 

theory of U-statistic (van der Vaart, 2000, Ch.12), we can show that the asymptotic variance 

of β̂IPW can be consistently estimated by n−1A1n
−1(βIPW)∑ 1n (βIPW)(A1n

−1(βIPW))
T

, where

A1n(β) = 1
n2 ∑

i = 1

n
∑

j = 1

n Ri
π(Qi)

σn
−1δiI(Ji = 2)(Zi − Z j)

⊗ 2s
r j
β − ri

β

σn
, and∑1n (β) = 1

n3 ∑
i

∑
j

∑
k ≠ j

(Zi − Z j

)(Zi − Zk)T(ei j
(1)β − e ji

(1)β − di j
(1)β)(eik

(1)β − eki
(1)β − dik

(1)β) .
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3.2 Estimating equations imputation

A second method to consider is based on the estimating equations imputation (EEI) 

approach proposed by Zhou, Wan and Wang (2008). The EEI method is closely allied to the 

missing information principle. Let ρ(Wi) = P(Ji = 2|δi = 1, Wi) = P(Ji = 2|Ri = 1, δi = 1, Wi). 

Noting that E[RiNi(t) + (1 − Ri)E{Ni(t)|Qi}] = E[Ni(t)], it can be readily shown that

Mi
(2)(t) ≡ RiNi(t) + (1 − Ri)E{Ni(t) |Qi} − ∫−∞

t
Yi(u)λ(u)du = RiNi(t) + (1 − Ri)δiρ(Wi)Ni

∗(t) − ∫−∞
t

Yi(u)λ(u

)du, i = 1, 2, …, n,

are mean zero processes, where Ni
∗(t) = I{ log (T i2) − Zi

T β ≤ t}. We can then obtain the 

following estimating equation by similar argument to those in Section 2:

n−3/2 ∑
i = 1

n
∑
j = 1

n
δi[RiI(Ji = 2) + (1 − Ri)ρ(Wi)](Zi − Z j)S

r j
β − ri

β

σn
= 0 . (12)

In practice, ρ(Wi) may be unknown. Analogous to the kernel estimator of r(w) in Section 

3.1, the estimator of ρ(w) is

ρ(w) = Mn
−1(Wi)

1
n ∑

i = 1

n
I(Ji = 2)RiδiKh(w1 − W1i)I(W2i = w2), (13)

where Mn(w) = 1
n ∑i = 1

n RiδiKh(w1 − W1i)I(W2i = w2). Thus, the EEI estimator β̂EEI is the 

solution of the estimating equation

U2(β) ≡ n−3/2 ∑
i = 1

n
∑
j = 1

n
δi[RiI(Ji = 2) + (1 − Ri)ρ(Wi)](Zi − Z j)S

r j
β − ri

β

σn
= 0 . (14)

The following theorem provides the asymptotic properties of βÊEI.

Theorem 2 Let conditions (C1)-(C9) be satisfied. Then βEEI
p β0 and

n(βEEI − β0) d
N{0, A−1(β0)∑ (β0)(A−1(β0))T},

where Σ(β0) is defined in Theorem 1.
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Proof: See the Appendix.

It is straightforward to show, from the proof of Theorem 2, that the asymptotic variance of 

βÊEI can be consistently estimated by n−1A2n
−1(βEEI)∑ 2n (βEEI)(A2n

−1(βEEI))
T

, where

A2n(β) = 1
n2 ∑

i = 1

n
∑

j = 1

n
δi[RiI(Ji = 2) + (1 − Ri)ρ(Wi)]σn

−1(Zi − Z j)
⊗ 2s

r j
β − ri

β

σn
, ∑2n (β) = 1

n3 ∑
i

∑
j

∑
k ≠ j

(Zi − Z j)(Zi − Zk)T(ei j
(2)β − e ji

(2)β + di j
(2)β)(eik

(2)β − eki
(2)β + dik

(2)β), ei j
(2)β = δi[RiI(Ji = 2) + (1 − Ri)ρ(Wi)]I{r j

β

≥ ri
β}, i, j = 1, 2, …, n, anddi j

(2)β = [I(Ji = 2) − ρ(Wi)]Riδi
1 − r (Wi)

r (Wi)
I{r j

β ≥ ri
β}, i, j = 1, 2, …, n .

3.3 Augmented inverse probability weighted estimator

Another common approach for handling data with missing values is the augmented inverse 

probability weighted (AIPW) method. The AIPW estimator has the so-called double 

robustness property, that is, the estimator is consistent provided that either ρ(Wi) or r(Wi) is 

specified correctly (Robins, Rotnitzky and Zhao, 1994; Wang and Chen, 2001).

Using theories developed by Robins, Rotnitzky and Zhao (1994), and noting that 

E
Ri

π(Qi)
Ni(t) + (1 −

Ri
π(Qi)

)E{Ni(t) |Qi} = E[Ni(t)], it follows that

Mi
(3)(t) ≡

Ri
π(Qi)

Ni(t) + (1 −
Ri

π(Qi)
)E{Ni(t) |Qi} − ∫−∞

t
Yi(u)λ(u)du, i = 1, 2, …, n,

are mean zero processes. We have, analogous to the analysis in Section 2, the following 

AIPW estimating equations for β:

U3(β) ≡ n−3/2∑i = 1
n ∑ j = 1

n δi[
Ri

π(Qi)
I(Ji = 2) + (1 −

Ri
π(Qi)

)ρ(Wi)](Zi − Z j)S
r j
β − ri

β

σn
= 0,

(15)

where π̂(Qi) = δir̂(Wi) + (1 − δi) and ρ̂(Wi) are defined in (10) and (13) respectively.

Let the solution of (15) be β̂AIPW. The asymptotic properties of β̂AIPW are presented in the 

following theorem:
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Theorem 3 Let conditions (C1)-(C9) be satisfied. Then βAIPW
p β0 and

n(βAIPW − β0) d
N{0, A−1(β0)∑ (β0)(A−1(β0))T},

where Σ(β0) is specified in Theorem 1.

Proof: See the Appendix.

From the proof of Theorem 3, a consistent estimator of the asymptotic variance of βÂIPW is 

given by n−1A3n
−1(βAIPW)∑ 3n (βAIPW)(A3n

−1(βAIPW))
T

, where

A3n(β) = 1
n2 ∑

i = 1

n
∑

j = 1

n
δi[

Ri
π(Qi)

I(Ji = 2) + (1 −
Ri

π(Qi)
)ρ(Wi)]σn

−1(Zi − Z j)
⊗ 2s

r j
β − ri

β

σn
, ∑3n (β)

= 1
n3 ∑

i
∑

j
∑

k ≠ j
(Zi − Z j)(Zi − Zk)T(ei j

(3)β − e ji
(3)β)(eik

(3)β − eki
(3)β), andei j

(3)β = δi[
Ri

π(Qi)
I(Ji = 2) + (1 −

Ri
π(Qi)

)ρ(Wi)]I{r j
β ≥ ri

β}, i, j = 1, 2, …, n .

Remark 1 The three estimators βÎPW, β̂EEI and βÂIPW are asymptotically equivalent and 

thus have the same asymptotic efficiency. This is a surprising result because we would 

expect the AIPW method, which combines the IPW and EEI approaches, to have an 

improved level of efficiency over the other two methods.

Remark 2 The implementation of the IPW and AIPW methods requires the estimation of 

the missing probability π(Qi). On the other hand, unless one wants to estimate the 

asymptotic variance directly, the EEI procedure does not involve the estimation of π(Qi). If 

we resort to a re-sampling method for estimating the asymptotic variance, then the 

estimation of π(Qi) will not be required for the EEI method. Thus, from a computational 

point of the view, the EEI method has an advantage over the IPW and AIPW methods.

4 Selection of Kernel Functions and Smoothing Parameters, and Dimension 

Reduction

4.1 Selection of kernel functions and smoothing parameters

In this section, we discuss the selection of the kernel functions S(·) and k(·) and the 

smoothing parameters σn and h. In all our numerical studies and the real data example, we 

use the standard Gaussian cumulative distribution function as S(u), as the local distribution 

function. A recent study on the AFT model under length-biased sampling by Qiu, Qin and 

Zhou (2016) shows that the finite sample properties of estimators are generally insensitive to 

the choice of the local distribution function. As for the choice of σn, there exist many 

studies, including Song et al. (2007), Ma and Huang (2007), Lin and Peng (2013), and Qiu, 
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Qin and Zhou (2016), who showed that smoothing approximation techniques similar to ours 

are applicable under a wide range of choices of σn. Here, we use the “rule of thumb” 

approach along the lines of Heller (2007) to select this smoothing parameter. Specifically, 

we set σn = ĉn−0.26 , where c = ∑i = 1
n RiI{Jiδi = 2}(ri

βI − r
βI)

2
/(∑i = 1

n RiI{Jiδi = 2} − 1)
1/2

, 

ri
βI = log T∼i − Zi

T βI, β̂I is an intial estimator obtained by solving the following estimating 

equation

n−3/2 ∑
i = 1

n
∑

j = 1

n
RiδiI(Ji = 2)(Zi − Z j)I{r j

β ≥ ri
β} = 0,

and r
βI = ∑i = 1

n RiI{Jiδi = 2}ri
βI /∑i = 1

n RiI{Jiδi = 2}; the purpose of imposing the power 

constant -0.26 for n in σn is to satisfy condition (C2).

The generalised cross-validation method can be used for choosing the bandwidth h when 

estimating r(Wi) and ρ(Wi). Here, following Wang and Wang (2001) and Qi, Wang and 

Prentice (2005), we set h = O(n−1/q) with q > 2d and the smallest even integer for r such that 

r ≥ q − d. More specifically, when the number of continuous elements in Wi is equal to 1, 

i.e., d = 1, we use the univariate second order Epanechnikov kernel 

k(u) = 3
4 5 (1 − 1

5u2)I(u2 < 5) and set the bandwidth to h = 4σT̃n−1/3, where σT̃ is the sample 

standard deviation of the observed survival times. When d = 2, we use the fourth order 

Epanechnikov kernel k(u) = 3
4 5 (15

8 − 7
8u2)(1 − 1

5u2)I(u2 < 5) and set the bandwidth to (h1, 

h2)T = (4σT̃n−1/5, 4σZn−1/5)T, where σZ is the sample standard deviation of Zi. We use this 

method to select the kernel function k(u) and the smoothing parameters h in the simulation 

studies and the real example.

4.2 Dimension reduction

The three methods proposed by us are based on non-parametric regression. It is well-known 

that non-parametric methods all suffer from the curse of dimensionality, meaning that the 

performance of the methods will deteriorate rapidly as the dimension of the covariates 

increases. This limits the usefulness of our methods. An alternative is estimate π(Wi) and 

ρ(Wi) parametrically, along the lines of Gao and Tsiatis (2005), Lu and Liang (2008), Sun, 

Wang and Gilbert (2012), Zheng, Lin and Yu (2016), and others. However, parametric 

methods can result in substantially biased estimators when the correctness of the parametric 

specifications is called into question (Han, 2014).

Dimension reduction is one way to circumvent the problem caused by the curse of 

dimensionality. The objective is to seek low dimensional variables U1 and U2 in the 

observed data such that E(R|U1) = E(R|δ, W) = E(R|Q) and P(J = 2|U2) = P(J = 2|δ, W) = P(J 
= 2|Q). It is easy to see that if we replace E(R|Q) and P(J = 2|Q) in the estimating equations 
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pertaining to our methods by E(R|U1) and P(J = 2|U2) respectively, the estimating equations 

remain unbiased.

Many methods have been developed for the selection of U1 and U2. For example, we may 

assume E(R|Q) = g1(QTθ1), and P(J = 2|Q) = g2(QTθ2), where g1(·) and g2(·) are unknown 

functions, and θ1 and θ2 are parameters that can be estimated, for example, by sliced inverse 

regression (Li, 1991). Then g1(·) and g2(·) can be estimated by univariate kernel smoothing 

techniques. Furthermore, other flexible parametric models, such as the generalised additive 

and the partially linear models, can be used to model the conditional probabilities E(R|Q) 

and P(J = 2|Q). Clearly, the asymptotic properties of the estimators resulting from dimension 

reduction procedures will differ from those developed in Section 3. It remains an interesting 

topic for future research to develop the asymptotic properties of estimators under this 

alternative approach.

5 A Simulation Study

In this section, we focus on finite sample properties and identify, in the context of a 

simulation experiment, estimation and inference properties of the methods developed in this 

paper. We also draw comparisons of our methods with the complete-case analysis, which 

uses only observations that have the failure cause observed.

Experiment 1

Our first experiment is based on the following model containing only one covariate:

log (Ti2) = Zi + εi, i = 1, …, n,

where Ti2 is the failure time associated with the cause of interest, Zi is a covariate that 

follows either a Bernoulli(0.5) distribution or a U[0, 1] distribution, and εi is an error term 

following one of the following three distributions: N(0, 0.52), U[−0.5, 0.5] and the 

Generalised Extreme Value GEV(0, 0.5, 0) distributions. All observations of εi are converted 

into mean deviation form in our simulations. Given Zi, we let Φ(log t − γZi) be the 

conditional distribution function of the failure time of the other cause Ti1, where Φ(·) is the 

standard normal cumulative distribution function, and γ is chosen such that the failure of 

interest arises approximately 60% of the time. The censoring time Ci is generated from U[0, 

c], where c is a constant that controls the censoring percentage. In all cases, we choose c 
such that the censoring percentage is about 30%. Depending on the distributional settings of 

Zi and εi, the percentages of failures due to the cause of interest and the other cause vary 

between 40% and 42%, and between 28% and 30% respectively. We set n = 200 when Zi 

follows a Bernoulli(0.5) distribution and n = 400 when Zi follows a U[0, 1] distribution. In 

addition, we consider the following two missing data scenarios: Scenario 1: r(Wi) = exp(T̃
i − 

Zi)/{1 + exp(T̃
i − Zi)}, and Scenario 2: r(Wi) = 0.5. Under Scenario 1, the missing 

percentage varies between 70% and 72% depending on the setting of εi, whereas under the 

second scenario, the missing percentage is approximately 50%.
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Our simulation results based on 1000 replications are reported in Table 1, where FULL, CC, 

IPW, EEI and AIPW refer to results based on the full data set with no missing failure cause, 

complete-case study, inverse probability weighting, estimating equations imputation and 

augmented inverse probability weighting respectively, and BIAS, SE, SD and CP denote the 

empirical bias, the mean of estimated standard error, the empirical standard deviation and 

the proximity of empirical coverage probability of confidence interval (C.I.) corresponding 

to the nominal 95% level.

Our results show that by and large, the CC method results in the largest bias and smallest 

C.I. coverage probability. Of the three proposed methods, the IPW method frequently 

exhibits the largest bias, but it also yields C.I. coverage probability that is as accurate as 

those produced by the EEI and AIPW approaches. The biases resulting from the EEI and 

AIPW approaches are usually quite small and the two approaches also achieve very accurate 

C.I. coverages. Our results do not suggest any clear preference between the EEI and AIPW 

approaches; generally speaking, the two approaches lead to indistinguishable results and 

there is little to choose between them. In all cases, the SE's and their corresponding SD's are 

very close, indicating that the various non-parametric procedures we use at different stages 

perform well. As expected, the benchmark estimator based on the full set of data with no 

missing cause of failure performs best under all performance dimensions being considered. 

There are no obvious differences between the three types of error distributions, ceteris 
paribus.

Experiment 2

Our second experiment is based on the following model with two covariates:

log (Ti2) = β01Zi1 + β02Zi2 + εi,

where Zi1 ∼ U[0, 1], Zi2 ∼Bernoulli(0.5) and εi is an error term following one of the same 

three distributions as in Experiment 1. The distribution function of Ti1, given Zi1 and Zi2, is 

Φ(log t − γT Zi), where Zi = (Zi1, Zi2)T. The censoring time Ci is generated from U[0, c], 

where c is a constant parameter that controls the censoring percentage. As in Experiment 1, 

we choose γ and c such that, on average, 40% of failures are due to the cause of interest, 

30% of failures are due to the other cause and the censoring percentage is about 30%. We 

consider the following missing data scenarios: Scenario 1: r(Wi) = exp(4Zi1 + 3Zi2 − T̃
i)/{1 

+ exp(4Zi1 + 3Zi2 − T̃
i)}; Scenario 2: r(Wi) = 0.5; Scenario 3: 

r(Wi) = 1/{1 + exp (Zi1
2 − 2Zi2)}. For Scenario 1, the missing probability is approximately 

65.9% when εi ∼ N(0, 0.25), and 64.3% when εi ∼ GEV(0, 0.5, 0) and εi ∼ U[−0.5, 0.5]. For 

the other two Scenarios, the missing probabilities are approximately 50% and 59% 

respectively. In all cases, we set n = 400 and the number of replications to 1000.

The results are presented in Table 2. By and large, the general comments made above for 

Experiment 1, where the model contains a single covariate, also apply to the two-covariate 

case in broad terms. Specifically, the CC method results in estimates with the largest bias in 

the majority of cases; the IPW, EEI and AIPW methods generally yield comparable results 
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although the IPW method tends to result in slightly larger estimator bias than the other two 

methods. Other things being equal, the form of the error distributions does not appear to 

impact the results significantly.

Experiment 3

This experiment is conducted in response to a query by a referee about the difference in 

computational time between the proposed smooth approach and the discontinuous rank 

approach. This experiment is based on the same setup as in Experiment 1, except that we 

confine our attention to Zi following a U[0, 1] distribution, εi following a N(0, 0.52) 

distribution, and the missing data mechanism of r(Wi) = exp(T̃
i − Zi)/{1 + exp(T̃

i − Zi)}. 

Thus, on average, 42% of failures are due to the cause of interest, 28% of failures are due to 

the other cause, and the data missing percentage is approximately 70%. We only report 

results based on the IPW missing data handling method. Results based on other missing data 

handling methods are similar and we omit them for brevity. For the non-smooth approach, 

estimates of the unknown parameters are obtained as solutions to the estimating equation:

n−3/2 ∑
i = 1

n
∑

j = 1

n Ri
π(Qi)

I(Ji = 2)δi(Zi − Z j)I{e j
β ≥ ei

β} = 0,

where ei
β = log (T∼i) − Zi

T β, i = 1, 2, ⋯, n. Note that the l.h.s. of above equation is the 

gradient of the following convex function

L(β) = n−3/2 ∑
i = 1

n
∑

j = 1

n Ri
π(Qi)

I(Ji = 2)δi(ei
β − e j

β)−,

where a− = |a|I{a < 0}. We use the package “fminsearch” in Matlab to minimise L(β) with 

respect to β and obtain the estimates of β. As discussed previously, for estimating the 

asymptotic covariance of the estimator, we have to resort to resampling (Jin, Lin, Wei and 

Ying, 2003). Specifically, we first construct the perturbed objective function

L∗(β) = n−3/2 ∑
i = 1

n
∑

j = 1

n Ri
π(Qi)

I(Ji = 2)δi(ei
β − e j

β)−ξi,

where ξi follows the exponential distribution with mean 1. Given the data (Qi
T, Ri, Ji)

T
, we 

repeat the resampling process 50 times, and use the standard deviation (SD) of the 50 re-

sampled estimates to compute the standard errors of the estimate (SE). Table 3 below reports 

the results for n = 400 observations based on 1000 replications. It can be seen that in 

addition to delivering more accurate estimates, the smoothed approach has a significant 

advantage over the non-smoothed approach in terms of computational time.
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Experiment 4

This experiment provides insights on the impact of bandwidth choices on the results. This 

experiment is conducted in response to a question by a referee. Related studies by Ma and 

Huang (2007), Song et al. (2007), Lin and Peng (2013) and Qiu, Qin and Zhou (2016) have 

shown that bandwidth choices do not impact the results significantly. Here, we conduct a 

simple simulation experiment to examine the sensitivity of results to bandwidth choices. We 

consider the same setup as in Experiment 2, except that we restrict our attention to εi ∼ N(0, 

0.25) and Scenario 1 of the missing data mechanism. We set the smoothing parameter σn to 

0.1 × n−0:26, 0.3 × n−0:26, 0.5 × n−0:26, 0.7 × n−0:26 and 0.9 × n−0:26. The results presented in 

Table 4 show that for a given estimation method, the results across the different bandwidths 

are very similar. The assignment of bandwidth σn is thus straightforward and does not 

involve any search.

6 Application to the HVTN 502 Phase IIb ‘Step’ HIV Vaccine Efficacy Trial

We apply the newly developed methods to the HVTN 502 ‘Step’ Phase IIb trial, which was a 

randomised, placebo-controlled, preventive vaccine efficacy trial that enrolled HIV-1 

uninfected men who have sex with men who were at high risk for acquiring HIV-1 infection, 

and hadprimary objective to assess whether the incidence of HIV-1 infection differed 

between the two treatment groups [active vaccination with the Merck adenovirus type 5 

(Ad5) vector vaccine (named MRKAd5) vs. placebo](Buchbinder et al., 2008). The Step 

trial enrolled 1836 HIV-1 uninfected men, of whom 88 acquired the primary study endpoint 

of HIV-1 infection (52 in the vaccine group and 36 in the placebo group). The primary 

analysis assessed the vaccine effect on the time to HIV-1 infection with a Cox model, 

yielding an estimated hazard ratio (vaccine vs. placebo) of 1.50 (95% C.I.: 0.95–2.41, p-
value = 0.06), suggesting that, unfortunately, the vaccine elevated the risk of HIV-1 

infection.

HIV-1 is extraordinarily genetically diverse, with many genetic types of HIV-1 exposing 

participants in the Step trial, and a secondary objective of the Step trial was to assess the 

vaccine effect on the time to HIV-1 infection with specific genetic types of HIV-1. Based on 

measurement of the HIV-1 sequences from Step participants who had the HIV-1 infection 

endpoint, there are many ways to define genetic types. Once a definition is specified– such 

that there are K mutually exclusive and exhaustive genetic types– then the objective at hand 

is a standard competing risks failure time problem, where T is the time to the first HIV-1 

infection and J is the genetic type of the HIV-1 infection, J ∈ {1, ⋯, K}. However, HIV-1 

sequences were only successfully obtained from 65 of the 88 HIV-1 infected participants, 

such that J is missing for 23 participants, and a method that handles missing failure causes is 

needed. Therefore the data set-up fits the purpose for which the newly proposed methods 

were designed. In addition to needing a method to handle the missing outcome type J from 

23 HIV-1 infected participants, a method is needed to account for the fact that the vaccine 

effect on the incidence of HIV-1 infection appeared to wane over time (Duerr et al., 2012), 

which, casts doubt about the suitability of the Cox model and motivates use of the AFT 

model developed in the current manuscript. Because the previous analysis applied a Cox 
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model to address the secondary objective (Rolland et al., 2011), the newly proposed methods 

may be a better fit to the application.

We now describe the genetic HIV-1 type J that was analyzed. It is of particular scientific 

interest to study the vaccine effect on infection with the HIV-1 genetic type defined by high 

amino acid dissimilarity to a ‘hotspot’ span of 30 contiguous amino acids in the Gag HIV-1 

protein sequence inside the vaccine construct that was targeted by vaccine-induced T cell 

responses (Hertz et al., 2013); accordingly we define J = 2 as 2 or more mismatches of the 

HIV-1 infected participants hotspot sequence with the corresponding hotspot sequence in the 

vaccine (based on a multiple sequence alignment). Thenall HIV-1infections with genetic 

types with 0 or 1 mismatches have J=1. The distribution of J across the 88 endpoints is 7 for 

J = 1, 32 for J = 2, and 14 missing for HIV-1 infected vaccine recipients, and 5 for J = 1, 21 

for J = 2, and 9 missing for HIV-1 infected placebo recipients.

We employ the AFT model to evaluate the effect of Treatment (Treatment=1, if the 

participant was assigned to receive the MRKAd5 vaccine, Treatment=0 placebo), on the 

failure time T, where T is defined as the number of days from randomisation to diagnosis of 

HIV-1 infection due to the genotype of interest J = 2. We also included in the model the 

demographic factors Age (in years at study entry) and WhiteRace (indicator of reporting 

white race).

Table 5 reports the estimation results. By all methods, Treatment is statistically significant 

whereas WhiteRace is not. The results for Treatment show that vaccine recipients have a 

shorter mean time to diagnosis with genotype J = 2 HIV-1 infection than placebo recipients, 

suggesting that vaccination increased susceptibility to acquisition of J = 2 HIV-1 genotypes. 

In addition, the EEI and AIPW methods found that Age was non-significant, but the CC and 

IPW methods suggest that Age was significant at the 5% level. Interestingly, the EEI and 

AIPW methods tended to produce estimates of similar magnitudes, and the same was 

observed for the CC and IPW methods. For a given coefficient, there was no sign difference 

in the estimates produced by any of the methods.

In conclusion, the analysis suggests that recipients of the MRKAd5 vaccine may have 

elevated risk of acquiring HIV-1 infection with HIV-1 genetic types that have too many 

mismatches to the genetic type represented inside the vaccine construct, when these 

mismatches occur in the HIV-1 Gag hotspot location to which the vaccine predominantly 

directs T cell responses. This highlights the importance of designing new HIV-1 vaccine 

regimens that direct immune responses to many different genetic types of HIV-1, to 

maximize overall vaccine efficacy of future HIV-1 vaccines.

7 Concluding Remarks

Competing risks are commonplace in clinical trial study. This paper has examined the AFT 

competing risk model with missing cause of failure using the monotone rank estimating 

equations approach combined with local distribution function smoothing, and developed 

three methods for estimating unknown regression coefficients. Our simulation study shows 

that the three methods work well, and the methods have been applied to two datasets on 
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bone marrow transplant and HIV vaccine efficacy. We have also discussed methods of 

dimension reduction that can be undertaken in conjunction with the methods developed 

when the number of covariates is large. Our proposed methods can also be extended to other 

semi-parametric models, such as the generalized transformation models and the mean 

residual lifetime model. These remain for future work.
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Appendix: Proof of theorems

In our proof of theorems, for convenience purposes we assume that all elements of Wi are 

continuous. This assumption does not lead to any loss of generality.

Proof of Theorem 1. We divide the proof into two parts.

Part A1. We can write

1
n

∇U1(β0) = 1
n2 ∑

i = 1

n
∑
j = 1

n Ri
π(Qi)

δiI(Ji = 2)(Zi − Z j)
⊗ 2s

r j
β0 − ri

β0

σn

1
σn

+ 1
n2 ∑

i = 1

n
∑
j = 1

n

( 1
π(Qi)

− 1
π(Qi)

)RiδiI(Ji = 2)(Zi − Z j)
⊗ 2s

r j
β0 − ri

β0

σn

1
σn

,

(7.16)

where s(·) is the standard normal density function. By some tedious calculations and 

recognising the fact that sup
q

|π(q) − π(q) | = Op hr + (nhd)
− 1

2 , we obtain

1
n2 ∑

i = 1

n
∑

j = 1

n
( 1
π(Qi)

− 1
π(Qi)

)RiδiI(Ji = 2)(Zi − Z j)
⊗ 2s

r j
β0 − ri

β0

σn

1
σn

= op(hr + (nhd)
− 1

2) .

For the first item on the r.h.s. of (7.16), note that
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1
n2 ∑

i = 1

n
∑

j = 1

n Ri
π(Qi)

δiI(Ji = 1)(Zi − Z j)
⊗ 2s

r j
β0 − ri

β0

σn

1
σn

= n(n − 1)
n2

1
Cn

2 ∑
i < j

1
2{

Ri
π(Qi)

δiI(Ji = 2

)(Zi − Z j)
⊗ 2s

r j
β0 − ri

β0

σn

1
σn

+
R j

π(Q j)
δ jI(J j = 2)(Z j − Zi)

⊗ 2s
ri
β0 − r j

β0

σn

1
σn

} .

By using the strong law of large numbers for U-statistics, we can obtain

1
n

∇U1(β0) a . s .
E{(Z1 − Z2) ⊗ 2[∫−∞

∞
H(u)F01(u) f 02(u)ξ(u)du] + lim

n ∞
mn
π

1
2∫−∞

∞
τ(w)e

−mnw2
dw]},

where τ(w) = ∫ −∞
∞ H(u)F01(u) f 02(u){ξ(u + w) − ξ(u)}du, ξ(s) = f01(s)F̄

02(s)H̄(s) + 

f02(s)F̄
01(s)H̄(s) + F̄

01(s)F̄
02(s)h(s), mn = n/(2σn

2), F̄
01(·) is the survival function of log(T11) − 

ZTβ0, F̄
02(·) is the survival function of log(T12) − ZTβ0, and H̄(·) is the survival function of 

log(C1) − ZTβ0. Under conditions (C1)-(C9), the function τ(·) is integrable, continuous and 

bounded on ℛ with τ(0) = 0. Thus, the second term on the r.h.s. of (7.16) vanishes (Kanwal, 

1998, p.11). Therefore, we have

1
n

∇U1(β0) a . s .
A = E (Z1 − Z2) ⊗ 2 ∫−∞

∞
H(u)F01(u) f 02(u)ξ(u)du .

Part A2. By the similar proof as Heller (2007), we note that

U1(β0) = 1

n
3
2

∑
i = 1

n
∑
j = 1

n Ri
π(Qi)

δiI(Ji = 2)(Zi − Z j)I{r j
β0 ≥ ri

β0}

− 1

n
3
2

∑
i = 1

n
∑
j = 1

n π(Qi) − π(Qi)
π2(Qi)

RiδiI(Ji = 2)(Zi − Z j)I{r j
β0 ≥ ri

β0}

+ 1

n
3
2

∑
i = 1

n
∑
j = 1

n (π(Qi) − π(Qi))
2

π(Qi)π
2(Qi)

RiδiI(Ji = 2)(Zi − Z j)I{r j
β0 ≥ ri

β0} + op(1) ≡ U11(β0) − U12

(β0) + U13(β0) + op(1) .

(7.17)
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Now, by (C1) and (C8), and recognising that sup
q

|π(q) − π(q) | = Op hr + (nhd)
− 1

2 , we have

‖U13(β0)‖ ≤ C n sup
q

|π(q) − π(q)|2 = Op nh2r + 1
nhd , (7.18)

where C is an arbitrary constant. Thus, by condition (C4), U13(β0) = op(1).

From the definition of π̂(Qi), it follows that

U12(β0) = 1

n
3
2

∑
i = 1

n
∑
j = 1

n (r (Wi) − r(Wi))Gn(Wi)
π2(Qi)g(Wi)

RiδiI(Ji = 2)(Zi − Z j)I{r j
β0 ≥ ri

β0}

− 1

n
3
2

∑
i = 1

n
∑
j = 1

n (r (Wi) − r(Wi))(Gn(Wi) − g(Wi))
π2(Qi)g(Wi)

RiδiI(Ji = 2) × (Zi − Z j)I{r j
β0 ≥ ri

β0}

= 1

n
3
2

∑
i = 1

n
∑
j = 1

n
∑
l = 1

n
(Rl − r(Wi))π

−2(Qi)g
−1(Wi)δlKh(Wi − Wl)RiδiI(Ji = 2) × (Zi − Z j)I{r j

β0

≥ ri
β0} − 1

n
3
2

∑
i = 1

n
∑
j = 1

n (r (Wi) − r(Wi))(Gn(Wi) − g(Wi))
π2(Qi)g(Wi)

RiδiI(Ji = 2)(Zi − Z j)I{r j
β0 ≥ ri

β0}

≡ U121(β0) + U122(β0) .

(7.19)

But according to the facts that sup
w

|r (w) − r(w) | = Op hr + (nhd)
− 1

2  and 

sup
w

|Gn(w) − g(w) | = Op hr + (nhd)
− 1

2 , we obtain

U122(β0) = Op nh2r + 1
nhd = op(1) . (7.20)

Our next task is to prove
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U121(β0) = 1
n ∑

i = 1

n Ri
r(Wi)

− 1 δiρ(Wi)φ(Wi) + op(1), (7.21)

where φ(w) = E (Z1 − Z2)S
r2
β0 − r1

β0

σn
W1 = w .

Note that

U121(β0) = U121
[1] (β0) + U121

[2] (β0), (7.22)

where

U121
[1] (β0) = 1

n

5
2

∑
i = 1

n
∑

j = 1

n
∑

l = 1

n
(Rl − r(Wl))π

−2(Qi)g
−1(Wi)δlKh(Wi − Wl) × RiδiI(Ji = 2)(Zi − Z j)I{r j

β0

≥ ri
β0}

and

U121
[2] (β0) = 1

n

5
2

∑
i = 1

n
∑

j = 1

n
∑

l = 1

n
(r(Wl) − r(Wi))π

−2(Qi)g
−1(Wi)δlKh(Wi − Wl) × RiδiI(Ji = 2)(Zi − Z j)I{r j

β0

≥ ri
β0} .

To analyse U121
[1] (β0), similar to Zhou, Wan and Wang (2008), let us define

h(Si, S j, Sl) = (Rl − r(Wl))π
−2(Qi)g

−1(Wi)δlKh(Wi − Wl) × RiδiI(Ji = 2)(Zi − Z j)I{r j
β0 ≥ ri

β0}

and

H(Si, S j, Sl) = h(Si, S j, Sl) + h(Si, Sl, S j) + h(S j, Si, Sl) + h(Sl, Si, S j) + h(S j, Sl, Si) + h(Sl, S j, Si),
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where Si = (Qi
T, Ri, Ji)

T
, i, j, l = 1, 2, …, n. Thus,

U121
[1] (β0) = n

− 5
2 ∑

i ≠ j, l = i
h(Si, S j, Sl) + n

− 5
2 ∑

i ≠ j, l = j
h(Si, S j, Sl) + n

− 5
2 ∑

i ≠ j, l ≠ i, l ≠ l
h(Si, S j,

Sl) + n
− 5

2 ∑
i ≠ j, l = i

h(Si, S j, Sl) + n
− 5

2 ∑
i ≠ j, l = j

h(Si, S j, Sl) + n
− 5

2 ∑
i < j < l

h(Si, S j, Sl) .

(7.23)

Let us consider each of the three terms on the r.h.s. of (7.23). By the theory of U-statistics 

(van der Vaart, 2000), it can be shown easily that

n
− 5

2 ∑
i ≠ j, l = i

h(Si, S j, Sl) = Op(n−1) and n
− 5

2 ∑
i ≠ j, l = j

h(Si, S j, Sl) = Op(n−1) . (7.24)

The third term on the r.h.s. of (7.23) is a U-statistic with symmetric kernel function H(·, ·, ·). 

Note that E{H(Si, Sj, Sl)} = 0 and E{[Rl − r(Wl)]|Wl, δl = 1} = 0. Then, by some 

manipulations, we can show that E{h(Si, Sj, Sl)|Si} = E{h(Si, Sl, Sj)|Si} = E{h(Sj, Si, Sl)|Si} 

= E{h(Sl, Si, Sj)|Si} = 0. Also, by standard non-parametric procedure, we can write

E{h(S j, Sl, Si) |Si} = (Ri − r(Wi))δiE{Kh(W j − Wi)π
−2(Q j)g

−1(W j) × R jδ jI(Ji = 2)(Zi − Z j)I{rl
β0 ≥ r j

β0} |Si

} =
Ri

r(Wi)
− 1 δiρ(Wi)φ(Wi) + Op(hr) .

Similarly,

E{h(Sl, S j, Si) |Si} =
Ri

r(Wi)
− 1 δiρ(Wi)φ(Wi) + Op(hr) .

Therefore, the projection of the kernel function H(Si, Sj, Sl) is given by

E{H(Si, S j, Sl) |Si} = 2
Ri

r(Wi)
− 1 δiρ(Wi)φ(Wi) + Op(hr) .

Thus, by the theory of U-statistics (van der Vaart, 2000, Chap.12),
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n
− 5

2 ∑
i < j < l

H(Si, S j, Sl) = 1
n ∑

i = 1

n Ri
r(Wi)

− 1 δiρ(Wi)φ(Wi) + Op( nhr) . (7.25)

Combining (7.23), (7.24) and (7.25), it follows that

U121
[1] (β0) = 1

n ∑
i = 1

n Ri
r(Wi)

− 1 δiρ(Wi)φ(Wi) + Op( nhr) . (7.26)

On the other hand, by some complex calculations as in Zhou, Wan and Wang (2008), we 

obtain

‖U121
[2] (β0)‖ ≤ C nhr + op(1) . (7.27)

Thus, by (7.22), (7.26), (7.27) and condition (C4),

U121(β0) = 1
n ∑

i = 1

n Ri
r(Wi)

− 1 δiρ(Wi)φ(Wi) + op(1), (7.28)

and this proves (7.21). Further, by combining (7.19)-(7.21), we have

U12(β0) = 1
n ∑

i = 1

n Ri
r(Wi)

− 1 δiρ(Wi)φ(Wi) + op(1) . (7.29)

Analogous to the above derivation and by the theory of U-statistics, we can also obtain

U11(β0) = n
− 3

2 ∑
i = 1

n
∑
j = 1

n
δiI(Ji = 2)(Zi − Z j)I{r j

β0 ≥ ri
β0} + 1

n ∑
i = 1

n Ri
r(Wi)

− 1 δiI(Ji = 2)φ

(Wi) .

(7.30)
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Therefore, by (7.17), (7.18), (7.29) and (7.30), it follows that

U1(β0) = n
− 3

2 ∑
i = 1

n
∑
j = 1

n
δiI(Ji = 2)(Zi − Z j)I{r j

β0 ≥ ri
β0} + 1

n ∑
i = 1

n Ri
r(Wi)

− 1 δi(I(Ji = 2)

− ρ(Wi))φ(Wi) + op(1) .

(7.31)

Note that the first and second terms on the r.h.s. of (7.31) are uncorrelated. Hence

U1(β0) d
N(0, ∑1, ∑2),

by the Central Limit Theorem. The proof of Theorem 1 can be completed by the Taylor 

series expansion. We omit the details here for brevity.

Proof of Theorem 2. We divide the proof into two parts.

Part B1. Note that

1
n

∇U2(β0) = 1
n2 ∑

i = 1

n
∑

j = 1

n
[RiI(Ji = 2) + (1 − Ri)ρ(Wi)]δi(Zi − Z j)

⊗ 2s
r j
β0 − ri

β0

σn

1
σn

+ 1
n2 ∑

i = 1

n
∑

j = 1

n
(1

− Ri)(ρ(Wi) − ρ(Wi))δi(Zi − Z j)
⊗ 2s

r j
β0 − ri

β0

σn

1
σn

.

By some tedious calculations and the fact that sup
w

| ρ(w) − ρ(w) | = Op hr + (nhd)
− 1

2 , it 

follows that

1
n2 ∑

i = 1

n
∑

j = 1

n
(1 − Ri)(ρ(Wi) − ρ(Wi))δi(Zi − Z j)

⊗ 2s
r j
β0 − ri

β0

σn

1
σn

= op(hr + (nhd)
− 1

2) .

Thus, recognising that E[RiI(Ji = 2) + (1 − Ri)ρ(Wi) = E[I(Ji = 2)] and by derivations similar 

to those used in the proof of Theorem 1, we obtain
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1
n

∇U2(β0) a . s
A = E (Z1 − Z2) ⊗ 2 ∫−∞

∞
H(u)F01(u) f 02(u)ξ(u)du .

Part B2. First, note that

U2(β0) = n
− 3

2 ∑
i = 1

n
∑
j = 1

n
[RiI(Ji = 2) + (1 − Ri)ρ(Wi)]δi(Zi − Z j)I{r j

β0 ≥ ri
β0} + n

− 3
2 ∑

i = 1

n
∑
j = 1

n

(1 − Ri)(ρ(Wi) − ρ(Wi))δi(Zi − Z j)I{r j
β0 ≥ ri

β0} + op(1) ≡ U21(β0) + U22(β0) + op(1) .

(7.32)

Now, we can write

U22(β0) = n
− 3

2 ∑
i = 1

n
∑
j = 1

n
(1 − Ri)(ρ(Wi) − ρ(Wi))Mn(Wi) × m−1(Wi)δi(Zi − Z j)I{r j

β0 ≥ ri
β0}

− n
− 3

2 ∑
i = 1

n
∑
j = 1

n
(1 − Ri)(ρ(Wi) − ρ(Wi))(Mn(Wi) − m(Wi)) × m−1(Wi)δi(Zi − Z j)I{r j

β0 ≥ ri
β0

} ≡ U22
[1](β0) + U22

[2](β0),

(7.33)

where m(w) = π(w)g(w). We can easily show by steps similar to those for proving Theorem 

1 that U22
[2](β0) = op(1). Also, by the definition of M̂

n(Wi), we have
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U22
[1](β0) = n

− 5
2 ∑

i = 1

n
∑
j = 1

n
∑
l = 1

n
(1 − Ri)(I(Jl = 1) − ρ(Wi))RlδlKh(Wi − Wl) × m−1(Wi)δi(Zi

− Z j)I{r j
β0 ≥ ri

β0} = n
− 5

2 ∑
i = 1

n
∑
j = 1

n
∑
l = 1

n
(1 − Ri)(I(Jl = 1) − ρ(Wl))RlδlKh(Wi − Wl) × m−1

(Wi)δi(Zi − Z j)I{r j
β0 ≥ ri

β0} + n
− 5

2 ∑
i = 1

n
∑
j = 1

n
∑
l = 1

n
(1 − Ri)(ρ(Wl) − ρ(Wi))RlδlKh(Wi − Wl)

× m−1(Wi)δi(Zi − Z j)I{r j
β0 ≥ ri

β0} ≡ I1 + I2 .

(7.34)

By arguments similar to those used for proving Theorem 1, we have

I2 = op(1) . (7.35)

and

I1 = 1
n ∑

i = 1

n
(I(Ji = 2) − ρ(Wi))Riδi(1 − r(Wi))r

−1(Wi)φ(Wi) + Op( nhr) . (7.36)

Using (7.32)-(7.36) together, and by the theory of U-statistics, we obtain

U2(β0) = n
− 3

2 ∑
i = 1

n
∑

j = 1

n
I(Ji = 2)δi(Zi − Z j)I{r j

β0 ≥ ri
β0} − n

− 3
2 ∑

i = 1

n
∑

j = 1

n
(1 − Ri)(I(Ji = 2) − ρ(Wi))δi(Zi

− Z j)I{r j
β0 ≥ ri

β0} + 1
n ∑

i = 1

n
(I(Ji = 2) − ρ(Wi))Riδi(1 − r(Wi))r

−1(Wi)φ(Wi) + op(1) = n
− 3

2 ∑
i = 1

n
∑

j = 1

n
I(Ji

= 2)δi(Zi − Z j)I{r j
β0 ≥ ri

β0} + 1
n ∑

i = 1

n
(I(Ji = 2) − ρ(Wi))

Ri
r(Wi)

− 1 δiφ(Wi) + op(1) .

The proof of Theorem 2 may be completed by using steps analogous to those used for 

proving Theorem 1.

Proof of Theorem 3. We divide the proof into two parts.

Part C1. Write
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1
n

∇U3(β0) = 1
n2 ∑

i = 1

n
∑
j = 1

n
δi

Ri
π(Qi)

I(Ji = 2) + (1 −
Ri

π(Qi)
)ρ(Wi) (Zi − Z j)s

r j
β − ri

β

σn

1
σn

+ 1
n2 ∑

i = 1

n
∑
j = 1

n
δi

Ri
π(Qi)

−
Ri

π(Qi)
(Zi − Z j)s

r j
β − ri

β

σn

1
σn

+ 1
n2 ∑

i = 1

n
∑
j = 1

n
δi(1 −

Ri
π(Qi)

)(ρ(Wi)

− ρ(Wi))(Zi − Z j)s
r j

β − ri
β

σn

1
σn

+ 1
n2 ∑

i = 1

n
∑
j = 1

n π(Qi) − π(Qi)
π(Qi)π(Qi)

(ρ(Wi) − ρ(Wi))(Zi − Z j)δiRis

r j
β − ri

β

σn

1
σn

+ 1
n2 ∑

i = 1

n
∑
j = 1

n
(

Ri
π(Qi)

−
Ri

π(Qi)
)δiρ(Wi)(Zi − Z j)s

r j
β − ri

β

σn

1
σn

.

(7.37)

By steps analogous to those used for proving Theorems 1 and 2, we can show that the last 

four items of the r.h.s. of (7.37) are op(1). Furthermore, noting that 

E
Ri

π(Qi)
I(Ji = 2) + (1 −

Ri
π(Qi)

)ρ(Wi) = E[I(Ji = 2)], we have

1
n

∇U3(β0) a . s .
A = E (Z1 − Z2) ⊗ 2 ∫−∞

∞
H(u)F01(u) f 02(u)ξ(u)du .

Part C2. Note that

U3(β0) = n−3/2 ∑
i = 1

n
∑
j = 1

n
δi[

Ri
π(Qi)

I(Ji = 2) + (1 −
Ri

π(Qi)
)ρ(Wi)](Zi − Z j)I{r j

β0 ≥ ri
β0}

+ n−3/2 ∑
i = 1

n
∑
j = 1

n
δi[

Ri
π(Qi)

−
Ri

π(Qi)
]I(Ji = 2)(Zi − Z j)I{r j

β0 ≥ ri
β0} + n−3/2 ∑

i = 1

n
∑
j = 1

n
δi[(1

−
Ri

π(Qi)
)ρ(Wi) − (1 −

Ri
π(Qi)

)ρ(Wi)](Zi − Z j)I{r j
β0 ≥ ri

β0} ≡ U31(β0) + U32(β0) + U33(β0) .

(7.38)

Similar to the proof of Theorem 1, we have

U31(β0) = − 1
n ∑

i = 1

n
(

Ri
r(Wi)

− 1)δiρ(Wi)φ(Wi) + op(1) . (7.39)
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Also, note that

U33(β0) = n−3/2 ∑
i = 1

n
∑
j = 1

n
δi(1 −

Ri
π(Qi)

)(ρ(Wi) − ρ(Wi))(Zi − Z j)I{r j
β0 ≥ ri

β0}

+ n−3/2 ∑
i = 1

n
∑
j = 1

n π(Qi) − π(Qi)
π(Qi)π(Qi)

(ρ(Wi) − ρ(Wi))(Zi − Z j)δiRiI{r j
β0 ≥ ri

β0} + n−3/2 ∑
i = 1

n
∑
j = 1

n

(
Ri

π(Qi)
−

Ri
π(Qi)

)δiρ(Wi)(Zi − Z j)I{r j
β0 ≥ ri

β0} ≡ U33
[1](β0) + U33

[2](β0) + U33
[3](β0) .

(7.40)

It is clear that U33
[2](β0) = op(1), and similar to the proof of Theorem 2, it follows that

U33
[1](β0) = n

− 3
2 ∑

i = 1

n
∑
j = 1

n
∑
l = 1

n
(1 −

Ri
π(Qi)

)(I(Ji = 2) − ρ(Wi))Rlδl × Kh(Wi − Wl)m
−1(Wi)δi

(Zi − Z j)I{r j
β0 ≥ ri

β0} + op(1) = Op( nhr) + op(1) = op(1) .

(7.41)

Moreover, by arguments similar to those used for the proof of Theorem 1, we can write

U33
[3](β0) = 1

n ∑
i = 1

n
(

Ri
r(Wi)

− 1)δiρ(Wi)φ(Wi) + op(1) . (7.42)

Thus, using (7.40)-(7.42) together,

U33(β0) = 1
n ∑

i = 1

n
(

Ri
r(Wi)

− 1)δiρ(Wi)φ(Wi) + op(1) . (7.43)

Finally, by combining (7.38), (7.39) and (7.43) and the theory of U-statistics, we obtain
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U3(β0) = n
− 3

2 ∑
i = 1

n
∑

j = 1

n
I(Ji = 2)δi(Zi − Z j)I{r j

β0 ≥ ri
β0} + 1

n ∑
i = 1

n
(I(Ji = 2) − ρ(Wi))

Ri
r(Wi)

− 1 δiφ(Wi)

+ op(1) .

The proof of Theorem 3 may be completed by using arguments analogous to those used for 

proving Theorem 1.
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